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TANGENTIAL HILBERT PROBLEM FOR PERTURBATIONS OF
HYPERELLIPTIC HAMILTONIAN SYSTEMS

D. NOVIKOV AND S. YAKOVENKO

Abstract. The tangential Hilbert 16th problem is to place an upper bound

for the number of isolated ovals of algebraic level curves {H(x, y) = const}
over which the integral of a polynomial 1-form P (x, y) dx + Q(x, y) dy (the

Abelian integral) may vanish, the answer to be given in terms of the degrees
n = deg H and d = max(deg P, deg Q).

We describe an algorithm producing this upper bound in the form of a
primitive recursive (in fact, elementary) function of n and d for the particular

case of hyperelliptic polynomials H(x, y) = y2 + U(x) under the additional
assumption that all critical values of U are real. This is the first general result

on zeros of Abelian integrals that is completely constructive (i.e., contains no
existential assertions of any kind).

The paper is a research announcement preceding the forthcoming complete
exposition. The main ingredients of the proof are explained and the differential

algebraic generalization (that is the core result) is given.

1. Tangential Hilbert problem and bounds for the number
of limit cycles in perturbed Hamiltonian systems

1.1. Complete Abelian integrals and the tangential Hilbert Sixteenth
problem. Integrals of polynomial 1-forms over closed ovals of real algebraic curves,
called (complete) Abelian integrals, naturally arise in many problems of geometry
and analysis, but probably the most important is the link to the bifurcation of limit
cycles of planar vector fields and the Hilbert Sixteenth problem. Recall that the
question originally posed by Hilbert in 1900 was on the maximal number of limit
cycles a polynomial vector field of degree d on the plane may have. This problem is
still open even in the local version, for systems ε-close to integrable or Hamiltonian
ones. However, there is a certain hope that the “linearized”, or tangential Hilbert
16th problem can be more treatable.

Consider a polynomial perturbation of a Hamiltonian polynomial vector field

ẋ = −∂H

∂y
− εQ(x, y), ẏ =

∂H

∂x
+ εP (x, y). (1.1)

An oval γ of the level curve H(x, y) = h which is a closed (but non-isolated) periodic
trajectory for ε = 0, may generate a limit cycle for small nonzero values of ε only
if the accumulated energy dissipation is zero in the first approximation, i.e., when

0 =
∮

γ

P (x, y) dx + Q(x, y) dy, γ ⊆ {H(x, y) = h}. (1.2)
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The expression in the right hand side of (1.2) is a complete Abelian integral , and
assuming the polynomials H,P, Q fixed, it is a function I = I(h) of the value h ∈ R,
in general multivalued if the corresponding level curve contains several real ovals.
The value I(h) is the first variation of the Poincaré return map for the system (1.1)
with respect to the parameter ε, computed in the chart h at ε = 0.

Thus the linearized or tangential Hilbert problem arises (see [1, problems by
V. Arnold] for a recent reference): for any collection of polynomials H,P, Q ∈ R[x, y]
of degree 6 d give an upper bound for the number of real ovals γ over which the in-
tegral (1.2) vanishes, but not identically (in the latter case the perturbation (1.1) is
conservative in the first approximation, and higher variations must be considered).
The bound should be given in terms of d only, in other words, be uniform over all
combinations of polynomials of admissible degrees.

1.2. Hyperelliptic case. A very important particular case is the hyperelliptic one,
when H(x, y) = 1

2y2 + U(x), U ∈ R[x], deg U = d > 5: in this case the level curves
are hyperelliptic (rational for d = 1, 2, elliptic for d = 3, 4). The polynomial U
in this case will be always referred to as the potential , since such Hamiltonian
systems correspond to the Newtonian system ẍ = −∂U

∂x describing a free particle
in the potential field in one degree of freedom. The integral (1.2) in this case is
called a hyperelliptic integral . The tangential Hilbert problem restricted for the
hyperelliptic case, was studied in many papers including [4, 23].

1.3. Background. For low degree Hamiltonians (3 or 4) there are numerous results
on the number of zeros for special choices of H, many of them sharp, that will not
be discussed here: we note only that the elliptic case corresponding to H(x, y) =
1
2y2 + 1

3x3 − x was completely investigated by G. Petrov [17], while in the case
of an arbitrary cubic H a linear bound 5d + 15 for the number of zeros of I(h)
was obtained by E. Horozov and I. Iliev [5]. However, the general results that
would be valid for Hamiltonians of arbitrarily high degrees, are much more scarce
and substantially less explicit. Perhaps the only known completely explicit general
result is an upper bound for multiplicity of an isolated zero of an Abelian integral.
This bound (polynomial in d) is due to P. Mardešić [13], who proved it using the
the approach suggested by Yu. Ilyashenko [6].

A. Khovanskĭı in [10] and A. Varchenko in [24] proved that for any fixed d the
number of isolated zeros of Abelian integrals is uniformly bounded over all Hamilto-
nians and forms of degree 6 d. The assertion of the Khovanskĭı–Varchenko theorem
is purely existential: it gives absolutely no information on how the bound may de-
pend on d.

A simpler problem arises if we fix H and consider integrals of 1-forms ω of in-
creasing degrees d = deg ω = max(deg P,deg Q), looking for an asymptotic bound
for the number of zeros as d →∞. In this direction a considerable progress was re-
cently achieved: assuming the Hamiltonian H be sufficiently generic, Yu. Ilyashenko
and S. Yakovenko obtained a double exponential in d upper bound for the number
of isolated zeros on a positive distance from critical values of H [7]. Almost im-
mediately D. Novikov and S. Yakovenko improved this result, reducing the bound
to a single exponent and making it uniform over all real regular values: the num-
ber of real isolated roots of the Abelian integral does not exceed exp(Cd), where
C = CNY(H) < +∞ is a finite constant depending only on the Hamiltonian [14].
The description of CNY(H) can be done in geometric terms [7], but the bound blows
up to infinity as H approaches the boundary of the open set of Morse polynomials.
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Finally A. Khovanskĭı and G. Petrov proved1 that the number of isolated zeros
may grow at most as B(n)d + CKP(n), where B(n) is an explicit expression double
exponential in n = deg H, while CKP(n) is a finite constant that depends on n.
However, this dependence is, as before, purely existential.

Summarizing this brief synopsis, we conclude that today no completely effective
upper bound is known that would serve Hamiltonians of an arbitrarily high degree.

1.4. Solution of the tangential Hilbert problem for hyperelliptic Hamilto-
nians. In this announcement we claim a constructive upper bound for the number
of zeros of hyperelliptic integrals under the additional assumption that all critical
values of the potential U(x) are real. There are several broadly used classes of con-
structive functions, among them effective (algorithmically computable), primitive
recursive (defined by a finite number of inductive rules) and elementary functions,
see [12]. Our main theorem asserts the strongest form of computability of the upper
bound as a function of two natural values n, d.

Theorem 1. For any real polynomial U(x) ∈ R[x] of degree n+1 and any differen-
tial form ω = P dx+Qdy of degree d the number of real ovals γ ⊂ {y2 +U(x) = h}
yielding an isolated zero to the integral

∮
γ

ω, is bounded by a primitive recursive (in
fact, elementary) function B(n, d) of two integer variables d and n, provided that
all critical values of U are real.

A closer inspection of the algorithm proving Theorem 1 suggests that the function
B(n, d) grows no faster than a certain tower function (iterated exponent) of height
5 or perhaps 6. In any case, this bound is too excessive to believe that it might be
realistic: this is the main reason why we never tried to write it explicitly.

2. H-fields and their polynomial-like property

The proof of the Theorem 1 goes by induction in n, but the induction step
requires introducing more general classes of functions than ordinary hyperelliptic
integrals. In other words, Theorem 1 is obtained as a corollary to a more general
Theorem 2 concerning complex zeros of analytic functions from certain Picard–
Vessiot extensions [8] of the field of rational functions C(t) by one or several hy-
perelliptic integrals.

2.1. Analytic continuation. Abelian integrals (1.2) admit analytic continuation
as multivalued functions of a complex argument t, ramified over a finite set of
points Σ = {t1, . . . , tµ} ⊂ C and eventually t0 = ∞. Generically (and always
in the hyperelliptic case), Σ consists of critical values of H, and the monodromy
group of this extension does not depend on the integrand ω. This implies that an
arbitrary Abelian integral can be represented as a linear combination of a finite
number of integrals of some 1-forms ωk with coefficients from C(t) [25]. These
forms can be explicitly described and the degrees of the coefficients bounded [3],
but in the hyperelliptic case the situation becomes completely transparent and all
computations explicit.

1The proof of this result was published in [17] for a hyperelliptic polynomial H = 1
2
y2 + U(x)

under the assumption that all critical points of the potential are real, but it can be generalized

for all Morse Hamiltonians by several simple though non-obvious reductions.
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2.2. Basic hyperelliptic integrals and Picard–Vessiot field extensions. Let
U(x) = xn+1 + · · · be a monic (i.e., with leading coefficient 1) potential of degree
n + 1 and ωk = xk−1y dx, k = 1, . . . , n, differential 1-forms that constitute the
basis of cohomology of each nonsingular hyperelliptic complex level curve φt =
{ 1

2y2+U(x) = t} ⊂ C2, t ∈ C. Define the (complete collection of) basic hyperelliptic
integrals Jkj(t) as integrals of the forms ωk over vanishing cycles δj(t) ∈ H1(φt, Z),
see [2], “growing” from the critical values tj :

Jkj(t) =
∮

δj

ωk, δj = δj(t) ⊆ φt, diam δj(t)
∣∣
t→tj

→ 0 (2.1)

Together they constitute a non-degenerate n × n-matrix J = J (t), analytically
depending on t ∈ C outside the critical locus Σ. This matrix function satisfies a
Picard–Fuchs system [2] of first order linear differential equations (3.1) with rational
coefficients, and the result of analytic continuation of J (t) along any loop in C rΣ
is described by the Picard–Lefschetz formulas [2].

Lemma 1 (cf. [3, 25]). An arbitrary hyperelliptic Abelian integral belongs to the
field kU = C(t)(J11, . . . , Jnn), the extension of the rational functions field C(t) by
the basic hyperelliptic integrals Jkj = Jkj(t), j, k = 1, . . . , n defined as in (2.1).

The field kU completely determined by the potential U is the field of multival-
ued analytic functions of complex argument t, analytically continuable along any
path in C r Σ (this construction will be further generalized in Definition 1 below).
Alternatively one can describe kU in purely algebraic terms as a differential field,
the Picard–Vessiot extension of C(t) by solutions of a linear system (3.1), adding
all entries of any fundamental matrix solution to the latter. However, the system
of generators J = {Jkj} is distinguished for many reasons.

The number n = deg U − 1 will be referred to as the gender of the field kU .
To define unambiguously arithmetic operations with multivalued functions, we

choose a base point t∗ and a collection of simple non-intersecting (except at t∗)
paths connecting tj with t∗. The integrals Jkj(t), originally defined only as germs
at t = tj [2], can be continued along these paths and define a collection of germs of
analytic functions at t = t∗ denoted again by Jkj . Then the field operations in kU

can be identified with arithmetic operations on germs. Analytic continuation along
loops attached to t∗, constitute the group Mon(kU ) of monodromy (differential)
automorphisms of the field.

Each element from kU can be written as a ratio of two H-polynomials, each of the
form p =

∑
k+|α|6d ckα tkJ α ∈ C[t,J ] = C[t, J11, . . . , Jnn], where α = ‖αkj‖ ∈ Zn2

+

is a multiindex, J α =
∏n

j,k=1 J
αkj

kj , and d the degree of the H-polynomial p. The
degree of an arbitrary H-function p/q ∈ kU is as usual max(deg p, deg q), and it is
preserved by monodromy transformations by virtue of Picard–Lefschetz formulas.

2.3. General definition of H-fields. For our purposes (mainly for Lemma 3
below) we need a more general object, extension of C(t) by adding hyperelliptic
integrals associated with several different potentials.

Definition 1. An H-field2 kU1,...,Uν
associated with a collection of ν Morse poly-

nomial potentials U1, . . . , Uν ∈ R[x] of degrees n1 + 1, . . . , nν + 1, is the extension

2We would like to use the expression “hyperelliptic field” instead of the abbreviation “H-field”,
but the former term is already in use (though not very common). On the other hand, it would
be certainly inadmissible to call elements of an H-field “hyperelliptic functions”, since the latter
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of the field C(t) by the complete collection of n2
1 + · · · + n2

ν hyperelliptic integrals
associated with each potential U1, . . . , Uν .

The gender of the H-field kU1,...,Uν
is the sum n = n1 + · · · + nν . The critical

locus Σ ⊂ C generically consisting of n points is the union {t1, . . . , tn} of critical
values of all respective potentials Us.

As in the case of a single potential, one can fix settings (the base point, system
of paths etc.) so that each element of the H-field will be associated with a unique
algebraic expression and the degree of elements is well defined.

2.4. Theorem on zeros for H-fields. We prove that under the additional as-
sumption that Σ ⊂ R, i.e., that all critical values of all potentials are real, the
H-fields possess the property that makes them similar to the field of rational func-
tions: the number of complex isolated zeros of any H-function admits an upper
bound in terms of its degree and gender.

If Σ ⊂ R, then we can assume that the critical points are ordered, −∞ < t1 <
· · · < tn < +∞. They subdivide the real axis into n + 1 finite or semiinfinite
interval `j . Theorem 2 places an upper bound for the number of real (i.e., on `j)
and complex (in the upper or lower half-planes) zeros of any H-function: a simply
connected domain when zeros are counted, needs to be specified because of the
multivaluedness of H-functions.

Theorem 2 (main). There exists a primitive recursive (in fact, elementary) func-
tion B(n, d) such that the number of complex isolated zeros of any H-function
f ∈ kU1,...,Uν

of gender n and degree d in the upper or lower half-planes {± Im t > 0}
and on each real interval `j can be at most B(n, d), provided that all critical values
of all potentials are real.

Reduction from Theorem 2 to Theorem 1 is provided by Lemma 1. We believe
that the assumption Σ ⊂ R is technical, but for the moment it cannot be dropped.

The function B(n, d) is determined by the algorithm given in the proof. In prin-
ciple and if necessary, its growth rate for large n, d can be estimated by a closer
inspection of the algorithm. Note that the bound is uniform over all combina-
tions of potentials generating H-fields with the same gender, and over all values of
coefficients of H-functions of a given degree.

3. The structure and main ingredients of the proof

3.1. Preliminary normalization. For any given gender n the H-fields of this
gender are parameterized by a combinatorial invariant (a partition of n describing
how many different potentials of each degree were used) and, as soon as the partition
is fixed, by the strings of coefficients of all potentials Us(x). The latter can be to a
certain extent resized: using affine transformations x 7→ λsx+λ′s with λs, λs ∈ C, it
is possible to normalize the string of collections of each potential Us independently.
Besides, one can make a change of the “independent variable” t 7→ µt + µ′ with
µ, µ′ ∈ C, common for all potentials. Using these transformations, one can achieve
the following: (a) the coefficients of all potentials are explicitly bounded; (b) the
roots of all potentials are in the unit disk; (c) the overall critical locus Σ is centered
at 0, so that

∑n
j=1 tj = 0, and does not neither shrink too much nor stretch to

name is firmly attached to functions from a different class. Thus we had to decide between at
least three-words-long term and an abbreviation.
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infinity: maxi 6=j |ti − tj | = 1. Clearly, these transformations cannot affect any
bound on the number of zeros.

We refer to such H-fields as (properly) resized , introducing at the same time the
notion of resized H-polynomials, H-functions etc.

3.2. Picard–Fuchs system for hyperelliptic integrals and variation of ar-
gument along arcs distant from the singular locus. The multivalued matrix
valued function J (t) formed by basic hyperelliptic integrals (2.1) satisfies a linear
system of ordinary differential equations of the form

(t + A)J̇ (t) = BJ (t), A, B ∈ Matn×n(C), (3.1)

where A,B are constant matrices depending only on the potential U . The general
form of (3.1) was established in [4] from geometric considerations, and in [19] the
system (3.1) was derived by elementary arguments allowing for explicit description
of the matrices in terms of the potential3. In particular, det(t + A) =

∏n
j=1(t− tj)

(the product is taken over all critical values of the potential U), and the norms
‖A‖, ‖B‖ are bounded in terms of n if the potential is properly resized.

For the case of a general H-field associated with a collection of potentials {Us}
a similar system can be written for each potential and, after passing to symmetric
products, for the collection of all H-monomials of degree 6 d for any particular d:

∆(t) · d
dt (tkJ α) =

∑
|β|6d

Ak,α,β(t)J β , ∀ k + |α| 6 d, (3.2)

where Ak,α,β ∈ C[t] are polynomials of explicitly bounded (in terms of n and d)
degrees with bounded coefficients, and ∆(t) =

∏
t∈Σ(t − tj) is the product taken

over the union of all critical values of all potentials Us.
In other words, any H-polynomial of a known degree d and gender n can be

written as a linear combination of coordinate functions restricted on a certain tra-
jectory of the polynomial (more precisely, rational) vector field (3.2) in the affine
space of the appropriate dimension (depending on d and n). The main result of
[15, 16] applied to the system (3.2) in combination with [26, Corollary 2.7] yields
the following property of resized H-fields.

Lemma 2. Variation of argument of any resized H-function of degree d and gender
n along any arc γ ⊂ C r Σ admits an explicit upper bound in terms of n, d, and
geometry of the arc γ (its length |γ| and the distance from γ to Σ, measured by
inft∈γ |∆(t)| > 0).

Variation of argument of any such function along any sufficiently small circular
arc around any singular point tj ∈ Σ or t0 = ∞ is bounded from above by an explicit
expression involving only d and n.

The bound provided by Lemma 2 is already given (assuming γ for simplicity on
the distance 1 from Σ) by a tower function of height 4 in the variables n and d [15].
This explains why any bound based on using the Lemma, must be very large.

3.3. Clusterization. The general principle established in Lemma 2, immediately
implies an upper bound for the number of isolated zeros on any compact simply
connected subset of CrΣ, by virtue of the argument principle. To extend this result
for zeros arbitrarily close to ramification points, additional efforts are required.

3Note added in proof : the demonstration from the Masters thesis [19] recently appeared in the

book [22, p. 83–84]
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tj γj σ
R

Figure 1. The cluster and its boundary

However, the assumption that the H-field is already resized, makes it possible
to break the critical locus into at least two parts with a sufficient spacing between
them and also distant from infinity that is another ramification point. Covering each
part by a convex simply connected domain Dj , called cluster , with the boundary
on a controlled distance from all other singularities, splits the problem on zeros
into that for each cluster separately, for a neighborhood D∞ of infinity and for
the complement C = C r (D∞ ∪ D1 ∪ D2). The bound for zeros in C follows
from Lemma 2 and the argument principle (being multiply connected, C should be
further split into simply connected pieces without singularities inside). Thus it is
the problem for a single separate cluster that has to be considered.

Zeros near infinity (inside the cluster D∞) can be counted combining the main
result of [20] with that from [15]: this works in fact for any cluster with only one
singularity inside. The arguments briefly described below, show how the ideas
of [20] can be generalized to cover the case of several ramification points. Very
roughly, one has to find a system of functions that after restriction on a cluster
would have the same monodromy as the hyperelliptic integrals, but be in some
sense simpler. The solution is to consider a full collection of hyperelliptic integrals
associated with an appropriate potential of inferior degree (i.e., smaller gender):
then one can proceed by induction using the construction from [17]. The latter is
briefly explained in the following section.

3.4. Argument principle after Petrov. Suppose we have an H-function f with
ramification locus Σ on the real axis. Consider a symmetric (with respect to R)
domain Ω ⊂ C r Σ formed by cutting the cluster (disk) D = Ω along two rays
emanating from two adjacent singular points into the opposite directions, see Fig. 1.
Since Ω is simply connected, f extends as a single-valued function analytic in Ω. To
majorize the number of zeros of f in this domain, we apply the argument principle.
Assuming H-field to be resized and the exterior arc γ∗ distant from Σ, the variation
of argument along the arcs γj , γ∗ is explicitly bounded by Lemma 2. It remains to
majorize the variation of argument of f along the upper and lower edges of the real
intervals σ±j between the singular points tj and tj+1.

Let σ be one such edge. It was an observation made by G. Petrov in [18], that
variation of argument of an analytic function f along a connected curve is at most
π times the number of roots of Im f on that curve plus 1, since between any two
consecutive roots of Im f there variation of argument of f can be at most π. In
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other words, to majorize the number of zeros of f in Ω, it is sufficient to majorize
the number of zeros of Imσ f = Im(f

∣∣
σ
) on every interval σ that is a part of ∂Ω.

To apply this argument recursively, one has to restore the settings and extend
the imaginary parts analytically from their respective edges of definition to obtain
germs at t∗. One can easily show that for an H-function from the field k = kU1,...,Uν

all these extensions will again belong to the same field , i.e. there are well-defined
maps Imσ : k → k for all σ = σ±j . This follows, e.g., from the fact that the matrices
A,B occurring in the system (3.1), are real.

The above construction reduces the problem on zeros for one H-function f to
that for several other functions Imσ±j

f associated with all real edges σ±j ⊂ ∂Ω.
The gain occurs if these new H-functions are simpler than the original one.

3.5. D-inner subfield and D-restricted monodromy. The choice of a cluster
D introduces an asymmetry between the critical values tj , the respective vanishing
cycles and hence between the basic integrals Jkj generating the H-field.

Assume that the base point t∗ used to identify elements of the Picard–Vessiot
extension with germs, belongs to D together with the paths connecting it with all
“interior” singularities tj ∈ D (the paths connecting t∗ with the “outer” singular
points outside D, can be arbitrary).

Definition 2. The D-restricted monodromy (sub)group MonD(k), k = kU1,...,Uν ,
is a subgroup of the full monodromy group Mon(k) formed by analytic continuation
over loops entirely belonging to the cluster D. The dual object is the D-inner sub-
field kD = kD

U1,...,Uν
invariant by all transformations from MonD(k). Alternatively,

this subfield can be described as the extension of C(t) by the integrals Jkj over the
cycles vanishing only at the inner points tj ∈ D.

Lemma 3. There exists an H-field kV1,...,Vµ
of gender m < n and a collection

of germs r1, . . . , rρ, ρ = nm, each invariant by the restricted monodromy (i.e.,
extendable to single-valued meromorphic in D functions), such that

kD
U1,...,Uν

= kV1,...,Vµ
(r1, . . . , rρ).

The collection (r1, . . . , rρ) satisfies a system of first order linear ordinary differential
equations with bounded rational coefficients, similar to (3.2).

This lemma is an analytic corollary of the fact that the restricted monodromy of
the inner subfield is the same as the (unrestricted) monodromy of an appropriate H-
field of a smaller gender, associated with a collection of potentials V1, . . . , Vµ. The
proof of this corollary uses Thom theorem on versal deformations and the Lyashko–
Looijenga theorem, see [11]. Without loss of generality the functions rk can be
assumed real on the real axis, being replaced by rk(t)+rk(t) and i−1(rk(t)−rk(t)).

3.6. Depression of gender for D-inner subfield. The Petrov construction al-
lows to reduce the problem on zeros for the inner subfield kD to that for the “model”
H-field kV = kV1,...,Vµ

. Assume that the number of complex zeros (and poles, if
necessary) of any function g from the latter field is already known to be computable
in terms of deg g. By Lemma 3, any H-function f from kD can be written as a
combination f =

∑
j hjgj with hj ∈ C(r1, . . . , rρ) real on D ∩ R and gj ∈ kV ,

involving a finite (controllable in terms of d = deg f and n) number of terms.
Applying the Petrov construction to the function f/g1 = h1 +

∑
j>2 hjgj/g1,

we see that for any real interval σ ⊂ ∂Ω the imaginary part Imσ f/g1 is the sum
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j>2 hj g̃j,σ with g̃j,σ = Imσ(gj/g1) ∈ kV , which contains fewer terms than h.

Note that each division by an element from kV affects the number of zeros in a
controllable way by the induction assumption. Iterating this step, one can reduce
the question on zeros for f to that for finitely many functions from the H-field kV

of strictly inferior gender m.

3.7. Reduction from outer to inner polynomials. A similar slightly more
elaborate construction is used to make the last step and reduce the problem from
the entire H-field k = kU1,...,Uν to its D-inner subfield k ′ = kD

U1,...,Uν
; in fact, it

is sufficient to count zeros inside the cluster D for elements of k ′[Z], where by
Z = (Z1, . . . , Zτ ), τ = n2 − nm, we denoted the collection of outer (non-inner)
basic hyperelliptic integrals Jkj (2.1). Moreover, changing if necessary the system
of generators Z, one can always assume that they are real on some inner interval
σ∗ ⊂ D. The assertion below follows from the triangular form of the Picard–
Lefschetz formulas and the fact that the real and imaginary parts of each monomial
Zα can be obtained by linear combinations of analytic continuations along loops
inside the cluster.

Lemma 4. For any real segment σ ⊂ ∂Ω and any monomial Zα in outer variables,

Reσ Zα = Zα + p1, Imσ Zα = p2, where p1,2 ∈ k ′[Z], degZ pj < |α|. (3.3)

Now we can easily explain the last reduction. For a polynomial p =
∑
|α|6d cαZα,

cα ∈ k ′, we consecutively divide p by the coefficients cα with |α| = d (which makes a
controllable change in the number of zeros) and then apply the Petrov construction
amounting to taking imaginary parts. After a finite number of steps all leading
terms of degree d in the variables Zk will be eliminated by virtue of (3.3). The
construction provides the inductive step for induction in d = degZ p.

3.8. Concluding remarks. The alternating division by a function and subsequent
differentiation with application of the Rolle lemma is a common tool in bounding
the number of zeros of real functions, see [21]. The Petrov principle may be thus
seen as an analogue of Rolle lemma for the operators Imσ rather than for d

dt , see
[20].

The only place where we do not know how to get rid of the assumption that all
critical points of the potentials are real, is Lemma 4: all other steps of the proof
can be easily modified to cover the general case.

However, it would be interesting to notice that using completely different meth-
ods, A. Givental in [4] established a certain Lagrangean nonoscillation for the sys-
tem (3.1), while R. Schaaf proved that the “hyperelliptic” integral

∮
dx/y3 has no

real zeros under the same assumption on the critical points. For the moment it
seems a pure coincidence that the same condition reappeared in Theorem 1.
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