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We consider functions of the form H0 = P a1
1 · · · P ak

k eR/Q , with
Pi , R , and Q ∈ R[x, y], which are (generalized Darboux) first
integrals of the polynomial system Md log H0 = 0. We assume that
H0 defines a family γ (h) ⊂ H−1

0 (h) of real cycles in a region
bounded by a polycycle.
To each polynomial form η one can associate the pseudo-abelian
integrals I(h) of M−1η along γ (h), which is the first order term of
the displacement function of the orbits of MdH0 + δη = 0.
We consider Darboux first integrals unfolding H0 (and its saddle-
nodes) and pseudo-abelian integrals associated to these unfoldings.
Under genericity assumptions we show the existence of a uniform
local bound for the number of zeros of these pseudo-abelian
integrals.
The result is a part of a program to extend Varchenko–Khovanskii’s
theorem from abelian integrals to pseudo-abelian integrals and
prove the existence of a bound for the number of their zeros in
function of the degree of the polynomial system only.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction and main results

This paper is a part of a program for generalizing the results of Varchenko and Khovanskii [8,14]
giving the boundedness of the number of zeros A(n) of abelian integrals corresponding to polynomial
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Fig. 1. Unfolding of the polycycle D .

deformations of degree n of Hamiltonian vector fields. We want to generalize this result to deforma-
tions of polynomial Darboux integrable systems. The general strategy as in [8,14] is to prove local
boundedness and use compactness of the product of the parameter space by the limit periodic sets
(see also Roussarie [13]). In previous papers [9], [2] we proved local boundedness of the number of
zeros of pseudo-abelian integrals under generic hypothesis. We prove here an analogous result in one
of the first non-generic cases where an exponential factor appears in the first integral. Generically,
in the unfolding two invariant algebraic curves bifurcate from the exponential factor in saddle-node
bifurcations. Other non-generic cases have been studied in [1] and [10].

Consider a real rational closed meromorphic one-form θ0 having a generalized Darboux first inte-
gral of the form

H0 = P a1
1 · · · P ak

k eR/Q , θ0 = d(log H0). (1)

Choose a limit periodic set, i.e. bounded component of R
2 \ {Q

∏
Pi = 0} filled by cycles γ (h) ⊂

{H0 = h}, h ∈ (0,b). Denote by D ⊂ H−1(0) the polycycle which is in the boundary of this limit
periodic set. The other component of the boundary of the limit periodic set belongs to H−1(b).

Let U R be a neighborhood of D in R
2, and let U be a neighborhood of D in C

2.
We assume that Q −1(0) contains one or more edges of D . If the curve Q −1(0) does not cut

the polycycle D , then the first integral has a form H = f ∗ ∏
P ai

i , where f ∗ is a non-vanishing
holomorphic function in a neighborhood of the polycycle and the proof in [9] or [2] goes through
without any modification. Note that the assumption that the curve Q −1(0) cuts the polycycle D im-
plies that R−1(0) ∩ Q −1(0) = ∅. Indeed, in a neighborhood of any (transversal) intersection point
p ∈ R−1(0)∩ Q −1(0) the first integral function reads H = ex/y and so the point (0,0) does not belong
to the closure of a bounded region filled with closed orbits γ (h).

Denote the union of the edges of D lying in Q −1(0) by LE . Each of the vertices of D lying on LE

is a saddle-node and LE lies in the strong variety of these saddle-nodes. (See Fig. 1.)
We assume that the form θ0 is generic:

Definition 1. Denote LR

i = P−1
i (0), LR

E = Q −1(0) and LC

i and LC

E their complexification. We assume
that the following properties are satisfied by θ0 in the neighborhood U of the polycycle D:

(1) the curves P−1
j (0), Q −1(0) are smooth and reduced,

(2) P−1
i (0) and P−1

j (0), as well as Q −1(0) and P−1
j (0) intersect transversally.

Consider an unfolding θε,α of the form θ0, where θε,α are real rational closed one-forms with the
Darboux first integral

Hε,α = P a1
1 · · · P ak

k Q α−1/ε(Q + εR)1/ε, θε,α = d(log Hε,α). (2)
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The foliation defined by θε,α has a maximal nest of cycles γε,α(h) ⊂ {Hε,α = h}, h ∈ (0,b(ε,α)),
filling a connected component of R

2 \ {Q (Q + εR)
∏

Pi = 0} whose boundary is a polycycle Dε,α

close to D . Consider pseudo-abelian integrals of the form

Iε,α(h) =
∫

γε,α(h)

M−1η, where M = Q (Q + εR)

k∏
i=1

Pi (3)

and η is a polynomial one-form of degree at most n.
This integral appears as the linear term with respect to δ of the displacement function of a poly-

nomial deformation

Mθε,α + δη = 0 (4)

of the Darboux integrable polynomial vector field with the first integral Hε,α , see [2] and [9].

Theorem 1. Under the genericity assumptions of Definition 1 we have that the number of isolated zeros of
pseudo-abelian integrals Iε,α in their maximal interval of definition (0,b(ε,α)) is locally uniformly bounded.

More precisely, for any n there exist an ε0 > 0 and an upper bound N, depending on θ0 and n only, such
that for any |ε|, |α| < ε0 and any η, degη � n, the number of isolated zeros of pseudo-abelian integral (3) in
(0,b(ε,α)) is at most N.

In fact, by Varchenko–Khovanskii’s theorem [8,14] the number of zeros of I(h) in any interval
[r,b(ε,α)) is locally uniformly bounded for any r > 0. That is the only point that has to be proved is
the local boundedness of the number of zeros of pseudo-abelian integrals in some interval (0, r), for
r > 0 sufficiently small, i.e. for values corresponding to a neighborhood of the polycycle D .

Following long tradition of [3,5], we completely abandon polynomial settings for analytic ones, and
prove more general Theorem 2 below. Theorem 2 deals with unfoldings of a real analytic integrable
foliation defined in a neighborhood of the polycycle D and claims that, assuming local analytic ana-
logues of conditions of Theorem 1, the number of zeros of corresponding pseudo-abelian integrals is
locally uniformly bounded. Theorem 1 follows from this as indicated above.

Let θ0 be a closed meromorphic one-form defined in a topological annulus U R ⊂ R
2 and satisfying

the following conditions:

• θ0 = d( R
S ) + ∑

ai
dPi
P i

+ θ ′, where R , S and Pi are analytic in U R , and θ ′ is a closed one-form

analytic in U R;
• P−1(0), S−1(0) are smooth, reduced and intersect transversally.

We assume that the foliation defined by θ0 in U R has a nest of cycles accumulating to a polycycle
D ⊂ U R lying in a polar locus of θ0, and let U R be a sufficiently small neighborhood of D . This in
particular implies that θ ′ = df ∗ for some analytic in U R function f ∗ , which can be further assumed to
be equal to zero (by changing P1 to P1 exp( f ∗/a1)). We assume that some edges of D lie on {Q = 0},
as the other case was considered before [2,9].

Consider a finite-dimensional analytic (with topology of uniform convergence on compact sets)
family Θ of pairs (θμ,ημ) of one-forms defined in a complex neighborhood U of the polycycle D ,
μ ∈ R

m . We assume that θμ is a real meromorphic closed one-form and ημ is real holomorphic
one-form in U .

Assume that the polar locus Dμ of θμ is a union of deformations of components of D: this means
that the forms Q 1,μ Q 2,μ P1,μ · · · Pk,μθμ are holomorphic one-forms on U , where Q 1,μ , Q 2,μ and
Pi,μ are analytic in μ families of real holomorphic functions defined in U , with Q 1,0 = Q 2,0 = Q and
Pi,0 = Pi . The function Mμ = Q 1,μ Q 2,μ P1,μ · · · Pk,μ will be called the integrating factor of θμ .
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Assume moreover that the real foliations defined by θμ have nests of cycles γμ(h) ⊂ {Hμ = h}
accumulating to Dμ , where Hμ is the first integral of the foliation defined by θμ , namely
Hμ = exp(

∫
θμ).

Theorem 2. There exists r > 0 such that the number of zeros of the pseudo-abelian integral

Iμ(h) =
∫

γμ(h)

M−1ημ

in (0, r) is uniformly bounded over all μ in a sufficiently small neighborhood of 0 in R
m.

Example 1. The family (2) satisfies conditions of Theorem 2: in this case μ = (ε,α), Q 1,μ and Pi,μ
do not depend on μ and Q 2,μ = Q + εR .

2. Plan of the proof

2.1. Analytic continuation of pseudo-abelian integral

The first step is to show that the integral Iμ(h) can be analytically continued to the universal
cover of the punctured disc {0 < |h| < r} for some sufficiently small r. As in [2], this is obtained by
transporting the cycle of integration to nearby leaves. More precisely, in a complex neighborhood of
the polycycle D we construct two linearly independent real vector fields preserving the foliation and
transversal to it. This allows to define lifting of vector fields from a punctured neighborhood of zero
in Ch to the neighborhood U of D as linear combinations of these vector fields, see Section 3. We
transport the real cycles γμ(h) using flows of these liftings.

Remark 1. Our construction of local transport of cycles differs from the one used in [11]. Both con-
structions start from local vector fields (so-called “Clemens symmetries”), and then use partition of
unity to get a transport defined in a neighborhood of D . However, we glue together the vector fields
themselves, and not their flows as in [11].

2.2. Variation relation

The form θμ has a first order pole on P−1
j,μ(0), so from closedness of θμ it follows that the residue

of θμ on P−1
j,μ(0) is well defined. We will denote it by a j,μ .

The main feature of the constructed transport is that the lifting of ih∂h is 2πa j,μ-periodic in
a neighborhood of separatrics lying on {P j,μ = 0}. This implies that the cycle γμ(h) ⊂ {Hμ = h}
and its transport to γμ(he2π ia j,μ ) ⊂ {Hμ = he2π ia j,μ} coincide in this neighborhood, so the difference
γμ(heπ ia j,μ ) − γμ(he−π ia j,μ ) does not intersect a neighborhood of {P j,μ = 0}.

For pseudo-abelian integrals this geometric observation translates into the following construction.
Define the variation operator Vara as the difference between counterclockwise and clockwise contin-
uation of Iμ(h):

Vara(Iμ)(h) = Iμ
(
heiaπ ) − Iμ

(
he−iaπ )

, (5)

and denote by Vara1,...,ak the composition Vara1,μ ◦ · · · ◦ Varak,μ
.

The key of the proof [2,9] of the local boundedness of the number of zeros of a generic Darboux
integrals on H = P a1

1 · . . . · P ak
k P

ak+1
k was a lemma stating that Vara1,...,ak,ak+1 I(h) ≡ 0. The main result

was then deduced from this by induction observing (via a generalization of Petrov’s trick) that the
operators Vara reduce the number of isolated zeros of pseudo-abelian integrals by a constant locally
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bounded for any analytic family Θ . Here Proposition 5 provides a suitable form of Petrov’s trick. The
vanishing of the iterated variation permitted to start the induction using Gabrielov’s theorem.

In our present situation we do not know how to associate a variation to the edge corresponding
to the exponential factor in the first integral (Q = 0 in Theorem 1 or S = 0 in Theorem 2). We con-
sider only iterated variation Vara1,...,ak associated to all other edges. The operator Vara1,...,ak does not
annihilate completely the pseudo-abelian integral, but produces a univalued function in a transverse
parameter, see Theorem 3. This transverse parameter is shown to be −1/ω, where ω is a Pfaffian
function generalizing the classical Ecalle–Roussarie compensator.

More precisely, we define a compensator ω(h, ε,α) by the following relation

H̃

(
− 1

ω(h, ε,α)
, ε,α

)
= h, (6)

where

H̃(x, ε,α) =
{

xα( x−ε
x )1/ε, for ε 
= 0,

xαe−1/x, for ε = 0.

ω(h, ε,α) is a Pfaffian function of h:

α(−1 − εω) + ω

ω(1 + εω)
dω = dh

h
. (7)

In Section 7 we prove existence of this function and investigate its analytic properties. Note that
ω(h, ε,0) is the usual Roussarie–Ecalle compensator, i.e. ω(h, ε,0) = hε−1

ε , for ε 
= 0.

Theorem 3. For a pseudo-abelian integral Iμ(h) corresponding to the family Θ there exist several pairs of real
analytic functions (εi(μ),αi(μ)), εi(0) = αi(0) = 0, such that

Vara1,...,ak (Iμ)(h) =
N∑

i=1

f i

(
− 1

ω(h, εi(μ),αi(μ))
, εi(μ),αi(μ),μ

)
, (8)

where fi(u, ε,α,μ) are meromorphic in u in some small disc and depend analytically on ε,αμ varying in
some small bidisc near the origin in R(ε,α) × Rμ .

Example 2. It will follow from the proofs that the number N of such pairs is at most the number of
arcs of D lying on {Q = 0}. However, for the family (2) there is only one pair of parameters εi,αi in
(8) coinciding with the parameters ε,α of the family.

2.3. End of the proof: Application of Petrov trick

Fewnomials theory of Khovanskii enables us to start the proof by induction. It gives that the
number of zeros of the right-hand side of (8) on any interval 0 � u � r is uniformly bounded for
all μ sufficiently small. Theorem 2 (and therefore Theorem 1) follow next by Petrov’s argument,
which allows to estimate the number of real zeros of J in terms of the number of zeros of Vara J ,
see Lemma 5. The key technical difficulty is to prove existence of a suitable asymptotic series for
Vara1,...,ak (Iμ)(h), see Proposition 6, which allows to translate a priori estimates on the growth of the
pseudo-abelian integral Iμ(h) to estimates on variation of its argument along small arcs.
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3. Transport of cycles near the polycycle

In this section we construct a pair vμ = (vμ
1 , vμ

I ) of two smooth real vector fields defined in some
complex neighborhood U of the polycycle D , analytically depending on μ and satisfying

d(log Hμ)
(

vμ
1

) = 1, d(log Hμ)
(

vμ
I

) = I, (9)

where, as before, Hμ = exp(
∫

θμ). Using these vector fields we can lift smooth curves �(t) :
[0,1] → {0 < |h| < h0} from a small punctured disc {0 < |h| < h0} to U , starting from any point of
H−1(�(0)) ∩ U , provided that the lifted curve does not leave U . We show that for h0 small enough
the lifting does not leave U if the starting point of the lifting lies on the real cycle of integration
γμ(h), h = �(0) ∈ R+ . This allows to construct point-wise transport of γμ(h) along any such curve
�(t) by transporting each point along its own lifting of the curve, and (9) implies that the result of
the transport lies on a leaf of the foliation defined by Hμ .

3.0.1. Construction of transport from the vector fields vμ = (vμ
1 , vμ

I )

Let us recall the construction of the lifting. Choose a point a ∈ U lying on a leaf {H = h 
= 0}, and
choose a univalued branch of H equal to h at a defined in some small neighborhood W of a. For
a vector ξ ∈ ThC ∼= C denote by ξ̃a the only real linear combination of vμ

1 (a) and vμ
I (a) such that

dH(ξ̃a) = ξ :

ξ̃a = Re
(
h−1ξ

)
vμ

1 + Im
(
h−1ξ

)
vμ

I . (10)

For a germ of a smooth curve �(t), t ∈ (−r, r), passing through h and for each point
a′ ∈ H−1(�(t)) ∩ W we can repeat this construction taking vector �′(t) as ξ . This provides a smooth
vector field on real three-dimensional surface H−1(�((−r, r))), and the trajectory �̃a(t) of this vector
field passing through a is the required lifting. Evidently, H(�̃a(t)) = �(t). In other words, this con-
struction provides a transport of points from one leaf of the foliation to another along smooth curves
in the plane of values h ∈ C.

It turns out that for h0 sufficiently small any path on the universal covering of {0 < |h| < h0}
can be lifted to U provided that the starting point a of the lifting lies on the real cycle γμ(h) and
|�(t)|′ > 0. This allows to transport the real cycle γμ(h) to this universal cover: for any path �(t) in
the universal cover we define the transport of γμ(h) along this path as a union of liftings of �(t)
through all points of γμ(h). The result is well defined in a suitable sense: the continuation depends
on the paths chosen, but continuations along homotopic paths are homotopic (by lifting of homotopy
of the paths). This provides an analytic continuation of the pseudo-abelian integral (3) to a universal
covering of a punctured disc {0 < |h| < h0}.

Remark 2. The constructed vector fields commute everywhere except in small neighborhoods of the
singular points of the polycycle. In fact, in a suitable local holomorphic coordinates we have vμ

I = I vμ
1

everywhere, and vμ defines a holomorphic (in this new complex structure) vector field everywhere
in U except these neighborhoods.

The rest of the section will be devoted to construction of vμ . It will be constructed first in neigh-
borhoods of singular points of the polycycle using the local normal forms for the first integral near
the singular points. Then vμ will be smoothly extended to neighborhoods of the arcs of the polycycle
joining them.

We will repeatedly use the following fact, which is an easy consequence of the Cauchy–Riemann
equations. Note that multiplication by i on C

2 gives rise to the real linear endomorphism J on tangent
vectors.

Lemma 1. Let ξ be a real tangent vector to C
2 , H a holomorphic function and log H its local branch. If

d(log H)(ξ) ∈ R then d(|H|)(ξ) = 0.

Also, to simplify notations we will omit the index μ in vμ .
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3.1. Construction of v in neighborhoods of saddles

Let mk be a saddle of the polycycle D .

Lemma 2. The foliation defined by Hμ near a saddle point can be analytically linearized, and the lineariza-
tion depends analytically on parameters. Linearizing coordinates (x, y) can be chosen in such a way that
H = x1/λ1 y1/λ2 , where λi are analytic functions of μ.

This is proved in [2,9], and the proof consists of writing the linearizing coordinates explicitly: if
the saddle lies on the intersection of {P1,μ = 0} and {P2,μ = 0} then P1,μ and P2,μ , multiplied by
suitable holomorphic factors invertible near the saddle, give the linearizing coordinates.

Example 3. For the form θε,α of (2) this can be expressed as

Hε,α = xa1 ya2 for x = P1
(

P a3
3 · · · P ak

k Q α−1/ε(Q + εR)1/ε
)1/a1

, y = P2.

In the linearizing coordinates the construction of v is easy. Choose some 0 < h < 1.

Lemma 3. For a family of linear saddles ẋ = λ1x, ẏ = −λ2 y in a bidisc {|x|, |y| � 1} with the first integral
H = x1/λ1 y1/λ2 one can construct the pair of vector fields v = (v1, v I ) defined in Us = {|H| < h < 1} ∩
{|x|, |y| � 1}, satisfying (9) and having the following properties:

(1) both the negative flow of v1 and flow of v I do not increase |x| and |y|;
(2) both v1 and v I are tangent to lines {y = const} near (0,1) and to the lines {x = const} near (1,0).

Proof. The holomorphic vector field vx = λ1x∂x preserves y, in particular the transversal {y = 1}, and
satisfies

d(log H)(vx) = 1, d(log x)(vx) = λ1 > 0.

Similarly, the vector field v y = λ2 y∂y preserves x and the transversal {x = 1}, and satisfies

d(log H)(v y) = 1, d(log y)(v y) = λ2 > 0.

Let φ be a smooth function defined in Us , 0 � φ � 1, equal to 0 in a neighborhood of {x = 1}
and equal to 1 in a neighborhood of {y = 1}. We define v as the pair of the real vector fields
(v1 = φvx + (1 − φ)v y , v I = I v1). One can easily see that v satisfies conditions of the lemma. �

Note that v1 (and therefore also v I ) are not analytic vector fields, as φ is not analytic.

Proposition 1. Transport of a real curve γ ⊂ {|x|, |y| � 1} ∩ {H = h0 ∈ R,h0 < h} along any smooth curve
�(t) : [0,1] → {0 < |z| � |h0|} remains in Us if |�|′(t) < 0 for all t. Moreover, the transport intersects the
transversals {x = 1} for all t if γ intersects it (and similarly for {y = 1}).

This follows from the fact that lifting of �(t) starting from any point a ∈ Us will remain in Us .
Indeed, |�|′(t) < 0 is equivalent to Re(�(t)−1�′(t)) < 0, so the coefficient of v1 in (10) is negative.
This implies that |x|, |y| do not increase along the lifting of �(t), due to the first claim of the previous
lemma.

The second claim follows since v1, v I are tangent to both transversals.
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3.2. Construction of v in neighborhoods of saddle-nodes

Let mk be a saddle-node of the polycycle D .

Lemma 4. There exist two real analytic functions ε = ε(μ) and α = α(μ) vanishing at μ = 0 and real analytic
coordinates (x, y) in some neighborhood of mk such that the vector field

ẋ = −x2 + ε2,

ẏ = y
(
1 + α(x − ε)

)
(11)

generates the foliation θμ = 0 in this neighborhood. The function

y(x + ε)α
(

x − ε

x + ε

)1/2ε

(12)

is a first integral of this vector field.

Remark 3. Normalizing coordinates for the family (2) can be given explicitly: let y = P1 P a2/a1
2 · · ·

P ak/a1
k . Then

H1/a1
ε,α = y(Q /R)α/a1

(
Q /R + ε

Q /R

)1/a1ε

,

which becomes (12) if we take X = a1(−Q /R − ε/2) and rescale ε by a1/2 and α by a1.

Remark 4. It would seem more natural to use as a local model the full versal deformation of the
saddle-node, i.e. the family (11) with ε2 replaced by ε. However, the family of real polycycles we
study extends continuously only to the half of the versal deformation where singular points resulting
from splitting of the saddle-node remain real. This is the reason for choosing the model (11).

Investigation of another half of the versal deformation is a separate interesting problem.

Proof of Lemma 4. The fact that the first integral is preserved by the vector field is a direct com-
putation. Existence of normalizing coordinates follows from the general theory of bifurcation of
saddle-nodes. Indeed, from [6] it follows that (11) is the local formal normal form, and it is well
known that for closed forms, due to vanishing of the moduli of analytic classification, the formal
normal form and the analytic orbital normal form coincide. �

Until the end of this section we will work in the normalizing coordinates and will denote by
H = Hε,α(x, y) the first integral (12) of the model family (11),

dH

H
= dy

y
+ dH̃

H̃
, where

dH̃

H̃
= 1 + α(x − ε)

x2 − ε2
dx. (13)

In other words,

H̃(x) = (x + ε)α
(

x − ε

x + ε

) 1
2ε

(14)

for ε 
= 0 and H̃(x) = xαe−1/x for ε = 0.
We consider this model in the unitary bidisc {|x| � 1, |y| � 1}.
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Fig. 2. Flow of the real and imaginary parts of the vector fields vx .

Lemma 5. For the model family above there exists a pair v = (v1, v I ) of vector fields v defined in {|x|, |y| < 1}
(except in a small neighborhood of (1,1)) and satisfying (9). Both the negative flow of v1 and flow of v I do not
increase |x| and |H̃|. Both v1 and v I are tangent to lines {y = const} near (0,1) and to the lines {x = const}
near (1,0).

Proof. We consider only the case ε 
= 0, and the case ε = 0 is obtained by taking the limit.
Let

vx = x2 − ε2

1 + α(x − ε)
∂x, v y = y∂y (15)

be two vector fields in the bidisc. We have

d(log H)(vx) = d(log H)(v y) = 1,

d(log H̃)(vx) = 1, d(log H̃)(v y) = 0,

d(log y)(vx) = 0, d(log y)(v y) = 1.

Let φ be a smooth function defined in the bidisc, 0 � φ � 1, equal to 0 in a neighborhood of
{x = 1} and equal to 1 in a neighborhood of {y = 1}. One can easily check that the pair of two real
vector fields (v1 = φvx + (1 − φ)v y, v I = I v1) satisfies conditions of the lemma. �

The following is a saddle-node analogue of Proposition 1.

Proposition 2. Let γ (h0, ε,α) be a relative cycle in the unitary bidisc lying on {Hε,α(x, y) = h0 
= 0} taken
modulo the two transversals {y = 1} and {x = 1}. Assume in addition that the cycle lies entirely in the bidisc{∣∣H̃(x)

∣∣ �
∣∣H̃(1)

∣∣} × {|y| � 1
}
. (16)

Then the relative cycle γ (h0, ε,α) transports in relative cycles along any curve �(t) : [0,1] → {0 < |z| �
|h0|}, �(0) = h0 , remains in (16) provided |�|′(t) < 0 for all t.

Note that unlike the previous case of saddles, the lifting does not preserve the whole bidisc
{|x|, |y| � 1}, but only the bidisc (16) (see Fig. 2). However, the parts of the real cycles γε,α(h) passing
near the saddle-node lie in (16), so satisfy the conditions of the lemma.

Proof of Proposition 2. Indeed, since v preserves the transversals {y = 1} and {x = 1}, the endpoints
of γ (h, ε,α) still lie on them. Similarly to the proof of Proposition 1, from Re(�(t)−1�′(t)) < 0 we
conclude that both |H̃| and |y| only decrease along lifting of �(t), so the points of bidisc (16) remain
in it when transported along �(t). �
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3.3. Gluing a global transport

Here we extend the vector fields constructed above to a vector field defined in a whole neighbor-
hood of the polycycle D .

Proposition 3. There exist a complex neighborhood U of Dμ and a pair of real vector fields v = (v1, v I ) in U
satisfying (9). Moreover, transport of real cycles γμ(h) along any curve �(t) ⊂ {0 < |z| � |h0|} remains in U
provided |�|′(t) < 0 for all t.

Proof. For each singular points of the polycycle we defined two transversals intersecting the polycy-
cle. They are given by {x = 1} and {y = 1} in the normalizing chart of the singular point.

For an arc of the polycycle joining two singular points m1, m2 consider two transversals Γ1, Γ2
to this arc, lying in normalizing charts W1 and W2 of m1 and m2 correspondingly, and let K be a
compact piece of the arc joining Γ1 and Γ2. Let U K be a neighborhood of K in the leaf of the foliation
containing K .

To fix notations, assume that in the normalizing coordinates in W1 the leaf containing K is con-
tained in {x = 0}. The family F1 of discs given by {y = const} is transversal to U K and invariant
under the flow of vector fields v1, v I constructed before (assuming U K is sufficiently small). Similar
transversal family F2 of invariant discs exists on the other end of K .

Our immediate goal is to embed these two families of discs into one smooth family F of smooth
real two-dimensional discs transversal to U K and filling some neighborhood of K in C

2. Let g1 be
a Riemannian metric defined in W1 which in normalizing coordinates is just a standard Euclidean
metric in R

4, so the leaf containing K and the discs of F1 lie in orthogonal affine planes. Let g2 be a
similar metric in W2, and continue smoothly these two metrics to a metric g defined in some neigh-
borhood of U K in C

4. We can assume that g preserves the complex structure of U K . The exponential
mapping expg maps diffeomorphically some neighborhood W̃ ⊂ NU K of U K in its normal bundle
NU K onto some neighborhood W of U K in C

2, in such a way that the images of fibers NxU K are
mapped into the leaves of Fi for x ∈ U K ∩ W i , i = 1,2. We define F as the family F (x) = expg(Bx),
x ∈ U K , where Bx = NxU K ∩ W̃ are small discs (symmetry of g with respect to conjugation assures
that for x ∈ K the leaves F (x) intersect R

2 by a smooth curve transversal to K ).
Shrinking Bx , we can assume that F (x) is transversal to the leaves {H = h} for all sufficiently

small h (because F (x) is transversal to the leaf containing K ). We define v = (v1, v I ) in the neigh-
borhood W K of U K in C

2 as the two vector fields tangent to F (x) and satisfying (9).
Evidently, F coincide with Fi in W i . Since (9) define uniquely the pair of vector fields tangent

to a real two-dimensional surface transversal to {H = h}, we conclude that thus constructed v is a
smooth extension of the vector fields constructed before.

Dynamics of v on each leaf F (x) is conjugated to dynamics on the transversal {y = 1} of v
constructed in either Lemma 3 (when one of two singular points is a saddle) or Lemma 5 (for a
connection between two saddle-nodes), with conjugation map being just the flow from one transver-
sal to another. We use here the fact of smoothness of Q : it implies that the weak manifolds of
saddle-nodes of the polycycle D join them to saddles, and two saddle-nodes can be connected by
their strong manifolds only.

Let a be a real point lying on F (x) ∩ γμ(h) for h sufficiently small. Then the lifting of any curve
�(t) ⊂ {0 < |z| � |h|}, �(0) = h, starting from a remains in {|H| � h}∩ F (x), which is contained in W K
provided that h is sufficiently small.

Repeating the construction for all arcs of the polycycle, we get the pair v = (v1, v I ) defined in the
neighborhood U of the polycycle, where U is the union of normalizing charts W i and the neighbor-
hoods W K of all singular points and arcs of the polycycle. �
4. Pushing cycles away from the weak manifold

Recall that LR

E is the union of edges D contained in the zero level curve Q = 0. Any arc of D lying
on {Q = 0} joins two saddle-nodes, and is the strong manifold of both.

The aim of this section is to prove the following proposition:
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Proposition 4. There exist a neighborhood U (LR

E ) of LR

E in C
2 and neighborhoods U C

k of the central varieties

of saddle-nodes ml ∈ D such that in the open set EL = U (LR

E ) \ ⋃
U C

l

(1) the family θμ defines a holomorphic foliation without singularities analytically depending on μ, and
(2) the family of cycles

Vara1,...,ak γμ(h) (17)

is homotopic along the fibers to the family of cycles lying in EL , where γμ(h) are real cycles as in (3).

Shrinking EL if necessary, we can assume that connected components of E L are in one-to-one
correspondence of the arcs of D lying on {Q = 0} and have homotopy type of the figure eight.

We first show that a cycle lying near LE and in the saddle regions of the saddle-nodes can be
pushed away from the central variety while remaining in a neighborhood of LE . This will be needed
to prove that the integral of a meromorphic form M−1ημ over such cycle depends holomorphically
on μ and the transversal coordinate. The transversal coordinate is exactly 1

ω(h,ε(μ),α(μ))
for suitable

functions ε(μ),α(μ).

Lemma 6. Using assumptions and notations of Proposition 2 let γ = γ (h, ε,α) ⊂ {Hε,α = h} be a relative
cycle lying in the bidisc (16) and whose boundary is in {Hε,α = h} ∩ {y = 1}. Then γ is homotopy equivalent
in {Hε,α = h} to a relative cycle γ̃ with the same property and, in addition, not intersecting a neighborhood
{|y| < δ} of the x-axis, for a sufficiently small δ > 0 independent of the cycle.

Proof. Choose a non-negative bump function ψ(y) equal identically to 1 on {|y| < δ}, and van-
ishing outside {|y| < 2δ < 1}. Define the vector field V = ψ(v y − vx), where vx and v y were
defined in (15). Evidently, dH(V ) = 0, so the flow of V preserves the foliation. We can assume
that c = dist(γ , {y = 0}) < δ. Consider the image τMγ of the cycle γ by the M-time flow, where
M = log δ

c > 0. Since LV y = y in {|y| � δ}, the image τMγ lies outside {|y| � ceM = δ}. Since
LV (log H̃) = −ψ < 0, the |H̃| is decreased by this flow, so the condition (16) is still satisfied. �
4.1. Flow-box triviality

Consider a neighborhood U (LR

E ) of LR

E in C
2 which is a union of the normalizing charts of the

saddle-nodes and of the open set U K constructed in the proof of Proposition 3 for LR

E . Let U C

k be
neighborhoods of the central variety of each saddle-node mk as in Lemma 6.

Lemma 7. The foliation defined by Hμ in the open set E L is analytic without singularities and depends analyt-
ically on sufficiently small parameter μ.

Proof. Indeed, by construction EL is covered by several charts, namely neighborhoods of bifurcating
saddle-nodes and neighborhoods of compact subsets of separatrices on some positive distance from
the saddle-nodes. In each of these sets the foliation defined by Hε can be brought analytically to a
suitable normal form, either to normal form of Lemma 4 or just to the standard flow box. Evidently,
EL lies on a finite distance from singularities. �
Proof of Proposition 4. The cycle γ can be continuously moved to close leafs of the foliation by
Proposition 3. It was proved in [2] that the pieces of γ lying near saddles or near separatrices lying
on Pi = 0 are annihilated by the operator Vara1,...,ak . Therefore the cycle Vara1,...,an γ is supported
in U (LR

E ). Moreover, it still lies in (16) in normal coordinates, so by Lemma 6 it is homotopically
equivalent along the fibers to a cycle γ ′(h) lying in EL . �
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5. Proof of Theorem 3

Let z be a holomorphic coordinate on a transversal Γ to {Q = 0}.

Lemma 8. For the family θμ the coordinate z is a holomorphic function of − 1
ω(HΓ ,ε(μ),α(μ))

, where ε(μ),
α(μ) are some analytic functions of μ which are the same for any two transversals to the same arc
of D.

Remark 5. Functions ε(μ),α(μ) from Lemmas 4 and 8 coincide.

Proof of Lemma 8. Every transversal can be holomorphically mapped to a transversal lying in a nor-
malizing chart of some saddle-node of the polycycle D , just by the flow of the vector field tangent to
the foliation. Therefore, the claim follows from Lemma 4: when restricted to {y = 1}, the first integral
(12) becomes (6), up to a linear change of ε,α. �
Remark 6. The parameters ε(μ), α(μ) are intrinsically defined: 1/ε(μ) is the residue, and α(μ) is
the sum of residues of the restriction to Γ of the form θμ . For the family (2) the smooth irreducible
double divisor {Q = 0} is split into two close irreducible smooth curves {Q = 0} and {Q + εR = 0},
with residues 1/ε and α − 1/ε being the same for all transversals. In general, the residues are lo-
cally constant along {Q = 0} (e.g. by closedness of θμ), but can be different for different connected
components.

Lemma 9. For sufficiently small ε the mapping h 
→ − 1
ω(h,ε,α)

is one-to-one on the interval [0,1].

Let Bμ be some small polydisc, and consider a foliation F of E L × Bμ by one-dimensional leaves
{Hμ = h, μ = const}. According to Lemma 7 this is an analytic foliation without singularities.

Lemma 10. Let γ be a closed connected curve on a leaf of F and assume that it can be continuously trans-
ported to nearby leafs. Denote the resulting family by γμ(z), where z is the coordinate of a point of the
intersection of the cycle and some fixed transversal to {Q = 0}. Let ημ be a meromorphic one-form in EL × Bμ

such that Q 1,μ Q 2,μημ is holomorphic. Then there exist two analytic functions ε(μ),α(μ) such that the inte-
gral Iμ(z) = ∫

γμ(z) ημ is a meromorphic function of z and depends analytically on μ.

Proof. A connected component of the open set E L × Bε,α containing γμ(z) is covered by two nor-
malizing charts of neighborhoods of saddle-nodes (with a neighborhood of weak manifold removed)
and a neighborhood of the connection between saddle-nodes. In each of the above charts leafs of
our foliation are graphs of (multivalued) functions x(y,h) of the coordinate y along the leaf {Q = 0}.
Therefore in each chart the curve γ can be written as a curve (x(t), y(t),μ), and we can define its
projection curve (0, y(t),0) lying on {Q = μ = 0}. It is important here that by Proposition 4 we can
keep the cycle away from the weak manifold where the projection is not regular.

We can join γ and its projection by a continuous family of closed curves lying on leaves of foliation
using the explicit normalizing charts. We can do it in each normalizing chart, and the condition of
trivial holonomy of γ guarantees that these pieces will glue together. This implies that the holonomy
of the projection curve is trivial, so γ can be continued from L to all nearby leaves. Therefore I(z)
is univalued in a neighborhood of z = μ = 0. Since the length of the continuation is bounded, the
growth of I(h) is at most polynomial. �
Lemma 11. Define the functions gβ(z, ε,α) by

gβ

(
− 1

ω(heiβ, ε,α)
, ε,α

)
= − 1

ω(h, ε,α)
.
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Then for any β0 > 0 and any neighborhood W ⊂ C of the origin there exists a small tridisc W ′ ⊂ C
3
z,ε,α near

the origin such that the function gβ ′(z, ε,α) maps W ′ × {|β| < β0} holomorphically into W .

Proof. The function gβ(z, ε,α) is the iβ-time flow of the vector field ṽ ′ = z2+εz
1+αz ∂z , which is just the

vector field vx of (15) up to an affine change of variables. Therefore the claim follows from the fact
that x = 0 is a fixed point of ṽ ′ for ε = α = 0 and analytic dependence of the solution of ODE on the
initial conditions and parameters. �
Proof of Theorem 3. By Proposition 4 and the definition of the operator Varai the cycle γ ′ =
Vara1,...,an γ (h,μ) is a union of several disjoint cycles γ ′

i lying in EL on leaves {H = heiβi }, for finitely
many βi ∈ R. Since γ ′ can be continued by h, the cycles γ ′

i also can be continued by h. Therefore by
Lemmas 10 and 8 the function Vara1,...,an Iμ is a finite sum of f i(− 1

ω(heiβi ,εi(μ),αi(μ))
,μ), where each

f i is holomorphic in some bidisc at the origin. Then Lemma 11 implies it is an analytic function of
− 1

ω(h,ε,α)
. �

6. Proof of Theorem 2

Proposition 5. Application of the operator Vara decreases the number of zeros of Iμ(h) by at most some finite
number uniformly bounded from above and depending on the family Θ only.

Proof. To prove the proposition, consider the sector {r < |h| < 1, |arg h| � απ}. Proposition 6 guaran-
tees that the zeros of I(h) do not accumulate to 0, so for r small enough this sector includes all zeros
of I(h) on (0,1). To count the number of zeros of I(h) in this sector apply the argument principle. As
in [2,9], the increment of argument of I(h) on the counterclockwise arc {|h| = 1, |arg h| � απ} passed
counterclockwise is uniformly bounded from above by Gabrielov’s theorem [4]. Here we need the an-
alytic dependence of the compensator function ω(u, ε,α) on the parameters ε, α, when |u| = const.
This is proved in Proposition 7.

Proposition 6 below implies that the increment of argument along the small arc {|h| = r,
|arg h| � απ} passed clockwise is uniformly bounded from above as well. The classical Petrov’s ar-
gument now shows that the increment of argument of I(h) along the segments {r < |h| < 1, |arg h| =
±απ} is bounded from above by the number of zeros of Varα I(h), which proves the proposition. �
End of the proof of Theorem 2. Theorem 2 follows from Proposition 5, Theorem 3 and the fact that
the number of zeros of

f =
∑

i

f i

(
− 1

ω(h, εi(μ),αi(μ))
, εi(μ),αi(μ),μ

)
,

i.e. of the right-hand side of (8), on some interval (0, r) is uniformly bounded for all sufficiently
small μ. The latter claim is a direct application of fewnomials theory of Khovanskii [8]: since all
− 1

ω(h,ε,α)
are Pfaffian functions, see (7), the upper bound for this number of zeros can be given, using

Rolle–Khovanskii arguments of [7], in terms of the number of zeros of some polynomials in Fi and
their derivatives. The latter are uniformly bounded by Gabrielov’s theorem [4]. �

The aim of the following Proposition 6 is to describe the asymptotics of the pseudo-abelian integral
I(h) and its variation at h = 0. This justifies the application of Petrov’s argument in the proof of
Theorem 1.

The regular form of the singularity together with a priori bound for the growth of the integral I(h)

gives us an estimate for the increment of the argument along arcs of small circles around h = 0. Note
that the singularity at ε 
= 0 case was already investigated [2,9]. Thus, it remains to investigate the
non-trivial exponential case ε = 0.
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Proposition 6. Let I(h) be a non-zero multivalued holomorphic function on a neighborhood of h = 0 verifying
the iterated variation relation (8) for some k and satisfying the a priori bound

|I| � C |h|−N (18)

in sectors {|arg h| � A}.
Then I(h) has a leading term of the form hα(log h)k or of the form (log h)−k(log(log h))l , with k, l > 0.

Moreover, for any N ′ > N the increment of argument of I(h) along the arc C0 = {reiφ | φ ∈ [−A, A]} traveled
clockwise can be estimated from above

�ArgC0
I � 2N ′ A, (19)

for all sufficiently small r > 0.

7. Generalized Roussarie–Ecalle compensator

In this section we prove the existence of the generalized Roussarie–Ecalle compensator (6). We
start with the following, general statement.

Lemma 12. Let r(x) be a rational function. There exists a holomorphic, multivalued, endlessly continuable
function ω(z) which satisfies the following equation

ω′(z) = r
(
ω(z)

)
. (20)

The ramification set of the function ω(z) is discrete along any path.

Proof. Consider the Riemann sphere C with small disjoint, open discs D1, . . . , Dk centered at zeroes
and poles of r(x). Let the initial condition x0 ∈ C be chosen away from these discs. Let z = l(s),
s ∈ [0,1], l(0) = 0, be a path in C starting at z = 0. Since the domain C \ (

⊔
j D j) is compact, the

solution of the equation ω′ = r(ω) is well defined along l at least until it enters to some disc D j ,
i.e. for s ∈ [0, s j]. The solution can be extended to a holomorphic function in a neighborhood of this
segment of l.

In a disc D j there exists a holomorphic coordinate ξ such that the equation takes the following
(normal) form

ξ ′ =
⎧⎨⎩

aξn, a ∈ C
∗ for n � −1,

aξ, a ∈ C
∗,

(rξ−1 + aξ−n)−1, a ∈ C
∗, r ∈ C for n � 2.

The solution reads respectively

t − t0 =

⎧⎪⎨⎪⎩
a−1(1 − n)−1ξ1−n,

a−1 log ξ,

r log ξ + a
1−n ξ1−n.

Now, if n � 1, the solution ω cannot reach the singular point ξ = 0, so it either leaves the disc D j or
stays inside (and is well defined) for s ∈ [s j,1]. If n � −1, then the singular point ξ = 0 corresponds
to the ramification of the solution ω. �
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Now we return to the particular problem related to the existence of the compensator. One checks
that the compensator function ω in the logarithmic coordinate u = log h must satisfy the following
differential equation

ω′(u) = ω(ω − ε)

1 + α(ω − ε)
. (21)

Thus, by Lemma 12, for fixed ε the solution is a well defined multivalued holomorphic function. The
dependence on ε is not automatically analytic since in Eq. (21) the collision of two zeroes (at ω = 0)
and the collision of zero and pole (at ω = ∞) occur for ε = 0. We overcome these difficulties by taking
respective blow-ups. More precisely, the following proposition holds. Recall that the logarithmic chart
u = log h assumed.

Proposition 7. There exist a positive constant l0 and three functions F S (ε, s), F E (ε, u), F N (ε, w) analytic
in ε, analytic multivalued in s, u, w respectively such that in a neighborhood of any u0 the compensator
ω(ε; u) has one of the following forms (depending on the value ω(ε; u0))

ω
(
eu, ε,α

) =
⎧⎨⎩

εF S(ε, ε(u − u0)),

F E(ε, u − u0),

α−1 1/F N(ε,α−1(u − u0)).

(22)

Moreover, these expressions are valid for all paths starting at u0 , of length bounded by l0 .

Remark 7. The indices S, E, N of functions come from the south pole, equator and north pole on the
Riemann sphere.

Proof of Proposition 7. In the whole proof the logarithmic chart is assumed u = log h. We will use the
notation ω(u, ε). One easily observes that Eq. (21) has the following singularities: zeros of order 1 at
ω = 0, ω = ε and ω = ∞ and pole of order 1 at ω = −α−1 + ε. For ε = 0 they degenerate to a single
pole of order 2 at ω = 0. Let two discs centered at 0 and ∞ respectively, both of radius r0/2 contain
all these singularities for |ε| < ε0. Thus, on the ring R = R(r0, r−1

0 ) the rational function ω(ω−ε)
1+α(ω−ε)

is bounded by a constant M . Let ω(u0, ε) = ω0 ∈ R and dist(ω0, ∂ R) = δ. Analytic continuation of ω
along any path l starting at t1, of length � δ/M is so contained in R and satisfies estimate |ω −ω0| �
M |l|. Moreover, this solution depends analytically on ε. Defining the “base” solution F E on the ring R
by the initial condition F E (ε,0) = 1 we get

ω(u, ε) = F E(ε, u − u0),

where u0 = u1 − ∫ ω0
1

1+α(ω−ε)
ω(ω−ε)

dω.

Now, we consider the lower semi-sphere |ω| < 1 in the Riemann sphere C. We make the following
blow-up transformation

ω = εy, s = εu.

Eq. (21) takes the form

y′ = y(y − 1)

1 + εα(y − 1)
.

The solution y = F S (ε, s), fixed by the initial condition F S (ε,0) = 1
2 ε−1, is ε-analytic as far as it

remains in a safe distance from “upper” singularities, e.g. if |y| < 2/ε. Thus, the compensator reads



3372 M. Bobieński et al. / J. Differential Equations 247 (2009) 3357–3376
ω(u, ε) = εF S (ε, ε(u − u0)) and this formula is valid along any path of length bounded by 1/M ,
provided |ω0| < 1.

Finally, on the upper semi-sphere |ω| > 1, the blow-up map x = α−1/z, s = α−1u transforms
Eq. (21) to

z′ = − z(1 − αεz)

1 + z − αεz
.

We fix the solution F N (ε, s) which is ε-analytic in the region |ω0| > 1/2. Thus, the following formula
for compensator remains valid along any path of length bounded by 1/M , provided |ω0| > 1. �
8. Proof of Proposition 6

Note that it is enough to prove the statement point-wise with respect to all parameters, in partic-
ular ε. As the case ε 
= 0 was already investigated [2], it remains to prove the claim in the non-trivial
exponential case ε = 0.

The general strategy of the proof is the following. We construct explicitly a particular solution of
the variation equation (8). Since solutions of the corresponding homogeneous variation equation (i.e.
Vara1,...,ak I ≡ 0) were already considered in [2], this gives us a description of the general solution. To
construct a particular solution of (8) we first solve it explicitly up to a sufficiently small remainder
on the right-hand side (Lemma 13). Next the solution to the new equation is found in terms of
convergent series (Lemma 14).

Remark 8. This strategy is in the spirit of the two steps construction of a solution of the homological
equation associated to the normal form problem for diffeomorphisms and vector fields [6,12].

In this section we will work in the logarithmic chart u = log h. In this coordinate the variation
operator Vara (5) becomes a difference operator

�a f = f (u + iaπ) − f (u − iaπ). (23)

We introduce also the notation for the iterated differences

�a1,...,ak := �a1 · · ·�ak .

The multivalued functions defined in a punctured neighborhood of h = 0 become functions holomor-
phic in the half-planes HL− = {Re u < −L � 0}. All functions below are assumed to be of this type.

Let P (u) be the space C[u, 1
u , log u] of polynomials in log u and Laurent polynomials in u.

Lemma 13. Assume that f ( 1
u ,

log u
u ) is a holomorphic function of the second variable log u

u and meromorphic

function of 1
u .

(1) For any real A ∈ R there exists a polynomial p ∈ P (u) such that∣∣( f − p)
∣∣ � M|u|−A (24)

for some constant M.
(2) The space P is closed under the integration operation, i.e. for any p ∈ P there exists P ∈ P (u) such that

P ′ = p.
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(3) For any real A ∈ R there exists a function P f ∈ P such that∣∣( f − �a1,...,ak P f )
∣∣ � M|u|−A (25)

for some constant M.

Proof. (1) The function f has the following power series expansion

f =
∑

m�0, l�−l0

aml
logm u

um+l
.

We define p to be the sum of all terms with m + l � A + 1; this sum is finite, so p ∈ P (u).
(2) We use the induction by (log u)-degree of p. If p is a Laurent polynomial in u, the integral

∫
p

is a sum of a Laurent polynomial in u and a term a log u, a ∈ C. Consider relations(
ul logm u

)′ = lul−1 logm u + mul−1 logm−1 u,
(
logm u

)′ = mu−1 logm−1 . (26)

Let p ∈ P (u) be an element of (log u)-degree � m. The integral
∫

p is a sum of terms of (log u)-
degree � m and a logm+1 u, a ∈ C.

(3) Points (1), (2) and simple induction reduce problem to the following observation. For any
p ∈ P (u) the leading term of the solution to the difference equation �a F = p is given by the integral
P = ∫

p, i.e.

|p| � M|u|−A ⇒
∣∣∣∣p − �a

1

2π ia
P

∣∣∣∣ � M̃|u|−(A+1).

We estimate

∣∣∣∣p − �a
1

2π ia
P

∣∣∣∣ =
∣∣∣∣∣p(u) − 1

2π ia

u+π ia∫
u−π ia

p(s)

∣∣∣∣∣ =
∣∣∣∣∣ 1

2π ia

u+π ia∫
u−π ia

(
p(s) − p(u)

)∣∣∣∣∣
=

∣∣∣∣∣ 1

2π ia

u+π ia∫
u−π ia

p′(u + ξs)

∣∣∣∣∣ � M
∣∣u−(A+1)

∣∣.
The last inequality follows from the estimate |p′| � M ′|u|−(A+1) valid for arbitrary p ∈ P (u) satisfying
|p| � M|u|−A . �

Let Q + (respectively Q −) be an upper-left (respectively lower-left) quarter-plane defined as follows
Q + = {u ∈ C: Re u < −L, Im u > −K } and Q − = {u ∈ C: Re u < −L, Im u < K } for some positive
constants K , L. We construct here a solution of the variation equation in Q + . This is sufficient for
our purposes, since for application of the Petrov’s argument we need only estimates in a half-strip
{Re u < −L, | Im u| < K } with some finite L, K > 0.

Lemma 14. Let f be a holomorphic function on Q ± which satisfies the estimate | f (u)| � M|u|−A on Q ± for
some constant M. Assume that A > n. Then the following series

F± = (∓1)k
∑

m ,...,m >0

f
(
u ± 2π i(a1m1 + · · · + akmk) ∓ π i(a1 + · · · + ak)

)
(27)
1 k
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converges and solves the difference equation on Q ±

�a1,...,ak F± = f , a j > 0. (28)

Moreover, the solution F± is of order A − n − ε, i.e. for all B < A − n the solution F± satisfies the estimate

|F±| � M A−n−B |u|−B . (29)

Proof. By induction, it is enough to prove the following statement. Let | f | � M|u|−A , A > 1 on Q ± .
Then the formula

F± = ∓
∞∑

m=1

f
(
u ± (2π iam − π ia)

)
(30)

solves the difference equation �a F± = f and F± satisfies the estimate

|F±| � M A−1−B |u|−B (31)

for B < A − 1.
The series (30) is convergent, so the function F± is well defined. A direct computation shows that

it satisfies the difference equation. We estimate

|F±| �
∑

m

∣∣ f
(
u ± (2π ia m − π ia)

)∣∣
� M|u|−B

∑
m

∣∣∣∣ u

u ± (2π iam − π ia)

∣∣∣∣B ∣∣u ± (2π iam − π ia)
∣∣B−A

.

The function | u
u±(2π ia m−π ia)

| � M± is bounded on Q ± (not true on the whole half-plane H−!) and

the series
∑

m |u ± (2π ia m −π ia)|B−A converges since B − A < −1. This shows the estimate (31). �
Remark 9. Note that formula (30) for F± defines a holomorphic function on the whole half-plane H− .
The difference

F− − F+ =
∑
m∈Z

f (u + π ia + 2π ia m)

defines a 2π ia-periodic function on H− . However, the estimate (31) does not extend to H− . Passing
to the variable h̃ = eu/a the difference (F− − F+)(h̃) defines a germ of a meromorphic function at the
origin. This situation is in the spirit of the functional cochain [5].

Corollary 1. Using Lemmas 13 and 14 we can solve explicitly the difference equation �a F = f , where
f ( 1

u ,
log u

u ) is as in Lemma 13. Indeed, the general solution consists of 3 terms: principal part, given by
P ∈ P (u), remainder given by series (30) and an arbitrary solution to the homogeneous equation �a F H ≡ 0.
The latter one is given by a series

∑
l alelu/a.

In the next lemma we investigate the analytic properties of the generalized compensator ω(h, ε,α)

(see (6)) for ε = 0. Recall that ω(h, ε,α = 0) is the Roussarie compensator. Below we study the case
with ε = 0 and arbitrary α in the logarithmic coordinate u = log h. We denote

w = − 1

ω(eu,0,α)
, (32)

so wαe−1/w = eu .
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Lemma 15. For Re u � 0 we have

w = 1

u

(
a + gα

(
1

u
,

log u

u

))
, (33)

where C � a 
= 0, gα(·,·) is an analytic function and gα(0,0) = 0.

Proof. Indeed, writing w = − w1
u , we get

z1α log w1 − αz2 + 1

w1
= 1, z1 = 1

u
, z2 = log(−u)

u
.

The left-hand side of this equation is an analytic function F = F (w1, z1, z2) in a neighborhood of
(1,0,0), and F (1,0,0) = 1. Since ∂ F

∂ w1
|(1,0,0) = 1, by implicit function theorem we get

w = − 1

u

(
1 + g

(
1

u
,

log(−u)

u

))
. �

Proof of Proposition 6. Note that the main difficulty in the proof is to control the form of the sin-
gularity of the function I at h = 0. Indeed, consider, as a toy example, the special case when I is
a meromorphic function of h. Then, the moderate growth bound (18) restricts the order of pole at
h = 0 to N and so the increment of argument satisfies (19). To prove a proposition in the general case
it is enough to show that the form of singularity which is allowed by the variation relation (8) to-
gether with the moderate growth estimation forces an explicit bound for the increment of argument
in terms of N only. Due to this idea, it is enough to work point-wise with respect to all parameters
(i.e. ε,α, . . .). The case ε 
= 0 was already investigated in [2]. The conclusion was that the leading
term of the integral I(h) at h = 0 is a monomial hA logk h, with positive integer k. Thus, the same
estimate as in the meromorphic case holds.

First we give a proof in a special case α = 0 (compare (2)). It contains the essence of the general
case with much less technical details.

The α = 0 case. The function w given by formula (32) reads w = − 1
log h . We use the logarithmic chart

u = log h. By Lemma 13, there exists a polynomial P ∈ C[log u, u, 1
u ] (leading term) such that

|F − �a1,...,ak P | � M|u|−A,

for some A > n and a positive constant M . Thus, the iterated variation (difference) of I − P is of
sufficiently high order and a solution F+ defined in Q + is given by the iterated sum formula (27).
Moreover, it is of lower order than P .

Now, the iterated difference vanishes identically

�a1,...,ak (I − P − F+) ≡ 0.

Thus, by Lemma 4.8 from [2], the principal term of I − P − F+ has the form hα logm h. Finally, the
principal term of I is either a monomial hα logm h, α � −N , m ∈ Z, m � 0, or logl h logm(log h), m, l ∈ Z,
m � 0. In both cases the upper bound (19) holds.

The general case (α �= 0). By Lemma 15 we know that the function w has the following form

w = 1

u

(
a + g

(
1

u
,

log u

u

))
, a 
= 0,
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and g is a holomorphic function, g(0,0) = 0. For arbitrary meromorphic function F (·), the composi-
tion F (w) has the following expansion

F (w) =
∑

k�−k0

(
1

u

)k

qk(log u),

where qk is a polynomial. Now we can repeat the argument used in the special case α = 0. We take
the principal part P F of F (w) up to order A > n. It is a polynomial in log u and Laurent polynomial
in u. We can solve the iterated difference equation explicitly, up to terms of higher order (Lemma 13).
Then, by Lemma 14, a solution F+ to the iterated difference equation for (I − P F ) is given by the
iterated sum formula (27). Finally, we obtain that the leading term of I is a monomial hα logm h,
α � −N , m ∈ Z, m � 0, or logl h logm(log h), m, l ∈ Z, m � 0. In both cases the upper bound (19)
holds. �
Remark 10. In the above proof one can replace the iterated sum solution F+ by F− , which is well
defined over Q − . The remaining part of the proof works as well with F− .
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