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Abstract

Suppose that for a real function f on the real line, the support of
its Fourier transform is disjoint from an interval (−a, a). We prove
the conjecture of B. Logan that under these assumptions the lower
density of the sequence of sign changes of f is at least a/π. This result
assumes a growth condition: f should be integrable with respect to
a non-quasianalytic weight. We show that this growth restriction is
best possible (for sufficiently regular weights). For functions f of faster
growth, Logan’s conjecture does not hold, and for this class we prove
a weaker result estimating the number of sign changes from below in
terms of an averaged lower density.

Keywords: Spectral gap, Sign changes, Entire functions, Heat equa-
tion.

Supposons que le support de la transformée de Fourier d’une fonc-
tion réelle f sur la droite réelle est disjoint d’un intervalle (−a, a).
Nous démontrons la conjecture de B. Logan et al. que, sous ces hy-
pothèses, la densité inférieure de la suite des changements de signe de
f est au moins a/π. Ce résultat suppose une condition de croissance:
f doit être intégrable par rapport à un poids non quasi-analytique.
Cette restriction de croissance est la meilleur possible, même pour des
fonctions f à spectre borné. Pour des fonctions et distributions f
de croissance plus rapide, nous montrons un résultat plus faible qui
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donne une estimation inférieure du nombre de changements de signe
en fonction d’une densité inférieure moyénnée.

Mots-clés: Trou spectral, Changements de signe, Fonctions entières,
Équation de la chaleur.

1 Introduction

Suppose that in a real Fourier series, the first m terms vanish:

f(x) =
∑

n≥m

(cne
inx + cne

−inx), f 6= 0. (1)

Then f has at least 2m changes of sign on the interval |x| ≤ π. For trigono-
metric polynomials this follows from a result of Sturm [40]; the general case
is due to Hurwitz.

Here is a simple proof. The number of sign changes is even. If f has at
most 2(m − 1) changes of sign then we can find a trigonometric polynomial
g of degree at most m − 1 that changes sign at the same places as f . Then
fg is of constant sign which contradicts the orthogonality of f and g.

We consider the following extension of this result to Fourier integrals.

Statement 1 Suppose that a real function f has a spectral gap, that is its
Fourier transform is zero on an interval (−a, a). Then the number of sign
changes s(r, f) of f on the interval (0, r) satisfies

lim inf
r→∞

s(r, f)

r
≥ a

π
. (2)

For example, if f(x) = cos x, the spectral gap is (−1, 1), and s(r, f) =
r/π + O(1), so equality holds in (2). It is essential in Statement 1 that the
spectral gap contains zero: the function cos x + 1 never changes sign.

The proof of Hurwitz’s theorem given above can be generalized to es-
timate from below the maximal density of sign changes of f (see [9] for its
definition) but apparently it cannot be used to estimate the lower density (2).

Statement 1 was conjectured by B. Logan in 1965 [27], and his conjecture
was recently repeated in several places, for example, in [1, 38]. In the next
section we give a survey of known results. In this paper we prove Statement 1
for a class of measures on the real line whose spectra can be defined as
supports of their Fourier transforms in the sense of distributions.
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A “measure” in this paper means a Radon measure, that is a continuous
real linear functional on the space of real continuous functions with compact
support. A measure f on the real line has a canonical decomposition into
positive measures f = f+−f−, and we denote by |f | = f++f− the variation
of f . A locally integrable function f will be identified with the measure fdx.
Moreover, we will use the notation

∫

f(x)dx

for the integral over the real line, even when the measure f is not absolutely
continuous. We don’t write the limits of integration for integrals over the
real line. The word “positive” means “non-negative”.

The number of sign changes of a measure f on an open interval I will be
denoted by s(I, f). It is defined as the minimal degree of a polynomial p such
that the restriction of pf on I is a positive measure. If I = (0, r), r ∈ R, we
use the notation s(r, f) = s(I, f). The same definition of the number of sign
changes is applicable to distributions, provided that restrictions on intervals
make sense, for example, to distributions of Schwartz’s space D ′.

We use a general definition of a spectrum which is due to Carleman [11].
Let f be a measure that satisfies

∫

e−λ|x||f(x)|dx < ∞ for all λ > 0. (3)

Then the functions

F+(ζ) =

∫ 0−

−∞
e−ixζf(x)dx and F−(ζ) = −

∫ ∞

0−
e−ixζf(x)dx (4)

are analytic in the upper and lower half-planes, respectively, and the general-
ized Fourier transform is defined as a hyperfunction, that is a pair (F +, F−)
of analytic functions in the upper and lower half-planes, modulo addition
of an entire function to both F + and F−. The Fourier transform in the
usual sense, if it exists, is recovered as the difference of the boundary val-
ues, f̂(t) = F+(t) − F−(t), t ∈ R. This suggests a general definition of the
spectrum of a measure satisfying (3), see, for example, [5].

Definition 1 The spectrum of a measure satisfying (3) is the complement
of the maximal open set U ⊂ R ∪ {∞} such that F + and F− are analytic
continuations of each other through U .
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Thus a measure f has a spectral gap (−a, a) if F + and F− are analytic
continuations of each other through the interval (−a, a). If f ∈ L1 := L1(R),
and the Fourier transform f̂ is defined in the classical sense, then the pres-
ence of a spectral gap (−a, a) in the sense of Definition 1 is equivalent to the
condition f̂(t) = 0 for t ∈ (−a, a). The same is true if f is a tempered mea-
sure whose Fourier transform is defined in the sense of Schwartz’s tempered
distributions, see [11].

In engineering literature, functions with a spectral gap are called high-
pass signals.

Condition (3) is too weak to develop a proper extension of Harmonic
Analysis [5]. For example, it may happen for a locally integrable function
f 6= 0 that F+ and F− are restrictions of a single entire function, so according
to our Definition 1, the spectrum of f consists of the point ∞.

Following Beurling [5, 6], we consider a stronger condition
∫

e−λω(x)|f(x)|dx < ∞ for some λ > 0, (5)

where ω ≥ 0 is a real function, called a weight, with the property
∫

ω(x)

1 + x2
dx < ∞, (6)

and subject to some regularity conditions. For locally integrable functions
f , conditions (5) and (6) imply

∫

log+ |f(x)|
1 + x2

dx < ∞. (7)

A function ω ≥ 0 on the real line will be called a Beurling–Malliavin weight
(BMW) if it satisfies (6) and, in addition, has at least one of the following
properties:

(i) ω is uniformly continuous, or

(ii) exp ω is the restriction of an entire function of exponential type to the
real line.

Notice that for a BMW ω, (5) implies (3), so Definition 1 applies to
measures satisfying (5) with a BMW ω. The main result of this paper is

Theorem 1 Let ω be a BMW. If f 6= 0 is a measure satisfying (5) and
having a spectral gap (−a, a), then (2) holds.
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In particular, Statement 1 is true for all bounded functions f . A version of
Theorem 1 for Schwartz’s tempered distributions can be derived using the
arguments in [28]. All difficulties in the proof of Theorem 1 occur already
in the case that f is a measure of finite variation on the real line; once it is
proved for such measures an application of the Beurling–Malliavin Multiplier
theorem gives the general case (see section 3). On the other hand, we will
show in Example 2 below that the growth condition (5), (6) is best possible.

The theory of mean motion [19, 39] suggests a stronger version of (2):

lim inf
x−y→+∞

s(x, f) − s(y, f)

x − y
≥ a

π
. (8)

This is not true, even for bounded functions in L1 that are restrictions to the
real line of entire functions of exponential type:

Example 1 For every pair of positive numbers a < b, there exists a real
entire function f of exponential type b, whose restriction to the real line is
bounded and belongs to L1, which has a spectral gap (−a, a), and the property
that for a sequence of intervals [yk, xk] whose lengths tend to infinity, f has
no zeros on [yk, xk].

Examples of functions with a spectral gap and no sign changes on one
long interval are contained in [27].

To show that condition (5) is essential in Theorem 1, we consider functions
f with bounded spectrum. By definition, this means that the generalized
Fourier transform (F +, F−) extends to a function F analytic in C\[−b, b],
for some b ≥ 0. Normalization condition F (∞) = 0 defines F uniquely.
A theorem of Pólya [9, 24] gives a precise description of such functions f :
they are restrictions to the real line of entire functions of exponential type b,
satisfying (3). Moreover f 7→ F is a bijection between the class of functions
with spectrum on [−b, b] and the class of functions F analytic in C\[−b, b]
satisfying F (∞) = 0. The inverse correspondence is given by

f(z) = − 1

2π

∫

γ

F (ζ)eizζdζ, (9)

where γ is a path going once around [−b, b] counterclockwise.
In engineering literature functions with bounded spectrum are called

band-limited signals. We abbreviate “entire function of exponential type”
as efet. Functions with bounded spectrum that satisfy (7) form a subclass of
efet called the Cartwright class.
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Example 2 For every sufficiently regular1 weight ω with divergent integral
(6), and every positive numbers a < b, there exists a real efet f satisfying
|f | ≤ exp ω, whose spectrum is contained in [−b,−a] ∪ [a, b], and such that

lim inf
r→∞

s(r, f)/r < a/π.

We conclude that condition (6) is essential for validity of Statement 1.
Convergence or divergence of the integrals (6) or (7) is a fundamental di-
chotomy in Harmonic Analysis, [6, 22].

For measures that satisfy only (3) we obtain weaker estimates than (2),
in terms of the averaged densities

S(r, f) =

∫ r

0

s(t, f) + s(−t, f)

t
dt (10)

and

C(r, f) =

∫ r

1

(

1

t2
+

1

r2

)

s(t, f)dt. (11)

Theorem 2 Let f be a measure satisfying (3), having a spectral gap (−a, a).
Then

lim inf
r→∞

S(r, f)

r
≥ 2a

π
and lim inf

r→∞

C(r, f)

log r
≥ a

π
. (12)

Consider, for example, those functions f satisfying (3) whose spectra consist
of the single point ∞. This happens when F± are restrictions of an entire
function F to the upper and lower half-planes. To obtain such example,
take any entire function that satisfies F (ζ) = O(ζ−2) as ζ → ∞ on the sets
{ζ : |Im ζ| ≥ ε}, for every ε > 0, and define f as the inverse Fourier–Carleman
transform:

f(x) = − 1

2π

∫

γ

F (ζ)eixζdζ,

where γ is the oriented boundary of the strip {ζ : |Im ζ| = ε}, and ε > 0.
Our Theorem 2 implies that for such functions f , S(r, f)/r → ∞.

The difference between Theorems 1 and 2 becomes especially transparent
in the case that f has bounded spectrum. In the next section we sketch a
simple independent proof of both theorems for this case (Proposition 1). For
functions with bounded spectrum, conditions (5) and (6) are equivalent to

1The precise conditions needed are stated in section 11.
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(7), and the proof of Proposition 1 clarifies the role of these conditions: (7)
implies completely regular growth of f in the sense of Levin and Pfluger. This
follows from a theorem of Cartwright and Levinson, [24]. In certain sense
(7) is a minimal growth condition that implies completely regular growth.
Without (7) the conclusion of Theorem 1 is not true anymore, but we have a
weaker result, Theorem 2. The situation is similar to that with Titchmarsh’s
theorem on the support of convolution [24]. If we denote by csp(f) the convex
hull of the spectrum of f , then for functions f and g with bounded spectra,
which satisfy (7) we have

csp(fg) = csp(f) + csp(g) = {x + y : x ∈ csp(f), y ∈ csp(g)},

while in general, for arbitrary functions with bounded spectra, one can only
assert that csp(fg) ⊂ csp(f) + csp(g), and this inclusion can be proper.

We also mention that (5) and (6) is the minimal growth condition that
permits to define the spectrum of a measure f in the “usual way”, that is as
the support of f̂ , where f̂ is understood in the sense of distributions on the
real line. An appropriate generalization of Schwarz’s temperate distributions,
called ω-temperate distributions, was introduced by Beurling in [6], see also
[10]. Condition (5), (6) in Beurling’s theory is needed to ensure the existence
of test functions with bounded support. More general definition of spectrum
(Definition 1) is consistent with the definition in the sense of ω-temperate
distributions.

Theorem 2 can be extended to various classes of distributions, for exam-
ple, to Schwartz’s tempered distributions, and to distributions of Gelfand–
Shilov classes Sβ

1 for β > 2. This is discussed in the end of Section 8.
The paper is organized as follows. In section 2 we discuss known results

and conjectures about oscillation of functions with a spectral gap. The rest
of the paper is formally independent of section 2. The proof of Theorem 1
occupies sections 3-7. Section 3 contains auxiliary results and Example 1.
In section 4 we prove Theorem 1 under the additional assumption that f
is a real analytic function and has only simple zeros on the real line. The
general case is deduced in sections 5–7 by a smoothing procedure. Theorem
2 is proved in Section 8; its proof also depends on the smoothing procedure
of sections 5-7. Sections 9–11 are independent of the rest of the paper. In
section 9 we give a brief account of Azarin’s generalization of the theory of
completely regular growth, which we need for construction of Example 2 in
Sections 10-11. In Section 10, a simple version of Example 2 is constructed,
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without the property that |f | < exp ω. Finally, in section 11, combining our
method with that of Kahane and Rubel, we obtain Example 2 in its final
form.

We thank Sasha Fryntov, Andrei Gabrielov, Iosif Ostrovskii, Misha Sodin,
and Serge Tabachnikov for valuable discussions, and Jane Kinkus for procur-
ing a copy of [6] for us. The first-named author thanks Tel Aviv University
where a part of this work was done.

2 History and related results

High-pass signals are important in Electrical Engineering. Statement 1 was
conjectured by Logan in [27] where he proved (2) under the additional as-
sumption that f has bounded spectrum and is bounded on the real line. One
can replace in his result the condition of boundedness on the real line by the
weaker condition (7). So we have the following special case of our Theorems
1 and 2.

Proposition 1 Let f 6= 0 be a real function with bounded spectrum having
a spectral gap (−a, a). Then (12) holds. If in addition f satisfies (7), then
(2) holds.

Example 2 shows that (7) is indeed needed to obtain (2). We include a simple
proof of Proposition 1 based on Logan’s idea.

Proof. Let b be the exponential type (bandwidth) of f , b ≥ a. As f is
real, it can be written as a sum

f(x) = h(x) + h(x), where h(z) := h(z), (13)

and h is a function with a spectrum on [a, b]. According to Proposition 2 in
the next section, if f satisfies (7), then h also does. Now

f = eibxh1 + e−ibxh1 = cos(bx)(h1 + h1) + i sin(bx)(h1 − h1), (14)

where h1 and h1 have their spectra on [a − b, 0] and [0, b − a], respectively.
We conclude that g = h1 + h1 is a real efet with spectrum on the interval
[(a − b), (b − a)], and g satisfies (7) if f does. Let n(r, g) be the number of
zeros of g in the disc {z : |z| ≤ r}. Then Jensen’s formula implies
∫ r

0

n(t, g)

t
dt =

1

2π

∫ π

−π

log |g(reiθ)|dθ + O(1) ≤ 2(b − a)

π
(r + o(r)), r → ∞.

(15)
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On the other hand, (14) implies

f(nπ/b) = (−1)ng(nπ/b),

from which it is easy to derive that

s(r, f) ≥ [br/π] − s(r, g). (16)

Together with (15) this implies the first inequality in (12). The second in-
equality follows similarly from Carleman’s formula [24]. This proves the first
part of the proposition.

To prove the second part we recall that according to the theorem of
Cartwright and Levinson [24, Ch. V, Thm. 7], condition (7) implies that
g is of completely regular growth in the sense of Levin and Pfluger. This
means that the sequence of complex zeros of g in any open angle containing
the positive ray has density (b− a)/π. So the upper density of positive zeros
of g is at most (b − a)/π. Then (16) implies (2). 2

It is important for these arguments that the spectrum of f is bounded.
Our Theorem 1, whose proof is based on different ideas, extends Logan’s
result to functions with unbounded spectrum.

The following conjecture of P.G. Grinevich is contained in Arnold’s col-
lection [1, (1996-5)]: “If a real Fourier integral f has a spectral gap (−a, a)
then the limit average density of zeros of f is at least a/π”.

In the commentary to this problem in [1], S.B. Kuksin mentioned the
following result as a supporting evidence for Grinevich’s conjecture. Let ξ(t)
be a Gaussian stationary random process, normalized by Eξ(0) = 0 and
Eξ(0)2 = 1, where E stands for the expectation. Let r be the correlation
function of this process, r(t) = Eξ(0)ξ(t). Assume that the function r is
integrable and has a spectral gap (−a, a). This implies that almost surely
ξ̂(t) = 0, t ∈ (−a, a). Denote by ET the random variable which is equal
to the number of zeros of the random function ξ(t) on [0, T ]. Then almost
surely T−1ET has a limit as T → ∞, and this limit is at least a/π.

Another interesting class of real functions for which the limit in (2) exists
consists of the trigonometric sums

n
∑

k=0

ak cos λkx + bk sin λkx, where ak, bk λk ∈ R.
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The existence of the limit (2) for such functions can be obtained from Weyl’s
proof of the Mean Motion theorem [39].

Other known results deal with averaged densities (10) and (11). The
earliest results on the oscillation of Fourier integrals with a spectral gap
were obtained by M.G. Krein and B.Ya. Levin in the 1940-s. The following
theorem is contained in [24, Appendix II, Thm 5]. Let f 6= 0 be a measure
of finite variation having a spectral gap (−a, a). Then

lim inf
r→∞

{

S(r, f) − 2a

π
r

}

> −∞. (17)

This property neither follows from nor implies (2).
In a footnote on p. 403 of [24] Levin wrote: “A similar, somewhat stronger

result was obtained by M.G. Krein in the theory of continuation of Hermitian-
positive functions”. Unfortunately, we were unable to find out what the
precise formulation of Krein’s result was.

Recently Ostrovskii and Ulanovskii [31] extended and improved Levin’s
result as follows: Let f be a measure satisfying

∫ |f(x)|dx

1 + x2
< ∞, (18)

and f has a spectral gap (−a, a). Then

lim inf
r→∞

(

C(r, f) − a

π
log r

)

> 0,

and

lim inf
r→∞

(

S(r, f) − 2a

π
r + 3 log r

)

> 0.

Condition (18) stronger than (5) and (6), but weaker than the requirement
of finite variation in Levin’s theorem.

These authors [30] also proved several interesting results where the as-
sumption about a spectral gap (−a, a) is replaced by a weaker assumption
that the Fourier transform of f has an analytic continuation from the in-
terval (−a, a) to a half-neighborhood of this interval in the complex plane.
However, in this result they characterize the oscillation of f in terms of the
Beurling–Malliavin density of sign changes, which is a sort of upper density
rather than lower density, see, for example, [22, vol. II].
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The original results of Sturm in [40] were about eigenfunctions of second
order linear differential operators L on a finite interval; the case of trigono-
metric polynomials corresponds to L = d2/dx2 on [−π, π]. In 1916, Kellogg
[21] gave a rigorous proof of Sturm’s claim for certain class of operators,
whose inverses are defined by totally positive symmetric kernels on a finite
interval [a, b]: Let φk be the k-th eigenfunction. Then every linear combina-
tion

n
∑

k=m

ckφk 6≡ 0, n > m

has at least m − 1 and at most n − 1 sign changes on [a, b].
Our proof of Theorem 1 is based on a combination of two ideas: the first

is the proof of Sturm’s theorem from [34, III-184], the second is similar to
Sturm’s own argument [40, p. 430-433] (compare [33]). We recall the ideas
of both proofs for the reader’s convenience.

1. Write the trigonometric polynomial (1) as

f(x) = h(x) + h(x), where h(x) =
∑

n≥m

cneinx,

then h(x) = p(eix) where p is a polynomial which has a root of multiplicity
m at zero. By the Argument Principle, p(z) makes at least m turns around
zero as z describes the unit circle, so the curve {p(eix) : 0 ≤ x ≤ 2π} crosses
the imaginary axis at least 2m times. But f(x) = 2<h(x) changes sign at
each such crossing.

2. Use our trigonometric polynomial (1) as the initial condition of the
Cauchy Problem for the heat equation on the unit circle. All coefficients will
exponentially decrease with time, and the lowest degree term will have the
slowest rate of decrease. On the other hand, as Sturm argued, the number
of sign changes of a temperature does not increase with time, see [40, 33, 34]
and Lemma 11 below. So the number of sign changes of the initial condition
is at least that of the lowest degree term in its Fourier expansion.

In sections 3-4 we develop the first idea, and in sections 5-7 the second.
Other proofs of Sturm’s theorem are given in [34], problems II-141, and

VI-57.
To conclude this survey, we mention that the Fourier Integral first appears

in Fourier’s work on heat propagation [15], and that the study of sign changes
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was one of the main mathematical interests of Fourier during his whole career
[13, 15].

3 Representation of functions on the real line

as boundary values of harmonic functions

In this section we discuss representations similar to (13), which form a basis of
all our arguments. Further results in this direction are contained in Section 8.
A real function on the real line can be extended to a harmonic function in
the upper half-plane, if the Poisson integral converges. Our observation here
is that functions of much faster growth can be also nicely extended if they
have a spectral gap. In this section we deal with functions that satisfy (5).

One of our tools will be the theorem of Beurling and Malliavin: For every
BMW ω and every η > 0 there exists an entire function g of exponential type
η, such that g exp ω is bounded on the real line. The references are [8, 23] and
[22, Vol. 2]. Such a function g will be called an η-multiplier. This is a deep
result. However, if one imposes an additional condition that ω is even and
increasing on the positive ray, the existence of a multiplier is much easier to
prove, and this fact was already known to Paley and Wiener [32, p. 24-25].

There is a lot of freedom in choosing a multiplier, so we can ensure that
g has some additional properties.

First, there always exists a positive multiplier. Indeed, we can replace g
by g(z)g(z). A positive multiplier g allows to reduce the proof of Theorem 1
to its special case that f has finite variation. Let f be a measure satisfying
the conditions of Theorem 1. For arbitrary η ∈ (0, a) we choose a positive η-
multiplier g. Then gf is a measure of finite variation, it has the same sequence
of sign changes as f and a spectral gap (−a+ η, a− η) (see Lemma 3 below).
Applying the special case of Theorem 1 to gf we obtain that the sequence
of sign changes of f has lower density at least (a− η)/π, for every η ∈ (0, a).
This implies (2).

We will use this observation in sections 5-7.
Second, there always exists a multiplier all of whose zeros are real. (In

fact, the multiplier constructed in the original proof of the Beurling and
Malliavin theorem has this property). This we will use below in the proof of
Proposition 2.

Suppose that f ∈ L1. Then the Fourier transform of f is defined in the
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classical sense,

f̂(t) =

∫

e−ixtf(x)dx,

and f̂ is a bounded function on the real line. For 0 < p < ∞ we denote

‖h‖∗p =

∫ |h(x)|p
1 + x2

dx,

and define the Hardy class Hp as the set of all holomorphic functions h in the
upper half-plane with the property that ‖h(. + iy)‖∗p is a bounded function
of y for y > 0.

Lemma 1 Let f be a real function in L1. Then there exists a function h in
H1/2 such that

f(x) = h(x) + h(x) a. e., and h(iy) → 0, y → +∞, (19)

where h(x) is the angular limit of h. Furthermore,

‖h‖∗1/2 ≤ C1‖f‖1 + C2, (20)

where C1 and C2 are absolute constants. If, in addition, f is an efet, then h
is an efet of Cartwright’s class.

Proof. We define

h(z) =
1

2π

∫ ∞

0

eitzf̂(t)dt, Im z > 0, (21)

which is evidently holomorphic in the upper half-plane. Now we have for
Im z > 0:

h(z) =
1

2π

∫ ∞

0

eitz

{
∫

e−itsf(s)ds

}

dt

=
1

2π

∫

f(s)

{
∫ ∞

0

eit(z−s)dt

}

ds

=
i

2π

∫

f(s)
ds

z − s
.

Taking the real part, we obtain

2<h(x + iy) =
y

π

∫

f(s)ds

(x − s)2 + y2
,
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so 2<h is the Poisson integral of f . By the Cauchy–Schwarz Inequality

‖<h‖∗1/2 ≤
√

π‖f‖1/2
1 . (22)

To prove that h ∈ H1/2, we use the representation of Im h as a Hilbert
transform,

Im h(x + iy) = lim
ε→0

1

π

∫

|x−t|>ε

<h(t + iy)

x − t
dt (23)

and Kolmogorov’s inequality,

m(λ) :=

∫

|Im h(x+iy)|>λ

dx

1 + x2
≤ 4

λ

∫ |<h(x + iy)|
1 + x2

dx,

for each λ > 0. These can be found in [22, v 1, p. 63]. We have

‖Im h(. + iy)‖∗1/2 =

∫

√

|Im h(x + iy)|
1 + x2

dx

= −
∫ ∞

0

λ1/2 dm(λ) =
1

2

∫ ∞

0

λ−1/2m(λ)dλ

≤ π + 2‖<h(. + iy)‖∗1
∫ ∞

1

λ−3/2dλ ≤ C1‖f‖1 + C2.

Combined with (22), this implies (20).
If f is an efet then f̂ has bounded support, and (21) shows that h is

also an efet. Furthermore, as f̂ is continuous and has bounded support, we
conclude from (21) that h is bounded and thus belongs to Cartwright’s class.
2

Remark. One can replace H1/2 in Lemma 1 by any Hp with p ∈ (0, 1).

Now we restate the condition that ĥ(t) = 0 for t < a in terms of h itself.

Lemma 2 Let h ∈ H1/2 be a function represented by the Fourier integral
(21), where f̂ is bounded, and f̂(t) = 0 for t ∈ (−a, a). Then h satisfies

h(x + iy) = o(e−ay) y → ∞, (24)

uniformly with respect to x.
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Proof.

|h(x + iy)| ≤ ‖f̂‖∞
2π

∫ ∞

a

e−syds ≤ e−ay

2πy
‖f̂‖∞.

2

We denote by N the Nevanlinna class of functions of bounded type in the
upper half-plane. A holomorphic function h in the upper half-plane belongs
to N if h is a ratio of bounded holomorphic functions in the upper half-plane.
We refer to [29, 35] for the theory of the class N . Function h from Lemma 1
belongs to N because Hp ⊂ N for all p > 0. So we have the Nevanlinna
representation

h(z) = eia′zB(z)eu(z)+iv(z), (25)

where a′ is a real number, B a Blaschke product, u the Poisson integral of
log |h(x)|, and v the conjugate function to u. In particular,

J(u) :=

∫ ∞

−∞

|u(x)|
1 + x2

dx < ∞. (26)

It is well-known that (25) implies

lim sup
y→+∞

y−1 log |h(iy)| = −a′,

so (24) gives a′ ≥ a.
To generalize Lemma 1 to all functions satisfying (5) we first recall the

following fact:

Lemma 3 Let f be a measure which satisfies (3), and g ∈ L∞(R). If f has
a spectral gap (−a, a), and g is a function with spectrum on [−η, η], η < a,
then fg has a spectral gap (−a + η, a − η).

For functions f with bounded spectrum this follows from a theorem of Hur-
witz, [9, Thm. 1.5.1]. In the general case, the proof is the same; we include
it for the reader’s convenience.

Proof. Let F and G be the generalized Fourier transforms of f and g.
Then F is analytic in

C\ ((−∞,−a] ∪ [a,∞)) ,
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and G is analytic in C\[−η, η]. Let γ be a simple closed curve going once
counterclockwise around the segment [−η, η], then

g(x) = − 1

2π

∫

γ

G(ζ)eiζxdζ,

as in (9). For Im z < 0, we have

−
∫ ∞

0

f(x)g(x)e−izxdx =
1

2π

∫ ∞

0

f(x)

(
∫

γ

G(ζ)eiζxdζ

)

e−izxdx

=
1

2π

∫

γ

G(ζ)

∫ ∞

0

f(x)ei(ζ−z)xdx dζ =
1

2π

∫

γ

G(ζ)F (z − ζ)dζ. (27)

This function is analytic in

C\ ((−∞,−a + η] ∪ [a − η,∞)) .

A similar computation for
∫ 0

−∞
f(x)g(x)e−izxdx

gives the same result (27). 2

We state our conclusions as

Proposition 2 Let f be a locally integrable function satisfying the conditions
of Theorem 1. Then

f = h + h a. e.,

where h is a function of bounded type in the upper half-plane, having rep-
resentation (25) in which a′ ≥ a. If f is an efet then h can be chosen in
Cartwright’s class.

Proof. Choose η ∈ (0, a). Let g be an η-multiplier that is real on the real
line and has only real zeros. Then g belongs to Cartwright’s class, and thus
has completely regular growth, which implies

log |g(reiθ)| = ηr sin θ + o(r) r → ∞, (28)

uniformly with respect to θ for |θ| ∈ (ε, π − ε), for every ε > 0. Furthermore,
gf ∈ L1 by (5), and gf has a spectral gap (−a + η, a − η) by Lemma 3.
According to Lemma 1,

gf(x) = h1(x) + h1(x), (29)
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where h1 ∈ H1/2, so h1 ∈ N . Inequality (24) implies that

log |h1(re
iθ)| ≤ (η − a)r sin θ + o(r) r → ∞, (30)

uniformly with respect to θ. Dividing (29) by g (which has no zeros outside
the real axis), we conclude that (19) holds with h = h1/g which evidently
belongs to N . Now (28) and (30) show that

log |h(reiθ)| ≤ −ar sin θ + o(r) r → ∞,

uniformly with respect to θ, which implies that a′ ≥ a in (25). This proves
the first statement.

If f is an efet, let b be its exponential type, and F its generalized Fourier
transform. Then F is analytic in

C\([−b,−a] ∪ [a, b])

and F (∞) = 0. By the theorem on separation of singularities,

F = F1 + F2, (31)

where F1 is analytic in C\[−b,−a], F2 is analytic in C\[a, b], and Fj(∞) =
0, j = 1, 2. Such decomposition of F is unique. Taking the inverse transforms
as in (9), we obtain

f(x) = h+(x) + h−(x), (32)

where h± are efet with spectra on [−b,−a] and [a, b], respectively, so h±(iy) =
O(exp(−a|y|)), y → ±∞. Multiplying (32) by g we obtain

gf(x) = gh+(x) + gh−(x),

where gh± are efet with spectra on positive and negative rays, respectively.
On the other hand, according to Lemma 1, (29) is another representation of
gf as a sum of two efet with spectra on positive and negative rays. As such
representation is unique, because the decomposition (31) is unique and the
correspondence f 7→ F is one-to-one, we obtain gh+ = h1. So h+ belongs to
Cartwright’s class, as an entire function that is a ratio of two entire functions
of Cartwright’s class. This follows from a theorem of Krein [25, Ch. 16, Thm.
1] which says that an entire function belongs to Cartwright’s class if and only
if its restrictions to the upper and lower half-planes belong to the class N .

2
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Construction of Example 1. We combine Logan’s method [27, Thm 5.5.1]
with the theorem of Beurling and Malliavin. Without loss of generality, we
may assume that a = π − 2ε, and b = π + 2ε, where ε > 0. Let g1 be a
real entire function of zero exponential type, satisfying (7), with only simple
zeros, and such that the zero set of g1 coincides with the set of integer points
on the intervals [yk, xk]:

g1(n) = 0, g′(n) 6= 0 for n ∈ Z ∩ (∪∞
k=1[yk, xk]) .

Such function g1 can be easily constructed if the intervals [yk, xk] are not too
long in comparison with xk, for example, if

n
∑

k=1

(xk − yk) ≤ xα
n for some α ∈ (0, 1).

One can obtain longer intervals, whose size can be characterized in terms of
the Beurling–Malliavin density [22, vol. II]. Let g be an entire function of ex-
ponential type ε, which is positive on the real line and such that |x|2g(x)g1(x)
is bounded for x ∈ R. Such a function g exists because g1 satisfies (7). Then

f1(z) = g(z)g1(z) sin πz

does not change sign on any of the intervals [yk, xk], and f̂1 has support on

[−π − ε,−π + ε] ∪ [π − ε, π + ε].

Evidently, f1 ∈ L1. To destroy the multiple zeros of f1 on the intervals
[yk, xk], we put f(z) = f1(z + 1/2) + f1(z). 2

4 Theorem 1 for real analytic functions

In this section we prove Theorem 1 for real analytic functions f whose real
zeros are simple, so that the sign changes occur exactly at the zeros of f .
The general case will be obtained from this special one in sections 5–7, by a
smoothing procedure.

Proof of Theorem 1 for real analytic functions. We write, as in Proposi-
tion 2,

f(x) = h(x) + h(x), (33)
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where h has spectrum on [a,∞), and consider the Nevanlinna representation
(25). We define v(x) for real x as the limit from the upper half-plane. Our
assumptions about analyticity and simple zeros imply that v in (25) is piece-
wise continuous; the only jumps of −π occur exactly at the real zeros of h
(which are all simple).

Put
φ(x) = arg h(x) := a′x + arg B(x) + v(x).

The Blaschke product

B(z) =
∏

n≥1

(

1 − z

zn

)(

1 − z

zn

)−1

, (34)

has a continuous argument because zeros in the upper half-plane cannot
accumulate to points on the real axis. Furthermore, arg B is an increasing
function, which is seen by inspection of each factor of the product (34).

Let γ be the curve in the (x, y)-plane consisting of the graph of φ and
vertical segments of length π added at the points of discontinuity of v. At
each intersection of this curve with the set

L = {(x, y) : x ∈ R, y − π/2 ∈ πZ}, (35)

the number h(x) is purely imaginary, that is f(x) = 0 by (33).
So we want to estimate from below the number of intersections of γ with

L over the intervals (0, r).
We fix ε ∈ (0, 1/2) and prove that on every interval [(1 − ε)x, x] with x

large enough there exists a point x′ such that

φ(x′) ≥ a′x′ + v(x′) > (a′ − 2ε)x′. (36)

It immediately follows from (36) that the lower density of the number of
intersections γ ∩ L is at least a′/π. So it remains to prove (36).

We recall that v is harmonically conjugate to u, and that u satisfies (26).
According to Kolmogorov’s inequality [22, v 1, p. 63]

∫

|v(x)|>λ

dx

1 + x2
≤ 4

λ

∫ ∞

−∞

|u(x)|
1 + x2

dx,

for each λ > 0.
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We break u into two parts with disjoint supports, u = u0 + u1, where the
support of u0 belongs to [−r0, r0] for some r0 > 0 and u1 satisfies

∫ |u1(x)|
1 + x2

dx =

∫

|x|>r0

|u1(x)|
1 + x2

dx < ε2/8, (37)

which is possible in view of (26). Let vj = Huj, j = 0, 1; where H stands for
the Hilbert transform,

Hu(x) = lim
y→0+

1

π

(
∫

x − t

(x − t)2 + y2
+

t

t2 + 1

)

u(t) dt.

Lemma 4 |v0(x)| ≤ J(2r0 + r−1
0 )/π for |x| > 2r0, where J = J(u) is

defined in (26).

Proof.

|v0(x)| ≤ 1

π

∣

∣

∣

∣

∫ r0

−r0

u0(t)

x − t
dt

∣

∣

∣

∣

+
1

π

∣

∣

∣

∣

∫ r0

−r0

tu0(t)

t2 + 1
dt

∣

∣

∣

∣

≤ 1

π
r−1
0

∫ r0

−r0

|u0(t)|dt +
1

π
r0J

≤ 1

π
r−1
0 (1 + r2

0)J +
1

π
r0J

= J(2r0 + r−1
0 )/π.

2

Now we prove that for every x > 2 there exists

x′ ∈ [(1 − ε)x, x],

such that
v1(x

′) > −εx. (38)

Suppose that this is not so. Then we apply Kolmogorov’s inequality to v1

and u1 with λ = εx and (37):
∫ x

(1−ε)x

dt

2t2
<

∫ x

(1−ε)x

dt

1 + t2
<

4

εx

∫ |u1(x)|
1 + x2

dx <
ε

2x
.

Evaluating the integral on the left we conclude ε/(1− ε) < ε, a contradiction.
Lemma 4 and (38) imply (36). This proves (our special case of) Theorem 1.

For the future use we record a more quantitative version of the result we
just proved:
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Proposition 3 Let f be a function satisfying the conditions of Theorem 1.
Suppose that f is real analytic and has only simple zeros on the real line.
Write f = h + h as in (33), and let h be represented by the formula (25),
with J = J(u) as in (26). Suppose that

∫

|x|>r0

| log |h(x)||
1 + x2

< ε2/8

for some r0 > 1 and ε ∈ (0, 1/2). Then

s(r, f) ≥ (a − ε)r/π − J(2r0 + r−1
0 )/π − 1 for r > 2r0.

2

5 Heating

In this section we assume that f is a measure of finite variation.
If f is not real analytic, or is real analytic and has multiple zeros on the

real line, we “heat” it. This means that we replace our f by the convolution2

with the heat kernel,
ft = Kt ∗ f, f0 = f, (39)

Kt(x) =
1√
πt

e−x2/t.

Evidently, the ft are real analytic with respect to x for all t > 0. All

f̂t = K̂tf̂ = exp(−s2t/4)f̂

have the same support because K̂t never vanishes.
Laguerre and Pólya [33, 34] proved that the number of sign changes of

ft is at most that of f . (This assertion was stated by Sturm for the case
of a finite interval. The proof given in [34] shows that the result is in fact
a generalization of the “Rule of signs” of Descartes.) We cannot use this
result directly because our functions have infinitely many sign changes, and
we have to control their number on every interval (0, r). So in the next two
sections we will prove the necessary generalization of the Laguerre–Pólya’s
theorem.

In this section we show that for functions ft, the conditions of Proposi-
tion 3 hold uniformly with respect to t.

2In the works on the heat equation this is called a Poisson integral. We don’t do this

to avoid confusion with the harmonic Poisson integral.
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Lemma 5 Let f be a measure of finite variation with a spectral gap (−a, a),
and ft = Kt ∗ f . Define ht by (21) using ft instead of f .

Then there exists t0 > 0 such that J(log |ht|) ≤ C1 for t ∈ (0, t0), where
C1 is independent of t. Furthermore, for every ε > 0 there exists r0 > 0 such
that for all t ∈ (0, t0) we have

∫

|x|≥r0

|log |ht(x)||
1 + x2

dx < ε. (40)

We emphasize that r0 and C1 are independent of t. They only depend of
h and ε.

Proof. First of all,

‖ft‖1 =

∫

|Kt ∗ f |(x)dx ≤
∫

(Kt ∗ |f |)(x)dx =

∫

|f(x)|dx,

so ‖ft‖1 does not exceed the total variation. Using Lemma 1 we obtain
‖ht‖∗1/2 ≤ C, with C independent of t. Thus

√

|ht(x)| = kt(x)(1 + x2), where ‖kt‖1 ≤ C. (41)

We have
log+ |ht| ≤ 2 log+ |kt| + 2 log(1 + x2)

≤ 2|kt| + 2 log(1 + x2)
(42)

Let ut(x) = log |ht(x)| for real x and t ≥ 0. Dividing (42) by 1 + x2, inte-
grating and using (41) gives

J(u+
t ) =

∫

u+
t (x)

1 + x2
dx < C, (43)

where C is independent of t. Similarly we obtain from (42) that

∫

|x|≥r0

u+
t (x)

1 + x2
dx <

2

(1 + r0)1/4

(

‖kt‖1 +

∫ ∞

0

log(1 + x2)

(1 + x2)3/4
dx

)

< ε,

with some r0 > 1 independent of t.
Property (43) makes it possible to extend u+

t to the upper half-plane by
Poisson’s formula. We denote the extended function by wt. Notice that
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ht ∈ N for all t, and wt(x + iy) − ay is a positive harmonic majorant of
log |ht| in the upper half-plane.

Now we prove
J(u−

t ) < C, (44)

with C independent of t, and

∫

|x|≥r0

u−
t (x)

1 + x2
dx < ε (45)

for some r0 > 0. Fix a point z0 in the upper half-plane, such that δ =
|h(z0)| > 0. As ht(z0) → h(z0) as t → 0, we conclude that ht(z0) > δ/e
when t is small enough. Let b be the true left end of the support of ĥt. It is
important to notice that b is independent of t, because ĥt = K̂tĥ. Then

ut(z0) − bIm z0 ≥ log δ − 1 > −∞, (46)

when t is small enough. Here we mean that ut is extended to a harmonic
function in the upper half-plane by the Poisson integral. Now (46) implies
(44). It remains to prove (45). For psychological reasons it is better to work
in the unit disc U instead of the upper half-plane. The fractional-linear
transformation T (z) = (z − i)/(z + i) maps the upper half-plane onto U,
T (∞) = 1, and we put ζ0 = T (z0), and

wt = ut ◦ T−1 − bIm T−1. (47)

As a consequence of (46) we have

wt(ζ0) ≥ log δ − 1 > −∞. (48)

The measure dx/(1 + x2) on the real line corresponds to the measure dθ on
the unit circle T = {eiθ : θ ∈ R}.

It follows from (43) that each wt is a difference of positive harmonic
functions in the unit disc, so it is the Poisson integral of some charge µt of
finite variation on the unit circle. The constant b in (47) comes from the
Nevanlinna representation

ht(z) = eibzBt(z)eut(z)+ivt(z)

similar to (25), and b does not depend on t. So all charges µt have an atom
of mass exactly −b at the point 1.
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Let µt = µ+
t − µ−

t be the Jordan decompositions. Conditions (48) and
(43) imply that µt are of bounded total variation, with a bound independent
of t. So we have weak convergence µt → µ0, t → 0. Let φ be a positive
continuous function on the unit circle, which is identically equal to 1 in some
neighborhood of the point 1, and at the same time

∣

∣

∣

∣

b −
∫

T

φ|µ0|
∣

∣

∣

∣

< ε/2,

where |µ0| = µ+
0 + µ−

0 is the variation of µ0. Then there exists t0 such that
∣

∣

∣

∣

b −
∫

T

φ|µt|
∣

∣

∣

∣

< ε, for 0 ≤ t ≤ t0. (49)

When translated back to the real line from the unit circle, this implies (45).
2

6 Preliminaries on temperatures

Here we collect for the reader’s convenience some facts about convolutions
(39) of distributions with the heat kernel. We assume that f is a linear func-
tional on some space of infinitely differentiable test functions which contains
all functions φt,y,k(x) = K

(k)
t (x − y), for example, f can be a Schwartz’s

tempered distribution. We use the convenient notation3

u(x, t) = ft(x) (50)

and consider u in the upper half-plane {(x, t) : t ≥ 0, x ∈ R}.
The function u in (50) is a solution of the heat equation in the open upper

half-plane:

4
∂u

∂t
=

∂2u

∂x2
. (51)

Such functions are called temperatures. Formula (39) solves the initial value
problem on an infinite rod (the x-axis) with given initial temperature f(x).
A standard reference on the subject is [12]. Here is the precise statement
about the boundary behavior of u which is a slight generalization of [12,
1.XVI.7]:

3We apologize for such abuse of the letter u, but the harmonic function u of sections
3-5 will not appear anymore until the end of section 7.
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Lemma 6 Let f be a positive measure, and u(x, t) = (Kt ∗ f)(x). Then for
every x ∈ R,

lim inf
t→0

u(x, t) ≥ lim inf
ε→0+

1

2ε

∫ x+ε

x−ε

f(t)dt.

This is a general property of convolutions with positive symmetric kernels.
It follows for a locally integrable f that at every Lebesgue density point x of
f , the limit limt→0+ u(x, t) exists and equals f(x).

Next we consider temperatures whose initial data are derivatives of delta
functions:

un,a(x, t) = (Kt ∗ δ(n))(x − a) =
1√
πt

dn

dxn
e−(x−a)2/t, a ∈ R. (52)

Lemma 7 For every integer n ≥ 0 there exist tn > 0 and two curves γ+
n (a)

and γ−
n (a), which are graphs of functions

x = a + g±
n (t), 0 ≤ t ≤ tn, g±

n (0) = 0, g+
n ≥ 0, g−

n ≤ 0,

with the following properties: |un,a(x, t)| = 1, (x, t) ∈ γ+
n (a) ∪ γ−

n (a) and
|un,a(x, t)| < 1 in the two regions

D−(a) = {(x, t) : x < a + g−
n (t), 0 < t < tn}

and
D+(a) = {(x, t) : x > a + g+

n (t), 0 < t < tn}.

a
x

γ−
D− D+

t

γ+tn

Proof. We assume that a = 0. Then

un(x, t) =
(−1)n

√
π

t−(n+1)/2e−x2/tHn(x/
√

t),
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where Hn are the Hermite polynomials. It is clear from this formula that for
tn > 0 small enough, and for every t ∈ (0, tn), the equation |un(x, t)| = 1
has 2n + 2 roots x1(t) < x2(t) < . . . < x2n+2(t), and that the curves γ+

n (0) =
{(x2n+2(t), t) : t ∈ (0, tn)} and γ−

n (0) = {(x1(t), t) : t ∈ (0, tn)} have all the
required properties.

2

The next lemma (due to L. Nirenberg) is called the Strong Minimum
Principle [12, 1.XV.5]

Lemma 8 Let D be a bounded region in the horizontal strip P = {(x, t) :
0 < t < T}, and u a temperature in D. Suppose that

lim inf
s→σ

u(s) ≥ 0, for all σ ∈ ∂D ∩ (P ∪ (R × {0})). (53)

Then u ≥ 0 in D, and if u(s) = 0 for some point s ∈ D then u ≡ 0 in D.

We need an extension of the Minimum Principle, analogous to the Phragmén–
Lindelöf Theorem in the theory of harmonic functions:

Lemma 9 Let D be a region as in Lemma 8, and u a temperature in D.
Suppose that u is bounded from below, and that (53) holds for all but finitely
many points σ ∈ ∂D ∩ (R×{0}). Then the same conclusion as in Lemma 8
holds.

Proof. Let x1, x2, . . . , xn be the exceptional points on the real axis. Con-
sider the auxiliary function

w(s) =



















n
∑

k=1

log+ 1

|s − xk|
, s ∈ R × {0},

(Kt ∗ w(., 0))(x), s = (t, x), x ∈ R, t > 0.

Then w is a positive temperature in P , and

w(s) → +∞ as s → xk, s ∈ P, 1 ≤ k ≤ n.

So, for every ε > 0, the function

uε = u + εw

satisfies all conditions of Lemma 8. Thus uε ≥ 0, that is u(z) ≥ −εw(z).
Letting ε → 0, we conclude that u ≥ 0. So u satisfies the conditions of
Lemma 8, and the conclusions of Lemma 8 hold for u. 2
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Lemma 10 Let u be a temperature in some region D of the (x, t)-plane.
Then multiple zeros of the functions x 7→ u(x, t) are isolated in D.

Proof. Suppose that u has a non-isolated multiple zero. Let m ≥ 2 be the
minimum of the multiplicities of such zeros. Then there exists an analytic
germ g(t) which gives the position of such a multiple zero for t ∈ (t0−ε, t0+ε)
for some t0 and ε > 0. So we have

u(x, t) = (x − g(t))mv(x, t),

in a neighborhood of (g(t0), t0). Here v is a real analytic function

v(g(t0), t0) 6= 0.

We differentiate, and see that the lowest order term in ∂2u/∂x2 is

m(m − 1)(x − g(t))m−2v(x, t),

while all terms in ∂u/∂t are of order at least m − 1. So u cannot satisfy the
heat equation. 2

7 Sign changes of distributions and proof of

Theorem 1

We recall that the number of sign changes s((a, b), f) of a real distribution
f on an open interval (a, b) is defined as the infimum of degrees of real
polynomials p 6= 0 such that the restriction of pf on (a, b) is positive. If no
such polynomials exist we set s((a, b), f) = ∞. This definition applies to
those distributions which can be restricted to intervals. So we assume that
the space of test functions contains functions with bounded support, and
that such test functions are dense in C∞

0 (I) for every interval I.
It follows that every positive distribution is a measure on (a, b). We

conclude that distributions with finitely many changes of sign on an interval
have finite order on this interval.

(A) In what follows we consider only distributions that have finitely many
changes of sign on every interval.

Let p be a polynomial such that deg p = s((a, b), f), and pf ≥ 0 on (a, b),
and let x1 < x2 < . . . < xn be all roots of p (disregarding multiplicities).
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Then it is clear that the restriction of f on every component of the set
(a, b)\{xk, . . . , xn} is a (positive or negative) measure. The total measure of
a component may be infinite.

The following result is classical:

Lemma 11 Let f be a distribution with bounded support. Then for every
t > 0, the function Kt ∗ f has no more changes of sign on (−∞,∞) than f
has.

Proof. We fix t > 0 and write

ft(y) = (Kt ∗ f)(y) =
1√
πt

(

f(x), e−(x−y)2/t
)

,

or √
πt ey2/tft(y) =

(

e−x2/tf(x), e2xy/t
)

.

Multiplication by an exponential does not change the number of sign changes,
so the problem is reduced to proving that

g(u) = (G(v), euv)

has at most as many sign changes as G. Here we made the change of variable
v = x

√

2/t, u = y
√

2/t.
Now we repeat the argument which Pólya and Szegö credit to Laguerre,

[34, Problem V-80]. We argue by induction on the number of sign changes
of G. If G has a constant sign then evidently g does. Now suppose that for
every G with at most n changes of sign, g has at most n changes of sign. If
G has n + 1 changes of sign, then there exists α such that G(v)(v − α) has
at most n changes of sign. Then the real analytic function

(G(v)(v − α), euv) = g′(u) − αg(u).

has at most n changes of sign by the induction assumption. But the right
hand side is

eαu d

du

(

g(u)e−αu
)

,

and we conclude from Rolle’s theorem that g has at most n + 1 changes of
sign. 2
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Lemma 12 Let Q be an open quadrilateral in the (x, t)-plane, whose bound-
ary consists of two horizontal intervals: [a, b] on the x-axis and [c, d] on the
line t = T , and two simple curves, γ+ connecting a to c and γ− connect-
ing b to d. Let u be a temperature in Q, which is bounded from above or
from below in Q and real analytic on Q\{a, b}. Assume that u(x, t) 6= 0 for
(x, t) ∈ γ+ ∪ γ−. Then the number of sign changes of u(., T ) on (c, d) is less
than or equal to the number of sign changes of u(., 0) on (a, b) plus 4.

Proof. Consider a maximal open interval ` ⊂ (c, d) of sign constancy of
u(., T ). Let ε ∈ {1,−1} be the sign of u on `. Let D be the connected
component of the set

{(x, t) ∈ Q : εu(x, t) > 0} such that ` ⊂ ∂D.

Notice that u(x, t) = 0 for (x, t) ∈ ∂D ∩ Q. We claim that

∂D ∩ [c, d] = `. (54)

Indeed, on those maximal open intervals of [c, d] of sign constancy, which are
adjacent to `, the sign is −ε, so these intervals cannot intersect ∂D. Suppose
that there is an interval of constant sign ε, say `∗ ⊂ [c, d], such that `∗ ⊂ ∂D,
and `∗ ∩ ` = ∅. Then there is a maximal interval `′ of constant sign −ε
between ` and `∗.

Then the component D′ of the set {s ∈ Q : εu(s) < 0} whose boundary
contains `′ has its closure in the upper half-plane (being separated by D from
the x-axis), and this contradicts Lemma 8. This proves our claim (54).
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Figure 1: First two possibilities are excluded by the Minimum Principle

If ∂D\` ⊂ Q, then u ≡ 0 in D by Lemma 8, and thus u ≡ 0 in Q,
contradicting our assumptions. It is clear that ∂D can intersect a lateral
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side γ+ or γ− of Q at a point (x, t) with t > 0 only if ∂D contains this lateral
side; this happens for exactly two domains D which we call lateral domains.

Suppose that the boundary of a component D contains an open interval
of the x-axis. Then it contains a maximal open interval I ⊂ (a, b) of sign
constancy of u(., 0). As u(., 0) is real analytic on (a, b), it is easy to see that
the boundaries of two different components D1 and D2 cannot contain the
same interval I.

Now we consider non-lateral components D whose boundaries do not con-
tain any interval on the x-axis. We claim that the number of such components
is at most 2. For every such component D, the intersection of ∂D with the
interval (a, b) of the x-axis is a discrete set. It follows from Lemma 8 that
the intersection of ∂D with the x-axis contains a or b. Suppose without loss
of generality that u is bounded from above. Let D be a non-lateral domain
whose boundary contains a. Then Lemma 9 implies that u is negative in D.
There can be at most one such component D. Indeed, if there are two, say
D′ and D′′ there would be a component D∗ between D′ and D′′, such that u
is positive in D∗, and such that the boundary of D∗ intersects the real axis
at the point a alone. This proves our claim.

a b

γ+ γ−
+ −

c d

Figure 2: Partition of Q into components D.

So every component D, except two lateral ones and possibly at most two
other components whose boundaries contain a and b, has a maximal interval
I of sign constancy of u(., 0) on its boundary. It follows that the total number
of domains D is at most the number of intervals I plus 4. This proves the
lemma. 2

Remark. It is enough to require in this lemma that u is bounded from
one side near A and from another side near B. We will use this remark in
the proof of Theorem 2′ in Section 8.

The points of sign changes cannot be uniquely defined, even for continuous
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functions, because a function can be zero on an interval. To remove this
arbitrariness, we set, as before,

s(r, f) =







s((0, r), f) for r > 0,

s((r, 0), f) for r < 0.

Then s((−r, r), f) = s(r, f) + s(−r, f) + const, with the constant depending
of f . Now s(r, f) is an integer-valued function, increasing for r > 0 and
decreasing for r < 0, and according to our assumption (A) it is everywhere
finite. So the points of jump of s(r, f) are isolated, and the number of sign
changes is zero on every interval of constancy of s(r, f). If f is a measure
then the magnitude of jumps of s(r, f) is at most two.

Let dµ be a measure on an interval containing a point x0. We say that
x0 is a concentration point of dµ if

lim inf
δ→0

1

2δ

∫ x0+δ

x0−δ

|dµ| ∈ (0,∞].

A standard argument with Besicovich’s covering lemma [16] shows that con-
centration points exist for every non-zero measure.

Proposition 4 Let f be a distribution with finitely many changes of sign
on every finite interval, and such that the convolution with the heat kernel is
defined. Let a < b be two jump points of s(r, f) and ε ∈ (0, (b − a)/2). Then
there exist α and β in ε-neighborhoods of a and b, respectively, and t0 > 0
such that

s((α, β), Kt ∗ f) ≤ s((α, β), f) + 4, for t ∈ (0, t0). (55)

Proof. Jump points of s(r, f) are isolated, so we may assume from the
beginning that a and b are the only jump points in their ε-neighborhoods
Ua(ε) and Ub(ε). We put U ∗

a = Ua(ε/2)\{a} and U ∗
b = Ub(ε/2)\{b}. The

restriction of f on each component of U ∗
a ∪ U ∗

b is a positive or negative
measure. Now we consider four cases, depending on whether the restrictions
of f on U ∗

a and U ∗
b are zero measures or non-zero measures.

Case 1. Restrictions of f on both U ∗
a and U ∗

b are non-zero measures. We
choose α ∈ U ∗

a and β ∈ U ∗
b to be concentration points of these restrictions.

Consider a smooth function η, 0 ≤ η ≤ 1 with the following properties:
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η(x) = 1 for x in a neighborhood of [α, β], and supp η ⊂ (α1, β1) where
α1 < α and β1 > β are chosen to satisfy the condition that

s((α, β), f) = s((α1, β1), f),

so that
s((α, β), f) = s((−∞,∞), ηf). (56)

Then, according to Lemma 6, there exists t0 > 0 and δ > 0, such that

|Kt ∗ (ηf)(β)| ≥ δ > 0 for t ∈ (0, t0) (57)

and (as 1 − η(x) = 0 in a neighborhood of β)

|Kt ∗ ((1 − η)f)(β)| ≤ δ/2, for t ∈ (0, t0), (58)

and similar inequalities hold with α instead of β.
Consider the functions

gt,τ = Kt ∗ (Kτ ∗ (ηf) + (1 − η)f) (59)

= Kt+τ ∗ (ηf) + Kt ∗ ((1 − η)f), (60)

where 0 ≤ t ≤ t0/2 and 0 ≤ τ ≤ t0/2.

We recall that by definition K0∗f = f . Using (56) and Lemma 11, we obtain
for τ ∈ (0, t0/2):

s((α, β), f) = s((−∞,∞), ηf) ≥ s((−∞,∞), Kτ ∗ (ηf))

≥ s((α, β), Kτ ∗ (ηf)) = s((α, β), g0,τ ). (61)

Now, in view of (57), (58) and similar inequalities at the point α, the function

uτ (x, t) = gt,τ (x) (62)

satisfies
|uτ (α, t)| ≥ δ/2 and |uτ (β, t)| ≥ δ/2

for all τ ∈ (0, t0/2) and all t ∈ (0, t0/2). So Lemma 12 is applicable to the
rectangle (α, β) × (0, t0/2) and to the function uτ (x, t), and we obtain

s((α, β), gt,τ ) ≤ s((α, β), g0,τ ) + 4, for τ ∈ (0, t0/2)
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Using (61), passing to the limit when τ → 0 and taking into the account that
the number of sign changes does not increase in the limit, we obtain

s((α, β), Kt ∗ f) = s((α, β), gt,0) ≤ s((α, β), f) + 4.

Case 2. Now suppose that the restriction of f on U ∗
a is zero, while the

restriction on U ∗
b is a non-zero measure. Then we choose β ∈ Ub as in the Case

1. To choose α, we recall that the restriction of f on Ua coincides with δ
(n)
a for

some integer n ≥ 0. Let η, 0 ≤ η ≤ 1 be an infinitely differentiable function
with the properties that η(x) = 1 for x in a neighborhood of [a+ ε/2, β], and
η(x) = 0 for x outside the interval [a + ε/3, β1], β1 > β, so that

s((a, β), f) = s((−∞,∞), ηf). (63)

Consider the curve γ+
n (a) defined in Lemma 7. It follows from Lemmas 6 and

7 that there exist t0 > 0 and δ > 0 such that

|Kt ∗ ((1 − η)f)(x)| ≥ δ for t ∈ (0, t0), (x, t) ∈ γ+
n (a) (64)

and
|Kt ∗ (ηf)(x)| ≤ δ/2 for t ∈ (0, t0), (x, t) ∈ γ+

n (a), (65)

while on the end β we have (57) and (58). Let (x0, t0/2) be the unique
intersection point of γ+

n (a) with the horizontal line {(x, t0/2) : x ∈ R}. Then
by Lemma 7 x0 > a, and, by decreasing if necessary t0, we achieve that
x0 < a + ε/3. Now we put α = x0. Using (63) and the fact that f and ηf
have no sign changes on (a, a + ε) we obtain

s((α, β), f) = s((a, β), f) = s((−∞,∞), ηf), (66)

which is similar to (56). Now we repeat the argument from Case 1. Consider
the functions gt,τ defined as in (59). Using Lemma 11 and (66), we obtain

s((α, β), f) ≥ s((α, β), g0,τ ), τ ∈ (0, t0/2), (67)

as in (61). Now, in view of (57), (58), (64) and (65) the function uτ (x, t) =
gt,τ (x) satisfies

|uτ (x, t)| ≥ δ/2, for all τ ∈ (0, t0/2)

on the lateral sides of the quadrilateral Q whose sides are (a, β)×{0}, (α, β)×
{t0/2}, the vertical segment [(β, 0), (β, t0/2)] and the piece of the curve γ+

n (a)
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from the point (a, 0) to the point (α, t0/2). Applying Lemma 12 to this
quadrilateral Q and function uτ (x, t) we obtain

s((α, β), gt,τ ) ≤ s((a, β), g0,τ ) + 4.

Using (67), and passing to the limit when τ → 0 and taking into the account
that the number of sign changes does not increase in the limit, we obtain

s((α, β), Kt ∗ f) = s((α, β), gt,0) ≤ s((α, β), f) + 4.

The remaining two cases are completely similar. 2

Completion of the proof of Theorem 1. It remains to put the pieces to-
gether. Let f be a measure satisfying the conditions of Theorem 1. Fix
x0 ∈ R, a jump point of s(r, f). We may assume without loss of generality
that x0 < 0. Suppose, by contradiction, that for some η ∈ (0, min{a/4, 1})
there exists a sequence xk → +∞ such that

s((x0, xk), f) < (a − 4η)xk/π − 8. (68)

We apply the theorem of Beurling and Malliavin to find a multiplier g of type
η, such that g(x) ≥ 0 for x ∈ R. Then gf is a measure of finite variation
which has at most as many sign changes as f has on every interval, and
according to Lemma 3 gf has a spectral gap (−a + η, a − η).

For t > 0, let (fg)t = Kt ∗ (fg) and let

(fg)t = ht + ht

be the decomposition as in Lemma 1. We apply Lemma 5 to find r0 > 0 and
t0 > 0 such that (40) holds with ε = η2/8. Choose r1 > 2r0 so that

(a − 2η)r/π − C1(2r0 + r−1
0 )/π − 1 > (a − 3η)r/π, for r > r1, (69)

where C1 is the upper bound for J(log |ht|) from Lemma 5. Then Proposi-
tion 3 applied to (fg)t together with (69) implies that

s(r, (fg)t) > (a − 3η)r/π, t ∈ (0, t0), r > r1, (70)

if all zeros of (fg)t are simple. Now suppose that xk > r1+1, and let x′
k be the

smallest jump point of s(r, f) such that x′
k ≥ xk. Let ε ∈ (0, 1) be so small

that there are no other jump points in the ε-neighborhood of x′
k. Applying
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Proposition 4 to the interval (x0, x
′
k), we obtain α and β in ε-neighborhoods

of x0 and x′
k, respectively, such that

s((α, β), (fg)t) ≤ s((α, β), f) + 4, (71)

for t ∈ (0, tk) with some tk ∈ (0, t0) > 0. We can choose this t so that all
zeros of (fg)t are simple. Now we recall that jumps of s(r, f) at x′

k are at
most 2, so s((α, β), f) ≤ s((x0, xk), f)+4, and we obtain using (71) and (68)

s(β, (fg)t) ≤ s((α, β), (fg)t) ≤ s((α, β), f) + 4

≤ s((x0, xk), f) + 8 < (a − 4η)xk/π

< (a − 3η)β/π.

This contradicts (70), and proves the theorem. 2

8 Proof of Theorem 2

Now we proceed to the proof of Theorem 2. We represent f as a sum

f = f+ + f−,

where supp f+ ⊂ [0,∞) and supp f− ⊂ (−∞, 0]. Then for every t > 0 we
have

Kt ∗ f = Kt ∗ f+ + Kt ∗ f−, (72)

where Kt is the heat kernel. All three terms in (72) are real analytic on the
real line for every t > 0. Moreover,

(Kt ∗ f−)(s) = O(e−s2

), s → +∞, (73)

and
(Kt ∗ f+)(s) = O(e−s2

), s → −∞.

In addition, (3) implies that

(Kt ∗ f±)(s) = O(eλ|s|), s → ∞ (74)

for every λ > 0. So the following integrals are absolutely convergent and
analytic in their half-planes:

G+
t (z) =

∫

(Kt ∗ f−)(s)e−iszds = K̂t(z)F+(z), Im z > 0, (75)
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and

G−
t (z) = −

∫

(Kt ∗ f+)(s)e−iszds = K̂t(z)F−(z), Im z < 0. (76)

Here (F+, F−) is the generalized Fourier transform of f as in (4).
Notice that for every fixed y > 0, G+

t (. + iy) is the Fourier transform of
the function

s 7→ (Kt ∗ f−)(s) exp(sy),

which is infinitely differentiable and decreases exponentially fast as s → ∞.
This follows from (73) and (74). We conclude that

G+
t (x + iy) = O(x−N), x → ∞

for every y > 0 and every N > 0. Similar remark applies to G−
t for every

fixed y < 0.
As

K̂t(z) = exp(−z2t/4) (77)

is entire, we conclude that G±
t are analytic continuations of each other

through (−a, a). As G±
t decrease faster than any power on horizontal lines,

and we can use the Fourier inversion formula:

(Kt ∗ f−)(s) =
1

2π

∫

Im z=y

G+
t (z)eiszdz, s ∈ R, y > 0,

and

(Kt ∗ f+)(s) = − 1

2π

∫

Im z=y

G−
t (z)eiszdz, s ∈ R, y < 0.

Both integrals are absolutely convergent. We fix arbitrary ε ∈ (0, a), and
choose y = ε in the first integral and y = −ε in the second one. Adding them
and using (72), we write the result as

(Kt ∗ f)(s) =
1

2π

∫

γ(ε)

Gt(z)eiszdz, s ∈ R, (78)

where Gt = (G+
t , G−

t ) and γ(ε) is the contour shown in Fig. 3.

The integrand of (78) is holomorphic in

C\((−∞, a] ∪ [a,∞))
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a−a
ε

Figure 3: The path γε

a−a
γ− γ+

Figure 4: The path γε splitted into γ+(ε) and γ−(ε)

so we can deform the contour γ(ε) into the sum γ(ε) = γ+(ε) + γ−(ε) as in
Fig. 4.

Now we define the function ht holomorphic in the upper half-plane:

ht(ζ) =
1

2π

∫

γ+(ε)

Gt(z)eiζzdz, Im ζ > 0. (79)

In view of (75), (76) and (77) we can pass to the limit when t → 0 in (79)
and obtain

ht(ζ) → h0(ζ) :=
1

2π

∫

γ+(ε)

F (z)eiζzdz, Im ζ > 0,

uniformly on compact subsets of the upper ζ-half-plane. Here F = (F +, F−),
and the last integral is absolutely convergent because of the exponential factor
in it. Let σ0 ∈ (0, 1), be such that h0(iσ0) 6= 0. Then we have

|ht(iσ0)| ≥ δ > 0, t ∈ (0, 1) (80)

with δ independent of t.
As f is real, we have Gt(−z̄) = ¯Gt(z), and thus

ht(ζ) = ht(ζ) =
1

2π

∫

γ−(ε)

Gt(z)eiζzdz, Im ζ < 0. (81)

Both integrals (79) and (81) still converge for real ζ. Adding them for ζ =
s ∈ R and comparing the result with (78) we conclude that

(Kt ∗ f)(s) = ht(s) + ht(s), s ∈ R. (82)
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Now we estimate ht in the upper half-plane. It is important that our esti-
mates will be independent of t, for t ∈ (0, 1). We denote

B(ε) = sup{|Gt(x + iy)| : x + iy ∈ γ+(ε), t ∈ (0, 1)}.
It follows from (75) and (76) that B(ε) < ∞ for every ε ∈ (0, a), because
the generalized Fourier transform of a measure is bounded on every line
Im ζ = const 6= 0.

Now we put z = x + iy and estimate the integral in (79):

|ht(s + iσ)| ≤ B(ε)

2π

∫

γ+(ε)

e−(σx+sy)|dz| ≤ B(ε)

σ
e−(a−ε)σ+ε|s|, σ > 0. (83)

Now we estimate the number of sign changes of ft = Kt ∗ f from below.

Lemma 13 Let ft be a real analytic function with only simple seros on the
real line, and assume that

ft(x) = ht(x) + ht(x), x ∈ R,

where ht is holomorphic in the closed upper half-plane, and satisfies (83) and
(80). Then

∫ r

σ0

s(x, ft) + s(−x, ft)

x
dx ≥ (2a/π − 2ε)r − log B(ε) + C, (84)

where C is a constant that depends only on δ and σ0 in (80).

Proof. To simplify our formulas, we do not write the subscript t in this
proof. Out estimates do not depend on t. Consider the following function:

u(z) =







log |h(z)|, Im z ≥ 0,

log |h(z)|, Im z < 0.

It is continuous, delta-subharmonic in C, and subharmonic in the comple-
ment of the real axis. Inequality (80) implies

u(iσ0) ≥ log δ > −∞. (85)

The restriction dµ of the Riesz charge of u on the real axis is a sum of
absolutely continuous and discrete components:

dµ =
1

π

∂u

∂y
(x + i0)dx + dµ0, (86)
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where the discrete component dµ0 is the counting measure of real zeros of
h. These zeros are simple by our assumptions. As in the proof of Theorem
1 in the real analytic case, we study a harmonic conjugate v to u in a “half-
neighborhood” of the real line, that is in some region of the form

U = {x + iy : 0 < y < δ(x)},

where δ > 0 is a continuous function. As f is real analytic, h is also real
analytic, so the zeros of h do not accumulate to the real axis, and u is
harmonic near the real axis. Thus a harmonic conjugate v is defined in some
region U . We have

v(x) = arg h(x + i0),

the branch obtained as the limit from the upper half-plane. At the points
where h(x) 6= 0, he Cauchy–Riemann equations give ∂v/∂x = −∂u/∂y. If
h(x0) = 0 then v(x0 + 0) − v(x0 − 0) = −π, while dµ0 has an atom of mass
+1 at x − 0. So we obtain from (86)

v(x) − v(−x) = −π

∫ x

−x

dµ =: −πn(x). (87)

Now we apply Jensen’s formula to the disc {z : |z − ζ0| ≤ r}, where ζ0 = iσ0

is the point from (85). We set w(x) =
√

x2 − σ2
0, so that

w(x) < x for x > σ0. (88)

Our function u is subharmonic in C\R, so Jensen’s formula implies
∫ r

σ0

n(w(x))

x
dx ≤ 1

2π

∫ π

−π

u(ζ0 + reiθ)dθ − u(ζ0), (89)

where n was defined in (87). Using (87), (89), and estimating the integral in
the right hand side of (89) with the help of (83), we obtain

1

π

∫ r

σ0

v(w(x)) − v(−w(x))

x
dx = −

∫ r

σ0

n(w(x))

x
dx (90)

≥ − 1

2π

∫ π

−π

u(ζ0 + reiθ)dθ + u(ζ0) (91)

≥ (a − ε)r

2π

∫ π

−π

| sin θ|dθ − εr − log B(ε) + log δ + C1 (92)

= 2(a − ε)r/π − εr − log B(ε) + C, (93)
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where C1 is an absolute constant, and C = log δ + C1 depends only on δ.
Recalling that s(r, f)+s(−r, f) ≥ (v(r)−v(−r))/π−1 (every half-turn of h(x)
around zero yields at least one sign change of f = 2<h), using monotonicity
of s(r, f) and (88), we obtain

∫ r

σ0

(s(x, f) + s(−x, f))
dx

x
≥

∫ r

σ0

(s(w(x), f) + s(−w(x), f))
dx

x

≥ 1

π

∫ r

σ0

(v(w(x)) − v(−w(x)))
dx

x
− log r + log σ0

≥ 2(a − ε)r/π − εr − log B(ε) + C − log r + log σ0.

This proves the Lemma. 2

Now we complete the proof of Theorem 2.
Let us first fix R > 1. Let r ∈ (0, R). Let (x, y) be the minimal interval

whose endpoints are jump points of s(r, f) and which contains (−r, r). Then

s((−r, r), f) = s((x, y), f). (94)

Applying Proposition 4 to the interval (x, y) with ε ∈ (0, 1), we obtain the
points α and β in ε-neighborhoods of x and y respectively, such that

s((α, β), ft) ≤ s((α, β), f) + 4, (95)

for t ∈ (0, t0(R). Assuming that ε is so small that there are no other jump
points of s(r, f) in the ε-neighborhoods of x and y, and taking into account
that the magnitude of jumps is at most two, we obtain from (94) and (95)
that

s((−r, r)), f) ≥ s((α, β), f) − 4 (96)

≥ s((α, β), ft) − 8 ≥ s((−r + 1, r − 1), ft) − 8, (97)

or
s((−r, r), ft) ≤ s(−r − 1, r + 1), f) + 8, (98)

for every r ∈ (0, R) and every t ∈ (0, t0). Dividing (98) by r and integrating
from σ0 to R gives

S(R, ft) ≤
∫ R+1

σ0+1

s((−r, r), f)
dr

r − 1
+ 8 log(R/σ0).
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Now, for an arbitrary given ε > 0, we have (r−1)−1 < (1+ ε)r−1 for r > ε−1.
Using this to estimate the integral in the RHS, we obtain

S(R, ft) ≤ (1 + ε)S(R + 1, f) + C(ε) + 8 log R.

Comparing this with (84) gives the result.
The second assertion of Theorem 2 is proved similarly, using Carleman’s

formula [25, p. 187] instead of Jensen’s formula. 2

The above proof can be generalized to a class of distributions. The ap-
propriate class is (Sβ

1 )′, β > 2 of Gelfand and Shilov [14].
We recall that the space of test functions Sβ

1 consists of infinitely differ-
entiable functions φ satisfying

sup
x

|xkφ(q)(x)| ≤ CAkBqkkqβq,

where the constants A,B,C may depend on φ. This is a union over all
positive A and B of countably normed spaces Sβ,B

1,A with the norms

‖φ‖m,n = sup
x,k,q

|xkφ(q)(x)|
(A + 1/m)k(B + 1/n)qkkqqβ

, m, n = 1, 2, . . . . (99)

All spaces Sβ
1 are contained in the Schwartz space S , and convergence in Sβ

1

implies convergence in S . Spaces Sβ
1 contain functions with bounded support

if and only if β > 1. In this case, for every interval I, the functions of the
class Sβ

1 with bounded support on I are dense in the space of all continuous
functions with bounded support on I. All functions φ ∈ Sβ

1 satisfy

sup
x∈R

|φ(q)(x)| exp(−λ|x|) < ∞ for all q ≥ 0 and some λ > 0.

Let (Sβ
1 )′ be the space of all continuous linear functionals on Sβ

1 . Let η be
an sufficiently smooth function, η(x) = 0 for x ≤ −1 and η(x) + η(−x) ≡ 1.
Then the functions

F+(ζ) = (f(x), η(−x)e−ixζ) and F−(ζ) = −(f(x), η(x)e−ixζ)

are analytic in the upper and lower half-planes, respectively, and the gener-
alized Fourier transform is defined as a hyperfunction (F +, F−). Changing
η results in addition of the same entire function to F + and F−, so our defi-
nition is independent of the choice of η. Then the spectrum and the spectral

41



gap of a distribution of the class (Sβ
1 )′ is defined as in the Introduction, in

terms of the generalized Fourier transform.
We estimate this generalized Fourier transform on horizontal lines.

Lemma 14 Let f be a distribution of the class (Sβ
1 )′ with β > 1. Then

one can choose η in the definition of the generalized Fourier transform F =
(F+, F−) such that for every fixed y ∈ R\{0} and every β ′ ∈ (1, β),

F (x + iy) = O(exp |x|1/β′

), x → ∞.

Proof. Fix a number γ ∈ (1, β). Then there exists a smooth function η,
as in the definition of the generalized Fourier transform, with the additional
property

sup
x∈R

|η(j)(x)| ≤ Cjγj, j = 0, 1 . . . , (100)

where we use the convention that 00 = 1.
Let us assume, for example, that y < 0, and estimate F−. The estimate

of F+ is similar. We have

|F−(z)| = |(f, η(t)e−itz)| ≤ C‖η(t)e−itz‖,

where ‖.‖ is one of the norms (99) and C is a constant depending of f and
η. Straightforward estimation of the norm using (100) gives the Lemma. 2

Now we state a version of Theorem 2 for distributions.

Theorem 2′ Let f ∈ (Sβ
1 )′, β > 2 be a distribution with a spectral gap

(−a, a). Then the conclusions of Theorem 2 hold.

We only explain modifications needed in the proof. The definition of B(ε)
has to be modified as follows. Fix α ∈ (1, β) and put

B(ε) = sup{exp(−|x|1/α) |Gt(x + iy)| : x + iy ∈ γ+(ε), t ∈ (0, 1)}.

It follows from Lemma 14 that B(ε) < ∞. Now we put z = x + iy and
estimate the integral in (79):

|ht(s + iσ)| ≤ B(ε)

2π

∫

γ+(ε)

exp(−σx − sy + x1/α)|dz|.

Applying Laplace’s method to estimate the last integral, we obtain

|ht(s + iσ)| ≤ CB(ε) exp{−(a − ε)σ + C1σ
1/(1−α) + ε|s|}, σ > 0. (101)
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This estimate replaces (83). The main point is that exp σ1/(1−α) has inte-
grable logarithm near σ = 0 when α > 2, so the proof of Lemma 13 needs no
modification. A serious modification is needed in our final argument where
we substantially used the fact that for measures f , the magnitudes of jumps
of s(r, f) are at most 2. This parts needs no modification for distributions of
finite order. For the general case, the following generalization of Lemma 7 is
needed.

Lemma 15 Let f be a distribution with support on [x0, +∞), with finitely
many changes of sign on every finite interval, and such that the convolution
u(x, t) = (Kt ∗ f)(x) is well defined. Assume that f has a change of sign
at x0, and that u is unbounded in every neighborhood of x0. Then there
exists a curve γ in the upper half-plane except one endpoint at x0, and a
number t0 > 0 such that u is bounded from above or from below in the region
whose boundary consists of the ray {(x, 0) : x ≤ x0}, the curve γ and a ray
{(x, t0) : x < x1}, where (x1, t0) ∈ γ, and in addition

inf{|u(x, t)| : (x, t) ∈ γ} > 0.

Proof. We assume without loss of generality that x0 = 0. It is enough to
prove the lemma in the case that the only jump point of s(r, f) occurs at 0.
So we assume without loss of generality that the restriction of f on (0,∞)
is a positive measure. If this positive measure has no concentration points
accumulating to 0, the lemma follows from Lemma 7. So we assume that
there are concentration points of f arbitrarily close to 0. Then it follows from
Lemma 8 that there exists a neighborhood U of (0, +∞) such that u > 0 in
U .

It follows from Lemma 11 that the number of sign changes of ft is bounded
from above independently of t. On the other hand, for sufficiently small t, the
functions ft have at least one change of sign; this follows from our assumption
that 0 is a jump point of s(r, f). Moreover, by Lemma 11, the number of
sign changes of ft is a decreasing function of t, so we can choose T > 0 so
small that

the number of sign changes of ft is constant for t ∈ (0, T ). (102)

Consider the strip P = {(x, t) : 0 < t < T} and the temperature u(x, t) =
(Kt ∗ f)(t) in this strip. Let `0, `1, . . . , `n be the maximal intervals of sign
constancy of fT , enumerated left to right, n ≥ 1. To each of these intervals `j
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corresponds a unique component Dj of the set {(x, t) : u(x, t) 6= 0} such that
`j ⊂ ∂Dj. This was established in the proof of Lemma 12. By the Maximum
Principle (Lemma 8), each ∂Dj intersects the x−axis, so our assumptions
about f imply that the sign of u in Dn is +1. Then it alternates, so the sign
of u in Dn−j is (−1)j.

`1 `2 `3

0

D0

`0

γ

We claim that for every j < n, the boundary of Dj does not intersect the
open ray (0, +∞). Indeed, this is enough to prove for Dn−1 as it blocks all
other domains from the right. But the sign of u in Dn−1 is negative, while
there exists a neighborhood U of the open positive ray such that u > 0 in U ,
so ∂Dn−1 cannot intersect (0,∞), and this proves our claim.

In particular, ∂D0 ∩ {(x, t) : t = 0} ⊂ (−∞, 0]. Moreover, Lemma 8
implies that 0 ∈ ∂D0. It follows from (102) that the intersection of D0

with every horizontal line t = const consists of exactly one interval, so, in
particular,

∂D0 ∩ {(x, t) : t = 0} = (−∞, 0]. (103)

By Lemma 9, u is unbounded in D0. Let G1 be the component of the set

{(x, t) ∈ D0 : |u(x, t)| > 1}.

It is clear that ∂G1 ∩ {(x, t) : t = 0} = {0}, and that u is unbounded in
G1. Now we construct a sequence of domains G1 ⊃ G2 ⊃ . . ., so that Gj is a
component of the set

{(x, t) ∈ D0 : |u(x, t)| > j}.

For the same reasons as above, ∂Gj ∩ {(x, t) : t = 0} = {0}, for every
j = 1, 2, . . . . Now we choose points sj ∈ Gj\Gj−1 and connect each pair
(sj, sj+1) by a curve γj ⊂ Gj. The union γ of these curves satisfies all
requirements of the lemma. 2
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This lemma permits to prove a more precise version of Proposition 4:
one can additionally insure that (α, β) ⊂ (a, b). This permits to modify the
estimates (96), (97) in the following way:

s((−r, r)), f) = s((α, β), f) ≥ s((α, β), ft) − 4 ≥ s((−r + 1, r − 1), ft) − 4.

The rest of the proof of Theorem 2 remains unchanged.

9 Limit sets of entire functions

The theorem of Cartwright and Levinson mentioned in section 2 shows that
constructing an example of an efet whose indicator diagram is an interval
of the imaginary axis, and which does not have completely regular growth,
may be a non-trivial task. First such example was constructed by Redheffer
[36], see also [37, 20]. An application of these examples was to show that
Titchmarsh’s theorem on the support of convolution fails for hyperfunctions
with bounded support. However, all these examples are still too regular
for our purposes, and we need the theory of limit sets, which generalizes
the theory of completely regular growth. The theory of limit sets of entire
functions was developed by Azarin, Giner [2, 3, 4], Hörmander and Sigurdsson
[18]. Here we collect the necessary facts from this theory.

Let U ∗ be the set of all subharmonic functions in the plane satisfying

lim sup
|z|→∞

|z|−1u(z) < ∞,

with the induced topology from the space of Schwartz distributions D ′(C),
and

U(σ) = {u ∈ U ∗ : u(0) = 0, sup
z∈C

|z|−1u(z) ≤ σ},

for σ > 0. We recall that on the set SH of all subharmonic functions in C,
topologies induced from D ′(C) and from L1

loc(C) coincide, and SH is closed.
This follows from theorems 4.1.8 and 4.1.9 in [17, Vol. I]. So SH is a metric
space.

We denote U = ∪σ>0U(σ). A one-parametric group A of operators

(Atu)(z) = t−1u(tz), t > 0,

acts on U ∗. The sets U(σ) are A-invariant.
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For a function u ∈ U ∗ we define the limit set Fr [u] = Fr∞[u] as the set of
all limits

lim
n→∞

Atnu for tn → ∞.

Similarly, Fr0[u] is defined for u ∈ U , using sequences tn → 0. Each limit set
Fr∞[u] or Fr0[u] is a closed connected A-invariant subset of U(σ) for some
σ > 0. If f is an efet then log |f | ∈ U ∗, and we define the limit set of f as
Fr [log |f |]. For every limit set Fr [u], the function

v(z) = sup{w(z) : w ∈ Fr [u]} (104)

is A-invariant and subharmonic. All such functions have the form

v(reiθ) = rh(θ), where h′′ + h ≥ 0, (105)

that is h′′ + h is a positive measure. Functions h with this property are
called trigonometrically convex. The function h defined by (104) and (105) is
called the indicator of u. If f is an efet and h the indicator of log |f |, then h
coincides with the classical Phragmén–Lindelöf indicator of f . The indicator
diagram is the closed convex set in the plane whose support function is h.
Pólya’s theorem says that the spectrum of f is obtained from its indicator
diagram by rotation by π/2.

Criteria for a subset F ⊂ U to be a limit set of some function u ∈ U ∗

were found in [3] and [18]. The following result is from [3] (see also [4]):

Proposition 5 Fix σ > 0. For a closed connected A-invariant subset F ⊂
U(σ), the following conditions are equivalent:
a) F = Fr [u] for some u ∈ U ∗,
b) F = Fr [log |f |] for some efet f , and
c) There exists a piecewise continuous map

R>0 → U(σ), t 7→ vt

with the properties

dist (Aτvt, vτt) → 0, t → ∞, ∀τ > 0

and
clos {vt : t ∈ (t0,∞)} = F , ∀t0 > 0.
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Here are some simple examples of limit sets derived from Proposition 5.

1. One-point limit set. Its only element has to be of the form (105). This
characterizes completely regular growth in the sense of Levin–Pfluger.

2. One periodic orbit. Let u be a subharmonic function with the property
that AT u = u for some T 6= 1. Then

{Atu : 1 ≤ t ≤ T}

is a limit set. One can show that in this case the indicator diagram cannot
be a non-degenerate interval of the imaginary axis, so this type of function
is not appropriate for our purposes.

3. The closure of a single orbit,

{Atu : 0 < t < ∞} ∪ Fr0[u] ∪ Fr∞[u], where u ∈ U(σ),

is a limit set if and only if

Fr0[u] ∩ Fr∞[u] 6= ∅.

Again, in this case the indicator diagram cannot be a non-degenerate interval
of the imaginary axis.

4. An interval. If u0 and u1 are two functions of the form (105) then the set

{tu0 + (1 − t)u1 : 0 ≤ t ≤ 1}

is a limit set.

Examples in [20] are of this sort. The efet constructed in [20] has indicator
diagram [−ib, ib] and the lower density of zeros is strictly less than 2b/π. We
need an example of an even efet with the indicator diagram [−ib, ib] and the
upper density of zeros strictly greater that 2b/π. To achieve this we combine
the last two examples.

Lemma 16 Let u be a function in U with the properties

Fr0[u] = {u0} and Fr∞[u] = {u1}.

Then
F = {Atu : 0 < t < ∞} ∪ {tu0 + (1 − t)u1 : 0 ≤ t ≤ 1} (106)

is a limit set.
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Proof. This easily follows from the general criterion in Proposition 5. Fix
a sequence of positive numbers with the property rk+1/rk → ∞, k → ∞.

If k = n2 for a positive integer n, we set sk =
√

rkrk+1, and

vt = At/sk
u, rk ≤ t < rk+1.

If k = n2 + j, where 1 ≤ j ≤ 2n, we define

vt = (j/2n)u0 + ((2n − j)/2n)u1, rk ≤ t < rk+1.

Then it is easy to verify that vt satisfies condition c) of Proposition 5 with
F as in (106). 2

Now we describe the relation between the limit set and the distribution
of zeros of an efet. Consider the set of all measures in C. The analog of
operators At for measures is

(Btµ)(E) = t−1µ(tE), for Borel sets E ⊂ C.

The Laplace operator (2π)−1∆ semi-conjugates At and Bt:

∆At = Bt∆. (107)

We denote by V ∗ the set of all positive measures µ, which satisfy

lim sup
r→∞

r−1µ(D(r)) < ∞,

where D(r) = {z ∈ C : |z| ≤ r}, r ≥ 0. We also define the subsets

V (σ) = {µ ∈ V ∗ : µ(D(r)) ≤ rσ, 0 < r < ∞}, σ > 0,

and V = ∪σ>0V (σ). The Laplace operator is continuous in D ′(C) and sends
U to V (however, this map is not surjective, and the image of U(σ) is not
equal to V (σ′) for any σ′ > 0). Given a measure µ ∈ V ∗, we define the limit
set Fr [µ] as the set of all limits in D ′(C)

lim
n→∞

Btnµ for tn → ∞.

It follows from (107) that for every u ∈ U ∗ we have

(2π)−1∆ (Fr [u]) = Fr
[

(2π)−1∆u
]

. (108)
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If f is entire, then (2π)−1∆ log |f | is the counting measure of zeros of f . So
the asymptotic distribution of zeros is reflected in the Riesz measures of the
elements of the limit set. Let us make this more precise. Two measures in
U∗ are called equivalent if

Bt(µ1 − µ2) → 0 as t → ∞.

This implies Fr [µ1] = Fr [µ2]. Let T : C → C be a map with the property

T (z) − z = o(z), z → ∞. (109)

We recall that push-forward T∗µ of a measure by T is defined by (T∗µ)(E) =
µ(T−1(E)). If µ ∈ V ∗, and a map T satisfies (109), then T∗µ is equivalent
to µ. For each µ ∈ V ∗ one can construct a map T with the property (109)
such that T∗µ is a counting measure of a divisor in C. This explains the
implication a)→b) in Proposition 5.

Lemma 17 Let µ be a measure in V ∗. Suppose that all measures in Fr [µ]
are supported on the real line and have the form d(x)dx where d(x) < 1.
Then there exists a measure µ1 equivalent to µ, which is supported on the
integers, and µ1(n) ∈ {0, 1} for each integer n.

Proof. First we project our measure µ by the map

T (reiθ) =

{

r, |θ| < π/2,
−r, |θ − π| ≤ π/2.

This map does not satisfy (109) but it is easy to see that µ0 = T∗µ ∼ µ for
a measure µ satisfying the conditions of Lemma 17.

Second, let F0 be the distribution function of µ0, that is µ0 = dF0 and
F0(0) = 0. Then we set F1(x) = [F0([x])], where [.] stands for the integer
part, and put µ1 = dF1. It follows from our assumptions that F ′

0 < 1, so the
jumps of F0([x]) are at most 1, and they occur only at integers. Thus the
jumps of F1 are all equal to one, and they occur only at integers. Now it is
easy to see that µ1 ∼ µ0 ∼ µ, so µ1 has all required properties. 2

10 Example of an efet

Here we construct Example 2 assuming, without loss of generality, that a+b =
2π. We begin with a smooth, even, non-positive function u0 with bounded
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support, u0(0) = 0; for example, we can take

u0(x) =







−k(1 − (x2 − 1)2)2, |x| ≤
√

2,

0, |x| >
√

2,

where k > 0 is a parameter to be specified later. Then we extend u0 to
C\R by Poisson’s integral. The resulting function u0 is a delta-subharmonic
function in C, whose Riesz charge is supported on R and has the form
dQ0(x) = q0(x)dx, where q0 is a smooth, even, bounded function, and
Q0(0) = 0. So we have

u0(z) =

∫ ∞

0

log
∣

∣1 − z2/t2
∣

∣ dQ0(t) =

∫ ∞

0

log
∣

∣1 − z2/t2
∣

∣ q0(t)dt.

We notice that u0|R is the Hilbert transform4 of Q0, in particular,

q0(x) = Q′
0(x) = π−1(∂u0/∂y)(x + i0). (110)

So we have
q0(0) = π−1(∂u0/∂y)(0 + i0) < 0, (111)

because 0 is a global maximum of u0 in the plane. We put

−m = min
x∈R

q0(x) < 0 (112)

and

η = max
x≥0

Q0(x)

x
> 0. (113)

The inequality in (113) holds because Q′
0(x) < 0 for large positive x, in view

of (110), and Q0(x) → 0 as x → ∞. Now we choose and fix k so small that

m + max
x∈R

q0(x) < 1. (114)

We define

Q1(x) = Q0(x) + mx, so that q1 = Q′
1 = q0 + m ≥ 0, (115)

4So, for the function u0 written above, Q0 can be explicitly computed.
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in view of (112), and thus the function

u1(z) = u0(z) + πm|Im (z)| =

∫ ∞

0

log |1 − z2/t2|q1(t)dt, (116)

is subharmonic in C, has Riesz measure dQ1, and belongs to the class U
defined in the previous section. We have

Fr∞[u1] = {πm|Im (.)|} and Fr0[u1] = {πm′|Im (.)|}, (117)

where Im (.) is the function z 7→ Im (z), and

m′ = m + q0(0) < m. (118)

The first formula in (117) follows from u0(z) → 0 as z → ∞, while the second
one and (118) follow from (111). Now by Lemma 16, the set

F := {Atu1 : t ∈ R} ∪ {t|Im (.)| : πm′ ≤ t ≤ πm} ⊂ U

is a limit set of an efet. Evidently,

sup{w(z) : w ∈ F} = πm|Im (z)|. (119)

Let g be an entire function of exponential type m, such that

Fr [log |g|] = F .

According to (119), the indicator diagram of g is the interval [−πmi, πmi].
In other words, the Fourier transform of g is a hyperfunction supported on
[−πm, πm], [17, v.2, Thm.15.1.5]

In addition, we require that all zeros of g be simple and located at integers,
which is possible by Lemma 17 because the Riesz measures of all elements of
F are supported on the real line, and their densities are less then 1 in view
of (114). The upper density of zeros of g on the positive ray is

max
x≥0

Q1(x)/x = m + η. (120)

Indeed, the limit set F = Fr [log |g|] contains u1. This means that there is
a sequence tk → ∞ such that Btk∆ log |g| → ∆u1; this follows from (108).
Suppose that the maximum in (120) is attained at a point x∗ > 0. Put
rk = tkx

∗ and let n(r) be the number of zeros of g on the interval [0, r]. Then
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n(rk)/tk = Q1(x
∗) + o(1), k → ∞, and thus n(r)/r = Q1(x

∗)/x∗ + o(1) =
m + η + o(1), r → ∞.

Finally we set
f(z) = g(z) sin πz.

Then the Fourier transform of f is a hyperfunction supported on

π[−1 − m, −1 + m] ∪ π[1 − m, 1 + m],

while the sign changes occur only at those integers which are not zeros of g,
that is the lower density of sign changes is at most 1 − m − η < 1 − m in
view of (120). 2

11 Refinement of the previous example

In this section we modify the example of the previous section so that it will
have an additional property |f(x)| ≤ exp ω(|x|), for a given smooth positive
weight ω ≥ 2 defined for t ≥ t0 > e, which satisfies

∫ ∞

t0

ω(t)

1 + t2
dt = ∞, (121)

ω(t)

log t
increases for t > t0, (122)

ω(t)

t
decreases for t > t0, (123)

and

lim inf
t→+∞

log ω(t)

log t
>

1

2
. (124)

In this section we denote by C various positive constants that depend only
on the weight ω and on t0 in (122) and (123).

1. Preliminary estimates.

The increasing function

H(t) = ω(t)/ log t, t ≥ t0, (125)

has an increasing inverse h(t). We define

B(t) =
log h(t)

h(t)
, t ≥ H(t0), B(t) =

log t0
t0

, t ∈ [0, H(t0)] (126)
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Then B has the following properties which easily follow from (121), (123),
and (124), respectively:

∫ ∞
B(t)dt = ∞, (127)

tB(t) decreases to 0 as t → ∞, t ≥ H(t0), (128)

and

lim inf
t→∞

log B(t)

log t
≥ −2 + ε (129)

for some ε > 0. We only verify (127) leaving the other two properties to the
reader:

∫ ∞
B(t)dt =

∫ ∞ log y

y
dH(y) =

∫ ∞ (log y − 1)

y2

ω(y)

log y
dy = ∞.

Lemma 18 (Kahane and Rubel [20, pp. 591–592]). Let

φ(u) =
1

u

∫ u

0

log

∣

∣

∣

∣

1 − 1

x2

∣

∣

∣

∣

dx.

Then φ ≥ 0 and

I(r) =

∫ ∞

0

φ(t/r)tB(t)dt = O(ω(r)), r → ∞.

Proof. We write

I(r) =

∫ H(r)

0

+

∫ ∞

H(r)

,

where H(r) is defined in (125). For the first integral we use |tB(t)| < C,
which follows from (128), and

∫ H(r)

0

φ(t/r)dt = r

∫ H(r)/r

0

φ(y)dy

≤ 3H(r) log
r

H(r)
≤ 3ω(r).

For the second integral we use (128) again:
∫ ∞

H(r)

φ(t/r)tB(t)dt ≤ H(r)B(H(r))

∫ ∞

H(r)

φ(t/r)dt

≤ H(r)B(H(r))r

∫ ∞

0

φ(y)dy = Cω(r),
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where C is an absolute constant. 2

We are going to construct a subharmonic function of the form

u(z) =

∫ ∞

0

log

∣

∣

∣

∣

1 − z2

t2

∣

∣

∣

∣

q(t)dt, (130)

where q is a positive bounded smooth function. We need estimate of the tails
of this integral when z = r is large. Using (124) we obtain

∣

∣

∣

∣

∣

∫

√
r

0

log

∣

∣

∣

∣

1 − r2

t2

∣

∣

∣

∣

q(t)dt

∣

∣

∣

∣

∣

≤ C

∫

√
r

0

log
r

t
dt ≤ C

√
r log r = o(ω(r)). (131)

Next,

∣

∣

∣

∣

∫ ∞

r3

log

∣

∣

∣

∣

1 − r2

t2

∣

∣

∣

∣

q(t)dt

∣

∣

∣

∣

≤ C

∫ ∞

r3

r2

t2
dt = C/r = o(ω(r)). (132)

2. Function q1

We recall some properties of the function q1 from the previous section.

q1 is bounded, positive and differentiable (133)

d

dt
q1(t) = O(t−2), t → ∞, (134)

d

dt
q1(t) = O(t), t → 0. (135)

So,
d

dt
q1(t/R) ≤ C

t

R2
< CB(t) if t ≤

√
R. (136)

Now we fix K = 2/ε, where ε is the number from (129). Then by (134):

d

dt
q1(t/R) ≤ C

R

t2
< CB(t) if t ≥ RK . (137)

3. Construction of q.

54



After these preliminaries we begin the construction of a function q to be
inserted into (130). First we define sequences rk → ∞ and Rk > rK

k such
that

∫ Rk

rK

k

B(t)dt = q1(r
K−1
k ) − q1(r

−1/2
k+1 ) (138)

Rk ≤ √
rk+1, (139)

and
rk+1 > r12K

k . (140)

Let us show that such choice of rk and Rk is possible. We recall from sec-
tion 10, that q1(t) → m, t → ∞, and q1(t) → m′ < m, t → 0. So we can
choose r1 > 2 so that

min{q1(t) : t ≥ rK−1
1 } > max{q1(t) : 0 ≤ t ≤ r

−1/2
1 }.

Now we define rk inductively. Suppose that rk has been already chosen.
Consider the following equation with respect to x:

∫ x

rK

k

B(t)dt = q1(r
K−1
k ) − q1((r

6K
k x)−1).

The integral increases from 0 to ∞ as x increases from rK
k to ∞, while the

right hand side varies between positive limits. So it follows from (127) that
the equation has solutions x > rK

k ; we take the smallest solution x and denote
it by Rk. Then we put rk+1 = (r6K

k x)2, so that (138), (139) and (140) are be
satisfied.

Now we define our function q in the following way:

q(t) = q1(t/rk) for
√

rk ≤ t ≤ rK
k , (141)

q(t) = q1(r
K−1
k ) −

∫ t

rK

k

B(τ)dτ for rK
k ≤ t ≤ Rk. (142)

and
q(t) = q(Rk) Rk ≤ t ≤ √

rk+1. (143)

It follows from (138) that this definition gives a continuous function q.
It follows from (142) and (143) that

∣

∣

∣

∣

dq(t)

dt

∣

∣

∣

∣

≤ B(t) for rK
k ≤ t ≤ √

rk+1, (144)
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for every k. Furthermore, using (136) and (137), we obtain

∣

∣

∣

∣

d

dt
q1(t/rk)

∣

∣

∣

∣

≤ CB(t) for t outside the interval [
√

rk, r
K
k ]. (145)

3. Estimate on the real axis.

Everything is ready now for estimation from above of our function u
defined in (130). We write

u(r) =

∫ r3

√
r

log

∣

∣

∣

∣

1 − r2

t2

∣

∣

∣

∣

q(t)dt + v(r), (146)

where
|v(r)| = o(ω(r)), (147)

according to (131) and (132). Now, the interval [
√

r, r3] intersects at most one
of the intervals Ik = [

√
rk, r

K
k ], which follows from (140). If [

√
r, r3]∩ Ik 6= ∅,

for some k, we put I = Ik, otherwise, I = ∅. Then we have

u(r) =

∫ ∞

0

log

∣

∣

∣

∣

1 − r2

t2

∣

∣

∣

∣

q(t)dt

=

∫ ∞

0

log

∣

∣

∣

∣

1 − r2

t2

∣

∣

∣

∣

(

q(t) − q1

(

t

rk

))

dt (148)

+

∫ ∞

0

log

∣

∣

∣

∣

1 − r2

t2

∣

∣

∣

∣

q1

(

t

rk

)

dt. (149)

The last integral (149) equals rku1(r/rk), where u1 is the function from the
previous section (see (116)) so this last integral is negative. It remains to
estimate from above the integral (148). Applying (146) to q and q1, and
using (141) we obtain

u(r) ≤
∫

[
√

r,r3]∩I

log

∣

∣

∣

∣

1 − r2

t2

∣

∣

∣

∣

(

q(t) − q1

(

t

rk

))

dt + o(ω(r)).

Following Kahane and Rubel, we use now the integration by parts formula

∫ b

a

log |1 − r2/t2|q(t)dt = −
∫ b

a

φ(t/r)tq′(t)dt + φ(t/r)tq(t)|ba , (150)
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where φ is the function from Lemma 18, and obtain

u(r) ≤
∫

[
√

r,r3]∩I

φ(t/r)t

(

|q′(t)| +
∣

∣

∣

∣

d

dt
q1(t/rk)

∣

∣

∣

∣

)

dt (151)

+ |φ(t/r)|tq(t)‖r3√
r + |φ(t/r)|tq1(t/rk)‖r3√

r. (152)

To estimate the non-integrated terms in the last formula we use

φ(t) = O(t−2), t → ∞ and φ(t) = O(log(1/t)), t → 0.

which can be obtained from the explicit expression for φ in Lemma 18. So
∣

∣

∣

∣

φ

(

t

r

)

tq(t)|r3√
r

∣

∣

∣

∣

= O(
√

r log r) = o(ω(r),

and similar estimate holds for the non-integrated term in (152) that contains
q1.

It remains to estimate the integral (151). In view of (144) and (145), this
integral is at most

I(r) =

∫ ∞

0

φ

(

t

r

)

tB(t)dt,

which is O(ω(r)) by Lemma 18. Thus u(r) ≤ Cω(r).
To remove the C in the last inequality, we argue as follows. Let ω be

the given weight. Consider another weight ω1 = o(ω), such that ω1 has
all properties (121), (122), (124) and (123). Perform all the above with ω1

instead of ω. Then we obtain a function u which will satisfy u(r) ≤ ω(r), for
r large enough.

4. Other properties of u.

Now we verify that the limit set of the subharmonic function u defined
in (130) is the same F as in section 10.

To do this it is enough to find all limit functions of q(tx) as r → ∞. Let
(tn) be an arbitrary sequence tending to infinity. Let (kn) be the sequence
defined by tn ∈ [rkn

, rkn+1]. By choosing a subsequence, we may assume
without loss of generality that both limits R0 = lim tn/rkn

∈ [1, +∞] and
R1 = lim tn/rkn+1 ∈ [0, 1] exist. Then the following cases are possible:

Case 1. One of the limits R0 < +∞ or R1 > 0. Then it follows from (141)
in the definition of q that q(tnx) → q1(R0x) or q(tnx) → q1(R1x) uniformly
on every compact subset of (0, +∞).
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Case 2. R0 = ∞ and R1 = 0. Fix any number δ ∈ (0, 1) and let
x ∈ [δ, 1/δ]. Then

d

dx
q(tnx) → 0, n → ∞

uniformly in x, so after choosing a subsequence we obtain q(tnx) → c uni-
formly with respect to x. It is easy to see that c ∈ [m′,m].

This proves that the limit set of u has the same form as in the previous
section, and the rest of the arguments in that section can be repeated.
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