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Abstract. An elementary example shows that the number of zeroes of a

component of a solution of a system of linear ordinary differential equations
cannot be estimated through the norm of coefficients of the system.

Bounds for oscillations. In [1] it was shown that a linear ordinary differential
equation of order n, with real analytic coefficients bounded in a neighborhood of
the interval [−1, 1], admits a uniform upper bound for the number of isolated zeros
of a solution defined on this interval. The analyticity condition can be relaxed; only
the boundedness of the coefficients matters. Probably, the simplest result in this
spirit is the following theorem for the linear ordinary differential equation

y(n)(t) + a1(t)y(n−1)(t) + · · ·+ an(t)y(t) = 0 (1)

with continuous coefficients on [α, β] ⊂ R.

Theorem 1 ([3, 4]). If the coefficients of the differential equation (1) are uniformly
bounded by the constant C ≥ 1 (that is, max{|ai(t)| : i = 1, . . . , n} ≤ C), then a
solution defined on [α, β] cannot have more than n−1+ n

ln 2C|β−α| isolated zeros.

An analog of this result for a system of ordinary differential equations, viewed
as a vector field in space, would concern the number of isolated intersections be-
tween integral trajectories of the vector field and hyperplanes (or, more generally,
hypersurfaces). For polynomial systems of degree d on Rn of the form

ẋi = vi(t, x), i = 1, . . . , n, vi(t, x) =
∑

k+|α|≤d
vikαtkxα, (2)

and algebraic hypersurfaces given by {P = 0} where P = P (t, x) is a polynomial of
degree d, the following theorem, proved in [3] (see also [2]), gives a bound for the
number of isolated intersections in case the magnitude of the domain of the solution
and the amplitude of the solution are controlled by the height of the polynomial
system, that is, the number max{|vikα| : k + |α| ≤ d, i = 1, . . . , n}.

Theorem 2. Suppose that the height of system (2) is bounded by the positive con-
stant C. If γ is an orbit of the system contained in the box BC = {(t, x) ∈ Rn+1 :
|t| < C, |xi| < C}, then the number of isolated intersections of γ and {P = 0} is
at most (2 + R)B where B = B(n, d) is an explicit elementary function of d and n
whose growth rate is smaller than exp exp exp exp(4n ln d + O(1)) as d, n →∞.
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As mentioned in [3], Theorem 2 is nontrivial even for linear systems

ẋ = A(t)x, x ∈ Rn, A(t) =
∑d

k=0
Aktk (3)

and linear hyperplanes {
∑n

i=1 pixi = 0}. In this case, the box condition reduces
to the requirement that t ∈ [−C,C]; the height condition reduces to the uniform
boundedness of the norms of the matrix coefficients Ak ∈ Matn×n(R).

Corollary 3. If, for system (3), max{‖Ak‖ : k = 0, . . . , d} < C, then there is
a uniform bound (expressible as an elementary function of C) for the number of
isolated zeros of every component of every (vector) solution defined on the interval
[−C,C].

A comparison of Theorems 1 and 2 suggests the following question: Can the
height condition on the polynomial vector field in Theorem 2 be replaced, for in-
stance, by a bound on the norm maxi=1,...,n, (t,x)∈BC

|vi(t, x)|; or, in Corollary 3,
can it be replaced by a bound on the norm maxt∈[−C,C] ‖A(t)‖? We will show that
this is impossible.

The example. For each integer d (no matter how large), there is a linear 2 × 2
system (3) of degree 2d with maxt∈[−1,1] ‖A(t)‖ ≤ 1 such that a component of one
of its solutions in the box B1 has d isolated zeros in the interval [−1, 1].

Let t1, ..., td be distinct numbers in the interval [−1, 1] and let a(t) := λ(t −
t1) · · · (t − td) where λ is a number chosen so small that |a(t)| + |ȧ(t) + a2(t)| < 1
whenever t ∈ [−1, 1]. While the solution φ1(t) = exp(

∫ t

0
a(s) ds) of the differential

equation ẋ1 = a(t)x1 has no zeroes, its derivative φ2 = φ̇1 = a(t)φ1 has d zeros and
also satisfies the equation φ̇2 = (ȧ + a2)φ1. Hence, the supremum over [−1, 1] of
the coefficient matrix of the degree 2d polynomial linear system

ẋ1 = a(t)x1, ẋ2 = (ȧ(t) + a(t)2)x1 (4)

is bounded by 1, and the second component of the solution t 7→ (φ1(t), φ2(t)) has
d isolated zeros in this interval. Moreover, because the system is linear, a constant
multiple of this solution is in the box B1.

Remark 1. The example shows that the bound stated in Theorem 1 cannot be
extended to derivatives of solutions. Also, by choosing λ sufficiently small, the
coefficients of system (4) can be made uniformly small in every preassigned complex
neighborhood of the real segment [−1, 1]. Hence, the bounds for oscillation with
respect to hyperplanes cannot be achieved in the spirit of [1] by imposing bounds
for analytic coefficients in the complex domain.
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