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INTEGRAL CURVATURES, OSCILLATION AND ROTATION OF
SPATIAL CURVES AROUND AFFINE SUBSPACES

D. NOVIKOV AND S. YAKOVENKO

Abstract. The main result of the paper is an upper bound for oscillation of

spatial curves around geodesic subspaces of the ambient space in terms of the
integral geodesic curvatures of the curves.

Let Mn be the Euclidean space Rn, projective space Pn or the sphere Sn

equipped with the Riemannian metric of Gaussian curvature c(M) = 0, 1 or
r−n > 0 respectively, and Γ ⊂ M be a smooth curve parameterized by the arc

length s ∈ [0, `].

For such curves the (geodesic) Frenet curvatures κ1(s), . . . , κn−1(s) can be
defined, the last one up to the choice of sign in the non-orientable case of Pn.

The generalized inflection points are defined by the condition that the last
curvature κn−1(s) vanishes.

We prove that the number of intersections of Γ with an arbitrary affine

hyperplane Ln−1 ⊂ Rn (respectively, any equator of codimension 1 in the
sphere or a projective hyperplane in Pn) can be at most 1/π times the sum

w0Kn(Γ )+w1Kn−1(Γ )+· · ·+wn−1K1(Γ )+wnK0(Γ )+wn+1K−1(Γ ), where:

K1(Γ ), . . . , Kn−1(Γ ) are (absolute) integral Frenet curvatures of Γ ,
Kn(Γ ) = π × (number of generalized inflection points),

K0(Γ ) = c1/n(M) · |Γ |, where |Γ | is the Riemannian length of Γ ,

K−1(Γ ) = 0 or π is π/2 times the number of endpoints of Γ ,
w0 = w1 = 1, w2 = 2, wj = j − 1 for j > 3 are the universal weights.

For curves in the Euclidean case M = Rn a similar estimate can be found

for properly defined rotation around affine subspaces of arbitrary dimension k
between 0 and n−2. We show that this rotation can be at most w0Kk+1(Γ )+

· · · + wk−1K1(Γ ) + wk+1K−1(Γ ), where the term wkK0(Γ ) is missing since

c(Rn) = 0.
The proof is based on arguments from integral geometry (alias geometric

probability) and non-oscillation theory for ordinary linear equations.

1. Oscillation and rotation around affine subspaces

The principal question addressed in this paper, can be formulated as follows:

given a smooth curve Γ in the Euclidean space Rn with known integral Frenet

curvatures
∫

Γ
|κj(s)| ds, j = 1, . . . , n − 1, give an upper bound for the number of

intersections of Γ with any affine hyperplane A ⊂ Rn, dim A = n − 1, and, more
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generally, estimate from above the “rotation” of Γ around any affine subspace of

codimension greater than 1 (the notion of rotation needs yet to be defined).

This problem was studied in various settings in numerous publications (especially

the hyperplanar case). Our work was inspired by a beautiful paper by John Milnor

[1], in which many ideas developed below, were already present.

We start with the set of definitions and list some known results concerning

oscillatory properties of curves, referring to them as Facts. One of these facts,

a theorem by B. Shapiro [11, 12], is a topological rather than metric assertion that

implies a metric result that we formulate as Theorem 1.

Then the main result of the paper, Theorem 2, is formulated. The proof of

Theorem 2 is given in §2. It rests upon two auxiliary results from integral geometry

(a multidimensional generalization of Fáry theorem and the averaging property of

the rotation index), and a variation on the theme of Pólya theorem. The proof

of Theorem 2 is derived from these auxiliary results, which in turn are proved in

§3 and §4 respectively. In §1.5 we formulate and in §2.5 prove the counterpart of

Theorem 2 for spherical and projective curves. The last section §5 contains an

alternative proof of Theorem 2 for curves in R3 using isoperimetric inequalities on

the sphere.

Acknowledgments. We are grateful to Askold Khovanskĭı for introducing us into

the beautiful realm of Integral Geometry. Misha Shapiro explained us how their

result from [11, 12] is related to the Pólya theorem. Many other people made

valuable remarks and expressed stimulating interest concerning the subject of our

work. This paper was achieved in its final form when we enjoyed the hospitality

and creative atmosphere of Laboratoire Pierre Fermat in Université Paul Sabatier

(Toulouse).

1.1. Settings and definitions. Everywhere below |X| means the natural measure

of a set X (the number of points if X is a discrete set, the length of a curve, the

area of a surface etc).

We consider a smooth curve Γ in the Euclidean space Rn, parameterized as

t 7→ x(t), t ∈ I = [0, `], x(t) =
(
x1(t), . . . , xn(t)

)
∈ Rn. Sometimes we assume that

the parametrization is natural , i.e. the parameter is the arc length measured along

Γ ; in this case we denote it by s.

1.1.1. Integral curvatures and integral inflection. Denote by vk(t) for k = 1, . . . , n,

the vectors of the osculating frame: by definition,

vk : I → Rn, t 7→ vk(t) =
dk

dtk
x(t), k = 1, . . . , n.
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Definition 1 (regular curves, inflections, hyperconvexity). A parameterized curve

Γ is regular , if the first n − 1 vectors vk(t), k = 1, . . . , n − 1 are linear indepen-

dent for all t ∈ I, while the complete set {vk(t)}n
k=1 is linear dependent only at

isolated points of Γ . The points where the osculating frame degenerates, are called

(generalized) inflection points, by analogy with the planar case. A curve without

inflection points is referred to as hyperconvex .

Remark . By Thom transversality theorem, a generic smooth curve is regular.

For a regular curve Γ parameterized by the natural parameter s (the arc length),

the osculating frame {vk(s)}n
1 admits orthogonalization, in other words, a tuple of

smooth vector functions e1(s), . . . , en(s) can be constructed in such a way that

(1) for any k between 1 and n−1 the vectors v1(s), . . . , vk(s) and e1(s), . . . , ek(s)

span the same k-dimensional space, and the angle between ek(s) and vk(s)

is always acute;

(2) all vectors e1(s), . . . , en(s) together constitute a positively oriented orthonor-

mal frame for all s ∈ I.

Since the frame {ek} is orthonormal, the vectors ek = ek(s) satisfy the system

of linear equations with antisymmetric matrix of coefficients A(s) = {aij(s)}n
i,j=1.

The additional observation that the derivative d
dsek(s) must belong to the subspace

spanned by e1(s), . . . , ek+1(s), implies that aij(s) ≡ 0 for all i, j such that |i−j| > 2,

and the system must have the form of the Frenet formulas
d

ds
ek(s) = −κk−1(s) ek−1(s) + κk(s) ek+1(s) k = 1, . . . , n, (1.1)

(assuming κ0 = κn ≡ 0, e0 = en+1 ≡ 0). The numbers κj = κj(s), in fact defined

by the Frenet formulas (1.1), are called Frenet curvatures. For regular curves the

first n − 2 curvatures are everywhere positive, while the last one κn−1(s) changes

sign at inflection points.

Definition 2 (integral curvatures, integral inflection). For k = 1, . . . , n − 1 we

define the kth integral curvature of Γ as

Kk(Γ ) =
∫ `

0

|κj(s)| ds,

if the curve is parameterized by the arc length s; for an arbitrary parametrization

t this naturally gives the value Kj(Γ ) =
∫ `

0
|κj(t)| · ‖v1(t)‖ dt. Note that for all

k 6 n− 2 the Frenet curvatures κj are positive, hence |κj(s)| = κj(s).

The integral inflection is defined as

Kn(Γ ) = πKn(Γ ) = π · |{t ∈ I : κn−1(t) = 0}|,

where Kn(Γ ) := |{t : κn−1(t) = 0}| is the number of inflection points on Γ .
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1.1.2. Oscillation and rotation around affine subspaces. Let L be a linear subspace

in Rn, and A = a + L an affine subspace of dimension dim L = dim A = k, 0 6 k 6

n− 1. We define oscillation of Γ around A if dimA = n− 1 and rotation around A

if dim A 6 n− 2 as the angular length of Γ as seen from the origin in the direction

orthogonal to L (resp., as seen from the point A ∩ A⊥ in the direction A⊥). The

formal definition is given first for linear subspaces, and then for affine subspaces.

Definition 3 (spherical indicatrice, angular length). If Γ ∈ Rn, n > 2 and 0 /∈ Γ ,

then the spherical indicatrice of Γ is the spherical projection of Γ on the unit

sphere Sn−1 from the origin. The angular length of Γ is the (spherical) length of

its indicatrice.

Definition 4 (rotation around linear subspaces). If L ⊂ Rn is a linear subspace of

dimension k = dim L 6 n − 2, disjoint from Γ , then rotation Ω(Γ,L) of Γ around

L is the angular length of the orthogonal projection of Γ on L⊥ along L.

If dim L = n − 1 (i.e. L is a linear hyperplane) and L is transversal to Γ , then

Ω(Γ,L) is defined as π · |Γ ∩ L|.

Definition 5 (rotation around affine subspaces). If A = L+a is an affine subspace

transversal to Γ , then Ω(Γ,L + a) is defined as Ω(Γ − a, L), where Γ − a is the

parallel translate of Γ .

For an arbitrary affine subspace A ⊂ Rn of positive codimension we define

Ω(Γ,A) as the upper limit of Ω(Γ, Aε) as ε → 0+, where Aε is an affine subspace

parallel to A and ε-close to it.

Finally, we introduce the characteristics Ωk(Γ ) for all k = 0, 1, . . . , n− 1,

Ωk(Γ ) = sup
dim A=k

Ω(Γ,A),

where the supremum is taken over all affine subspaces of dimension k.

1.1.3. Remarks. For a planar curve the angular length is the total variation of

argument along the curve. If Γ ⊂ R2 is closed, then (2π)−1Ω(Γ, 0) gives an upper

bound for the topological index of Γ with respect to the origin.

Therefore for any subspace A of codimension 2 and a closed curve Γ the value

(2π)−1Ω(Γ,A) majorizes the linking number between Γ and A.

For hyperplanes the definition of rotation is given separately and may seem

somewhat artificial. The reason for this is rather simple: for the “unit sphere”

{±1} = S0 ⊂ R1 the geodesic distance between antipodal points is not defined,

while for all other spheres Sk ⊂ Rk+1, k > 0, it is equal to π. If we extend the

definition of the geodesic distance for the sphere S0 in the appropriate way, then
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the definition of Ω(Γ,L) would become more uniform. The similar reasons motivate

the occurrence of the factor π in the definition of the integral inflection.

Besides, in §3 we prove several results concerning average values of integral

curvatures and rotations. It turns out that they remain valid also for the last

“curvature” Kn and the hyperplanar “rotation” Ωn−1 if the factor π is properly

placed in their definitions.

1.2. Non-oscillation theorems: starting points. After all the definitions are

given, we list some known results in the spirit of the implication “bounded curva-

tures =⇒ bounded rotation”. In order to write in a uniform way the inequalities

concerning both closed and non-closed curves, we introduce the notation |∂Γ | for

the number of endpoints of the curve Γ : this number is zero if Γ is closed, 2 if Γ

simply connected etc.

1.2.1. Rotation around hyperplanes. The simplest case, in fact an elementary exer-

cise, concerns oscillation of planar curves Γ ⊂ R2 around straight lines.

Fact 1 (see, e.g., [1]).

Ω1(Γ ) 6 K1(Γ ) + K2(Γ ) + π |∂Γ |. (1.2)

The proof is based on the Rolle theorem and the following observation: if the

tangent vectors at two endpoints of the curve are parallel to the same line, then

either the integral curvature of the curve is at least π, or there should be an inflection

point.

Most other results concerning oscillation around hyperplanes are formulated un-

der assumption that the curve is hyperconvex. Perhaps, the most general among

them is a corollary from the theorem by B. Shapiro [11], see also [12]. The Shapiro

theorem is topological and concerns oscillating curves in Rn. In an obvious way,

for any curve in Rn the lower bound Ωn−1(Γ ) > πn is valid, since there always

exists a hyperplane passing through n arbitrary points of the curve. The curves

for which Ωn−1(Γ ) = πn, are called non-oscillating (for obvious reasons) and os-

cillating otherwise. Shapiro theorem asserts that if a curve is oscillating , then its

osculating frame makes in some sense a full turn in the flag space (see §2.2.3 be-

low for the exact formulation; we derive this theorem as a corollary to our main

result). Since the velocity of rotation of the osculating frame is naturally measured

by the Frenet curvatures, this observation implies the following sufficient condition

for nonoscillation.
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Theorem 1. If the curve Γ ⊂ Rn is hyperconvex and∫
Γ

√
κ2

1(s) + · · ·+ κ2
n−1(s) ds <

1
n
√

2
, (1.3)

then the curve is non-oscillating, i.e. Ωn−1(Γ ) = πn.

The proof of this theorem is given below in §4.3. Since any regular curve can

be partitioned into π−1Kn(Γ ) + 1 hyperconvex pieces, and any such piece in turn

can be subdivided into sufficiently short arcs satisfying (1.3), we conclude with the

following corollary.

Corollary 1.

Ωn−1(Γ ) 6 πn + π
√

2 n2 · [K1(Γ ) + · · ·+ Kn−1(Γ )] + n Kn(Γ ). (1.4)

This inequality, however, cannot be too accurate, since any connection between

non-oscillating arcs is lost. The main result of this paper, Theorem 2, gives a

better value (linear in n) for the coefficients (note that as n grows, the largest

coefficients in the right hand side have the order of magnitude of n2). Some other

particular results concerning oscillation of hyperconvex curves around hyperplanes,

are mentioned in [11].

1.2.2. Rotation of subspaces of codimension 2 and more. This group of results is

less numerous. Two main examples are the Milnor theorem on linking number

between closed curves and straight lines in R3 [1] and a theorem by Khovanskĭı and

the second author [6] on rotation around points.

Fact 2 (cf. Milnor [1, Theorem 3]).

∀Γ ⊂ R3 Ω1(Γ ) 6 K1(Γ ) + K2(Γ ) + π |∂Γ |. (1.5)

In fact, Milnor writes an upper estimate for the linking number between a closed

spatial curve and any straight line in R3, but his arguments prove also a more strong

result concerning the rotation, which can be derived using the averaging principles

described below, from the estimate (1.2).

The following result gives an upper bound for rotation of Γ around any point

and is valid in all dimensions.

Fact 3 (Khovanskĭı and Yakovenko [6]).

∀Γ ⊂ Rn Ω0(Γ ) 6 K1(Γ ) + π
2 |∂Γ |. (1.6)
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1.3. Formulation of the main result. The inequalities (1.2) compared to (1.5)

and (1.6) suggest that in the general case an upper bound for Ωk(Γ ) can be found

in the form of a weighted sum of integral curvatures K1(Γ ) through Kk+1(Γ ), with

a constant term added if the curve is non-closed; besides, one may hope that the

weights can be chosen independently of the dimension n of the ambient space. Our

main result claims that this hope can indeed be justified.

Let Γ ⊂ Rn be a smooth regular curve with |∂Γ | endpoints (i.e. not necessarily

connected).

Theorem 2 (Main). Oscillation of any regular curve Γ satisfies the following

inequalities:

Ω0(Γ ) 6 1
2π|∂Γ |+ K1(Γ ),

Ω1(Γ ) 6 π|∂Γ |+ K1(Γ ) + K2(Γ ),

Ω2(Γ ) 6 3
2π|∂Γ |+ 2K1(Γ ) + K2(Γ ) + K3(Γ ),

Ω3(Γ ) 6 2π|∂Γ |+ 2K1(Γ ) + 2K2(Γ ) + K3(Γ ) + K4(Γ ),

and in general for any k 6 n− 1

Ωk(Γ ) 6 1
2π(k + 1)|∂Γ |+

k+1∑
j=1

wk+1−jKj(Γ ), (1.7)

where the sequence of weights

w0 = w1 = 1, w2 = w3 = 2, wj = j − 1 for j = 4, 5, . . . (1.8)

is universal.

The inequality for Ωn−1 implies the sufficient condition for non-oscillation.

Corollary 2. A hyperconvex curve whose integral Frenet curvatures as so small as

to satisfy the inequality
n−1∑
j=1

wn−jKj(Γ ) < π, (1.9)

is non-oscillating.

This inequality is stronger than (1.3). In fact, one could well add to the left

hand side the last “curvature” and drop out the hyperconvexity assumption, since

for curves with inflections Kn(Γ ) > π.

1.4. Remarks. The inequalities (1.7) give an upper bound for the number of in-

tersections of Γ with any affine hyperplane. However, most hyperplanes inter-

sect Γ by substantially smaller number of points. In particular, a random uni-

formly distributed hyperplane passing, say, through the origin (in order to avoid
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non-compactness of the set of all affine hyperplanes), intersects Γ by at most

π−1K1(Γ ) + 1 point.

It is interesting to observe that the estimate established by Theorem 2, is stable

with respect to the dimension of the ambient space: if we fix k, then the upper

bound for Ωk(Γ ) is independent of the dimension n. This fact suggests that an

analog of Theorem 2 holds also for curves in infinite-dimensional Hilbert spaces.

The inequalities (1.7) are sharp for small k = 0, 1 and perhaps for k = 2. All the

way around, the inequality (1.3) is not sharp even for small n. From §4.3 it is rather

clear how the latter can be improved, though at the price of rather sophisticated

computations. However, one can relatively easily establish the implication

K1(Γ ) + K2(Γ ) < π
2 =⇒ Γ is non-oscillating, (1.10)

for three-dimensional hyperconvex curves (see §4.4). But even this result is inferior

to the inequality 2K1(Γ )+K2(Γ ) < π guaranteeing non-oscillation of hyperconvex

three-dimensional curves, the particular case of (1.9) for n = 3 and K3(Γ ) = 0.

The final remark concerns the choice of the weights wj in (1.8); obviously, with-

out discussing this matter it is not possible to analyze the sharpness of the inequal-

ities obtained. This choice is determined by Lemma 4 concerning roots of solutions

to linear ordinary differential equations, see §4. From the geometrical point of view

the integrand occurring in (1.3) seems to be more natural (it admits interpretation

as the angular velocity of rotation of the osculating orthogonal frame of a curve).

However, reasonably sharp estimates involving
∫

Γ
(κ2

1(s)+ · · ·+κ2
n−1(s))

1/2 ds, are

yet unavailable.

1.5. Spherical and projective curves. The main result admits reformulation

for spherical and projective curves. Recall that for any Riemannian n-dimensional

manifold Mn and any sufficiently smooth curve Γ : [0, `] → M one can define the

osculating frame vj(t) ∈ Tx(t)M , j = 1, . . . , n in the same way as for curves in

the Euclidean space, and this frame can be similarly orthogonalized with the only

exception that the last vector en(t) is defined modulo multiplication by ±1 for

non-orientable manifold M .

1.5.1. Geodesic curvatures. Denote by ∇ the operator of covariant differentiation

with respect to the natural (Levi-Civita) connexion compatible with the metric on

M . Then, assuming that the curve is parameterized by the arc length, one can

easily see that

∇e1(t)ej(t) = κ̃j−1(t)ej−1(t) + κ̃j(t)ej+1(t) j = 1, . . . , n, (1.11)
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with the standard convention that e0(t) ≡ en+1(t) ≡ 0. The functions κ̃j(t), defined

by (1.11), are called geodesic Frenet curvatures (in the non-orientable case only the

modulus of the last curvature ±κ̃n−1(t) is defined). However, the integral geodesic

curvatures K̃j(Γ ), j = 1, . . . , n, relative to M , make sense: the last one is π times

the number of points where κ̃n−1 vanishes.

We will be interested in the two simplest Riemannian manifolds:

• the sphere r ·Sn of radius r > 0, that inherits its metric from the embedding

in the Euclidean space Rn+1, and

• the real projective space Pn obtained as a quotient space of the unit sphere

Sn by identifying the opposite points ±x. The spherical metric induces the

Fubini-Study metric on Pn: length of each line is equal to π.

1.5.2. Oscillatory behavior on Sn and in Pn. For a spherical curve it makes sense

to ask how many times it can intersect an equator , the nearest analog of a hyper-

plane. For projective curves one may look for an upper bound for the number of

intersections with any projective hyperplane of codimension 1 in Pn.

The following two corollaries to Theorem 2 giving answers to these questions are

proved in §2.5.

Theorem 3. Let Γ ⊂ r·Sn be a spherical curve with the geodesic integral curvatures

K̃j(Γ ), j = 1, . . . , n of spherical length K̃0(Γ ) = |Γ |. Then Γ may intersect any

equator ( embedded sphere r · Sn−1) by no more than

1
2n|∂Γ |+ wnK̃0(Γ )/πr +

n∑
j=1

wn−jK̃j(Γ )/π (1.12)

isolated points, where wj are the same as before (1.8).

The upper bound (1.12) turns into (1.7) in the limit r → +∞, as one could

expect. As a natural corollary, we obtain a similar result for projective curves.

Theorem 4. A projective curve Γ ⊂ Pn of length K̃0(Γ ) = |Γ | intersects any

projective hyperplane Pn−1 ⊂ Pn by no more than 1
2n|∂Γ |+

∑n
j=0 wn−jK̃j(Γ )/π.

Remark . The boundary term can be incorporated in the sum of integral curvatures

without changing the law (1.8) for the weights, if we put

K0(Γ ) = c1/n|Γ |, K−1(Γ ) = π
2 |∂Γ |, (1.13)

where c = c(M) > 0 is the Gaussian curvature of the ambient manifold M in each

of the three cases, M = Rn, r ·Sn or Pn. The universal formula embracing all these
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cases will read then

π × {Number of intersections with any “hyperplane”} 6

wn+1K−1(Γ ) + wnK0(Γ ) + · · ·+ w0Kn(Γ ) =
n∑

j=−1

wn−jKj(Γ ). (1.14)

However, this formula is justified only aposteriori . It seems to be an intriguing

problem to find a direct proof of (1.14) for other classes of manifolds.

2. Demonstration of the main result

This section is the core of the paper. Two main ingredients of the proof are the

averaging lemmas for rotation and integral curvatures, belonging to the realm of

Geometric Probability (alias Integral Geometry), and a variation on the theme of

Pólya [8] on zeros of solutions of linear ordinary differential equations, that admits

reformulation in geometric terms. In this section we derive Theorem 2 from these

results. Demonstration of the two integral geometric lemmas is postponed until §3,

the Pólya theorem and its generalizations are discussed in §4.

2.1. Geometric Probability. From now on we will deal with only linear (not

affine) linear subspaces of the ambient Euclidean space Rn. By Sn−1 we denote the

standard unit sphere with the Lebesgue (n − 1)-dimensional measure dσn−1. For

p ∈ Sn−1 we denote by Rp the line spanned by p; if L ⊂ Rn is a linear subspace,

then L⊥ is its orthogonal complement, and PL : Rn → L⊥ the orthogonal projection

on L⊥ along L. If L = Rp, then we write p⊥ and Pp instead of (Rp)⊥ and PRp

respectively. Sometimes instead of L⊥ and p⊥ we will write Rn−k
L and Rn−1

p , where

k = dim L.

2.1.1. Averaging integral curvatures. The first main result means that each integral

curvature Kj(Γ ) can be restored by averaging the corresponding integral curvatures

of orthogonal projections Pp(Γ ) along a random direction. Note that Pp(Γ ) is a

hyperplanar curve, and as such possesses a complete set of integral curvatures

Kj(Pp(Γ )), j = 1, . . . , n − 1, relative to the hyperplane p⊥ (as usual, the last one

is the integral inflection of the corresponding projection).

Lemma 1.

∀j = 1, . . . , n− 1 Kj(Γ ) =
1

|Sn−1|

∫
Sn−1

Kj

(
Pp(Γ )

)
dσn−1(p). (2.1)

Here |Sn−1| stands for the (n−1)-dimensional volume of the unit sphere Sn−1 ⊂
Rn.
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Remark . The factor π was introduced in the definition of Kn for this formula

to remain valid for j = n − 1. However, the proof for this case requires separate

considerations.

Remark . The case n = 3, j = 1 (averaging property of integral curvature for

spatial curves) is known as Fáry theorem [4]. In fact, minor modifications can be

made to extend the proof of Fáry for any n (and j = 1, as before).

The case n = 3, j = 2 (integral torsion of spatial curves) was proved by Milnor

in [1]. The proof given by Milnor with only minor modifications works for any n

and j = n− 1.

The averaging property for intermediate curvatures seems to be a new result.

Remark . In general, projection of a regular curve is not a regular curve: it may

even be non-smooth, as simplest examples already show. However, from the Sard

theorem it follows that the Lebesgue measure of directions p ∈ Sn−1 correspond-

ing to “bad” projections, is zero, hence one may disregard such pathologies when

computing the average.

2.1.2. Averaging rotation. Let L be a linear subspace of dimension k 6 n− 2, and

p ∈ Sn−1 a vector on the unit sphere. Then for almost all p the linear sum L + Rp

is a (k + 1)-dimensional subspace.

Lemma 2.

Ω(Γ,L) =
1

|Sn−1|

∫
Sn−1

Ω(Γ,L + Rp) dσn−1(p). (2.2)

Remark . The factor π is introduced in the definition of Ω(Γ, ·) for hyperplanes, in

order for this equality to remain valid also for subspaces L of dimension n− 2.

As before, the fact that for a metrically negligible set of directions the subspace

L + Rp degenerates, does not affect the integral.

2.2. Flags, inflections and oscillation around hyperplanes. The second (an-

alytic) ingredient of the proof of Theorem 2 is introduced in this section. The

principal result of it is an inequality relating the number of intersections of a spa-

tial curve with an arbitrary affine hyperplane, with the number of inflection points

of orthogonal projections of this curve on a family of (linear) subspaces of all inter-

mediate directions.

2.2.1. Flags. Recall that a (complete) flag L in a linear n-dimensional space L is a

chain of embedded linear subspaces of L of increasing dimensions:

L = {Lj}n
j=0, 0 = L0 ( L1 ( L2 ( · · · ( Ln−1 ( Ln = L, dim Lj = j.
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If v1, . . . , vn is any ordered tuple of vectors in n, then the flag spanned by this

tuple is the flag whose jth subspace is spanned by the first j vectors. Any orthogonal

frame e1, . . . , en can be almost uniquely restored from the flag it spans: the map

(e1, . . . , en) 7→ (Span(e1),Span(e1, e2), . . . ,Span(e1, . . . , en)) is a covering of the flag

variety by the orthogonal group SO(n) with the discrete fiber of 2n−1 points.

2.2.2. Inflections relative to flag and the Third Principal Lemma. Let Γ ⊂ Rn be

a regular curve and L = {Lj}n
j=1, Ln = Rn, a complete flag. Denote by Γj the

orthogonal projection of Γ on Lj parallel to L⊥
j for all j = 1, . . . , n, so that Γn = Γ .

Each Γj is j-dimensional curve and as such possesses j integral curvatures Ki(Γj),

i = 1, . . . , j. The last of them is the (relative) integral inflection Kj(Γj) = πνj ,

νj = νj(Γ,L) ∈ Z+, where νj is the number of inflection points of the projection

Γj .

Remark . We have extended the notion of inflection point for parameterized “curves”

in R1: by definition, the inflection point of a “curve” t 7→ x(t) ∈ R1 is the point

where the Wronski determinant 〈v1〉 = |x′(t)| vanishes, in other words, the criti-

cal point of the map x(·) : [0, `] → R1. The “curve” is hyperconvex, if it has no

“inflections”. This convention will be adopted from now on.

Now we can formulate the main result of this subsection. Let w0, w1, w2, . . . be

the sequence of weights introduced in (1.8).

Lemma 3. If Γ ⊂ Rn is a regular curve and L = {Lj}n
j=1 a complete flag such

that the orthogonal projection of Γ on Lj has 0 6 νj = νj(Γ,L) < ∞ inflection

points, then

(1) the curve Γ intersects any affine hyperplane by no more than 1
2n|∂Γ | +∑n

j=1 wn−jνj isolated points, so that

Ωn−1(Γ ) 6 1
2πn|∂Γ |+

n∑
j=1

wn−j πνj(Γ,L); (2.3)

(2) the velocity curve Γ̇ : [0, `] 3 t 7→ ẋ(t) ∈ Rn intersects any linear hyperplane

by no more than 1
2 (n− 1)|∂Γ̇ |+

∑n
j=1 wn−jνj isolated points.

This result is a geometric version of a theorem by G. Pólya [8, 9] on zeros of

solutions of linear ordinary differential equations (1922). The proof of Lemma 3 is

given in §4 together with discussion of related topics and some historical notes.

2.2.3. Digression: Shapiro theorem. As a corollary to Lemma 3 we obtain a condi-

tion describing oscillating (i.e. non-non-oscillating) curves.
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Corollary 3. If Γ ⊂ Rn is oscillating, then for any complete flag L the projections

Γj ⊂ Lj cannot be all hyperconvex:

ν1(Γ,L) + · · ·+ νn(Γ,L) > 0. (2.4)

In fact, the assertion of Corollary 3 can be formulated more naturally, using the

notions of osculating flag and transversality of flags.

Definition 6. Two flags L and L′ = {L′
j} in the same space are transversal , if for

any pair of indices i, j such that i+ j > n, the subspaces Li and L′
j are transversal.

The flag L′ is said to be orthogonal to the flag L, if its subspaces are orthogonal

complements to the subspaces of L (naturally, taken in the inverse order): L′
j =

L⊥
n−j , j = 1, . . . , n. The flag orthogonal to L is denoted by L⊥.

If L = Rn and an orthogonal coordinate system is fixed by specifying an orthog-

onal frame e1, . . . , en, then the standard flag E = {Ej}n
j=0 is spanned by the basis

vectors. The orthogonal flag E⊥ is sometimes referred to as the antipodal flag .

Definition 7. The osculating flag LΓ (t) of a regular hyperconvex curve Γ is the

(variable) flag spanned by the osculating frame.

Remark . If a curve has inflection points, then at these points the osculating frame

does not span a flag (or, more precisely, the flag spanned by the frame, is not com-

plete), since the vectors from the osculating frame are linear dependent. However,

since we have assumed regularity of the curve, all k-dimensional subspaces of the

osculating flag are well-defined for k < n, and for k = n we assume that the last

subspace is always Rn.

From these definitions it is almost obvious that if x ∈ Γ is a point on the curve,

which becomes an inflection point of the projection Γj , then the jth subspace of

the osculating flag LΓ (x) is non-transversal to the subspace L⊥
j of the orthogonal

flag L⊥. Thus we arrive to the reformulation of Corollary 3.

Corollary 4 (Shapiro theorem [11, 12]). If a hyperconvex regular curve Γ ⊂ Rn is

oscillating, then for any complete flag L there exists at least one point x ∈ Γ such

that LΓ (x) 6t L.

In fact, this theorem is valid also for projective curves. It makes sense to point

out that Shapiro theorem generalizes to a certain extent the Rolle theorem (consider

the case planar convex curves). There are some other Rolle-type theorems, see [6, 7].

Besides, the (classical) Rolle theorem is the key tool in demonstration of Lemma 3,

see §4.
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2.3. Demonstration of Theorem 2 for hyperplanes. To prove Theorem 2 for

hyperplanes and estimate Ωn−1(Γ ), we construct a flag L = {Lj}n
j=1 in such a

way that the weighted sum of integral curvatures for the projections Γj of Γ = Γn

on each subspace Lj , 1 6 j 6 n, is bounded in terms of the weighted sum of

curvatures of the original curve. This would automatically provide upper bounds

for the corresponding integral inflections of the projections, and it remains only to

apply Lemma 3 to estimate the number of intersections.

The construction of the flag L goes by induction in codimension of the subspaces.

Let w0, w1, . . . , wn−1 be the weights (1.8), and
T (Γ ) = wn−1K1(Γ ) + · · ·+ w1Kn−1(Γ ) + w0Kn(Γ )

= wn−1K1(Γ ) + · · ·+ w1Kn−1(Γ ) + πw0νn

the weighted sum of the integral curvatures, where νn is the number of inflection

points of Γ .

The sum of the first n−1 terms admits averaging: the value
∑n−1

j=1 wn−jKj(Γ ) is

equal by Lemma 1 to the average value of the function χ(p) =
∑n−1

j=1 wn−jKj(Pp(Γ ))

on the sphere Sn−1, where Pp(Γ ) is he orthogonal projection of Γ parallel to a ran-

dom vector p ∈ Sn−1 on the hyperplane p⊥.

The function χ(p) : Sn−1 → R does not exceed its average value at some point

p ∈ Sn−1. Denote the corresponding normal hyperplane by Ln−1 = p⊥ (it will play

the role of the (n− 1)-dimensional subspace of the flag L), the projection of Γ on

Ln−1 by Γn−1 and the number of inflections of this projection by νn−1. Then

wn−1K1(Γn−1) + · · ·+ w2Kn−2(Γn−1) + πw1νn−1 + πw0νn 6 T (Γ ).

The procedure of averaging can be repeated once again, this time applied to the

truncated sum
∑n−2

j=1 wn−jKj(Γn−1), and a subspace Ln−2 ⊂ Ln−1 of codimension

1 in Ln−1 hence of codimension 2 in Rn can be found in such a way that for the

projection Γn−2 of Γ on Ln−2 one has the inequality

wn−1K1(Γn−2) + · · ·+ w3Kn−3(Γn−2) + πw2νn−2 + πw1νn−1 + πw0νn 6 T (Γ ),

where obviously νn−2 is the number of inflections of the curve Γn−2 ⊂ Ln−2.

Iterating these arguments n times, we construct all subspaces Ln−1, Ln−2, . . . ,

L2, L1 of the flag L, and for the number of inflection points of the corresponding

projections the inequality

π(wn−1ν1 + · · ·+ w1νn−1 + w0νn) 6 T (Γ ).

Applying the first assertion of Lemma 3, we conclude that the number of points

of intersection of Γ with any affine hyperplane does not exceed n|∂Γ |/2 + T (Γ )/π,
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hence the oscillation satisfies the inequality Ωn−1(Γ ) 6 1
2πn|∂Γ |+T (Γ ) = 1

2πn|∂Γ |+∑n
j=1 wn−jKj(Γ ). The proof for the codimension 1 case is complete.

2.4. Demonstration of Theorem 2 in the general case. The proof in the

general case goes by induction in the codimension of subspaces, the hyperplanar

case being the base of induction.

Suppose that the inequalities of Theorem 2 are already established for all codi-

mension c subspaces and any dimension of the ambient space (c = 1 corresponds to

hyperplanes). Take a linear subspace L of dimension k − 1 and codimension c + 1,

so that n = c + k. Now let p be a variable vector on the unit sphere in Sn−1, and

Pp be the corresponding orthogonal projection on Hp := p⊥. Then for almost all

p the projection Lp := Pp(L) ⊂ Hp has dimension k − 1, hence codimension c, so

for the projection Γp = Pp(Γ ) we know by the assumption of induction that the

(relative to Hp) oscillation satisfies the inequality

∀p ∈ Sn−1 Ω(Γp, Lp;Hp) 6 1
2πk|∂Γp|+

k∑
j=1

wk−jKj(Γp;Hp), (2.5)

where Ω(·, ·;Hp) is the oscillation around k− 1-dimensional subspace Lp ⊂ Hp and

wj are the weights introduced in (1.8).

Note that

Ω(Γp, Lp;Hp) = Ω(Γ,L + Rp; Rn), (2.6)

since both sides are by definition the angular lengths of the same curve in L⊥
p ∩Hp =

(L + Rp)⊥.

The number of endpoints |∂Γp| is the same as |∂Γ | for almost all p. After

averaging the inequality (2.5), from (2.6) and (2.2) we conclude that the left hand

side turns into Ω(Γ,L) by Lemma 2, while the average of the right hand side by

Lemma 1 and linearity is the weighted sum of integral curvatures of the original

curve Γ . Thus the inequality

Ω(Γ,L) 6 1
2πk|∂Γ |+

k∑
j=1

wk−jKj(Γ ),

is established for subspaces of codimension c + 1 as well, hence by induction Theo-

rem 2 is proved in full generality. �

2.5. Oscillation of spherical and projective curves: proof of Theorems

3 and 4. The basic case is that of curves on the unit sphere Sn−1.

Consider a regular curve Γ parameterized by the arclength. Its velocity curve

Γ̇ : t 7→ x̃(t) = d
dtx(t) belongs to the unit sphere Sn−1 ⊂ Rn. If at the end of the

proof of Theorem 2 (hyperplanar case, §2.3) we replace the reference to the first
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claim of Lemma 3 by the second one, this will result in the upper bound for the

oscillation of Γ̇ in terms of integral curvatures of the primitive curve Γ . To obtain

the proof of Theorem 3, it remains only re-compute integral curvatures of Γ in

terms of geodesic curvatures of Γ̇ .

If e1(t), . . . , en(t) is the Frenet frame for Γ , then ẽ1(t) = e2(t), . . . , ẽn−1(t) =

en(t) is the Frenet frame for Γ̇ considered as a spherical curve; to obtain the full

Frenet frame for the same curve considered as a spatial curve, one needs to add

ẽn(t) = ±e1(t), the (unitary) radius-vector of Γ̇ . However, the parameter t is not

the natural parameter on Γ̇ , since d
dt x̃(t) = d

dte1(t) = κ1(t)e2(t) = κ1(t)ẽ1(t).

The covariant derivative on a submanifold of the Euclidean space (equipped

with the induced metric), admits a simple description, see [2, Chapter 2, §3.1]: one

should take the (usual) derivative with respect to the ambient Euclidean space and

project the result orthogonally on the tangent space to the submanifold. Since the

Frenet formulas are to be written with respect to the arc length parameter s on Γ̇ ,

we arrive to the set of formulas

∇ẽ1(s)ẽj(s) = Π
(

d
dtej+1(t)

)
· dt

ds , j = 1, . . . , n− 1,

where Π = Πt stands for the orthogonal projection on the tangent subspace to the

sphere Sn−1 (at the corresponding point x̃(t)). The Frenet formulas (3.15) for the

derivatives d
dtej(t) together with the identity dt/ds = 1/κ1(s) yield immediately

∇ẽ1(s)ẽj(s) = κ−1
1 (s)Π(−κj ẽn−1 + κj ẽj+1), j = 1, . . . , n− 1,

where ẽ0(s) = x̃(s) is the radius-vector of Γ̇ and ẽn ≡ 0 by definition. The pro-

jection Π in fact leaves all right hand sides unchanged, except for j = 1, where Π

kills the term proportional to x̃(s), normal to the sphere. Comparing what remains

with the equalities (1.11), we conclude that the geodesic curvatures k̃1, . . . , κ̃n−2

can be expressed as

κ̃1(t) =
κ2(t)
κ1(t)

, κ̃2(t) =
κ3(t)
κ1(t)

, . . . κ̃n−2(t) = ±κn−1(t)
κ1(t)

. (2.7)

Since the arc length element is ds = κ1(t)dt, we arrive finally to the identities

relating Kj(Γ ) to integral characteristics of Γ̇ expressed in terms of the induced

spherical metric on Sn−1:

K1(Γ ) = |Γ̇ |, Kj(Γ ) = K̃j−1(Γ̇ ), j = 2, . . . , n (2.8)

(recall that |Γ̇ | is the length of Γ̇ ). The last equality Kn(Γ ) = K̃n−1(Γ̇ ) expresses

the fact that vanishing points of κn−1(t) and κ̃n−2(t) are the same. The reference

to the formula (1.7) completes the proof for spherical curves on the unit sphere,
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since any such curve t 7→ x̃(t) is the velocity curve of any its vector primitive

t 7→ x(t) =
∫

x̃(t) dt (note that the primitive curve needs not to be closed).

If r 6= 1, then the obvious rescaling x 7→ x/r brings the sphere r · Sn−1 into the

unit sphere. After this rescaling the length gets multiplied by 1/r, while the other

curvatures K̃j remain unchanged.

Finally, if Γ̇ ⊂ Pn−1 is a projective curve, we may consider the canonical Sn−1 →
Pn−1 which is an isometric two-sheet covering. For the preimage of Γ̇ on Sn−1

everything will be doubled, length, integral curvatures, the number of endpoints

etc, but the number of intersections with equators (hyperplanes) will also be. Thus

one arrives to the same formula for Pn−1 as for the unit sphere. �

3. Demonstration of averaging properties for curvatures and

rotations

3.1. Principal formula of Geometric Probability. The proof of the two key

lemmas, 2 and 1, is based on the main principle of Geometric Probability: k-

dimensional measure of a smooth k-dimensional submanifold M ⊆ Sn−1 can be

obtained by averaging the (k−1)-dimensional measures of its slices. More precisely,

the following identity holds for any smooth submanifold:

σk(M)
|Sk|

=
1

|Sn−1|

∫
Sn−1

σk−1(M ∩ Sn−2
p )

|Sk−1|
dσn−1(p), (3.1)

where Sn−2
p = p⊥ ∩ Sn−1 is the (n − 2)-dimensional equator orthogonal to the

direction p, σk(M) is the Lebesgue k-measure of M and σk−1(M ∩ Sn−2
p ) is the

(k − 1)-measure of the slice cut from M by Sn−2
p .

The general discussion of this fact can be found in [10]. We will need this formula

in two particular cases, where it can be justified by one-line arguments.

Proposition 1. The length |γ| of a spherical curve γ ⊂ Sn−1 is equal π times the

average number of intersections with the random equator Sn−2
p :

|γ| = π

|Sn−1|

∫
Sn−1

|γ ∩ Sn−2
p | dσn−1(p), (3.2)

which, taken into account the definitions of rotation around the origin and the

hyperplane p⊥, is the same as the identity

Ω(Γ, 0) =
1

|Sn−1|

∫
Sn−1

Ω(Γ, p⊥) dσn−1(p). (3.3)

Sketch of the proof. The proof of (3.1) for k = 1, which coincides with (3.2), is

obvious if γ is a piece of a large circle: then the integrand in the right hand side is

the function equal to 1 in a spherical sector between two meridians with the opening
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proportional to the length of γ. Hence this result is valid for spherical polygons,

and the case of a general smooth curve is obtained by approximation. �

Proposition 2. For any measurable function χ : Sn−1 → R

1
|Sn−1|

∫
Sn−1

χ(r) dσn−1(r) =
1

|Sn−1|

∫
Sn−1

dσn−1(p)

{
1

|Sn−2|

∫
Sn−2

p

χ(q) dσn−2(q)

}
. (3.4)

Sketch of the proof. The formula (3.4) coincides with (3.1) for χ being the indicator

function of a full-dimensional submanifold and k = n − 1. To justify (3.1) in this

extreme case, it is sufficient to note that the measure given by the right hand side

of (3.1) is (n− 1)-dimensional and rotational invariant. Thus it must coincide with

the Lebesgue area σn−1(·) modulo a constant factor. By taking M = Sn−1 one can

easily check that this factor is in fact equal to 1. �

3.2. Rotation around random subspaces and the proof of Lemma 2. We

start with elementary properties of rotation. In order to avoid confusion, we use

the extended notation Ω(Γ,L;L′) for the rotation of Γ ⊂ L′ around L ⊂ L′.

3.2.1. Rotation and projections. Rotation of Γ along any subspace L is equal to

the rotation around P−1(P (L)) for any projection P = Pp. This follows from the

following identity.

Proposition 3. If L ⊂ Rn is a linear subspace, p ∈ L a direction ( as usual,

identified with a point on the sphere Sn−1) and P = Pp the orthogonal projection

from Rn onto Rn−1
p = p⊥, then

Ω(Γ, L; Rn) = Ω(P (Γ ), P (L); Rn−1
p ). (3.5)

Remark . This construction can be iterated as many times, as necessary, so that

for any pair of subspaces L ⊆ L′ ( Rn we have

Ω(Γ,L′; Rn) = Ω(P (Γ ), PL(L′);L⊥). (3.6)

Assertion of (3.6) in the case L = L′ coincides with the definition of Ω(Γ,L).

Proof. Indeed, both parts of (3.5) are the angular (spherical) length of the projec-

tion of Γ onto L⊥ ⊂ Rn−1
p , since PL = PP (L) ◦ P (recall that PL : Rn → L⊥ stands

for the orthogonal projection along L). �
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3.2.2. Random one-dimensional extensions of subspaces. There are two equivalent

ways to parameterize (k + 1)-dimensional linear subspaces containing a given k-

dimensional subspace L. This implies an integral identity that will be used later.

Proposition 4. For any Γ ⊂ Rn and any L ⊂ Rn, dim L = k < n− 1,

1
|Sn−1|

∫
Sn−1

Ω(Γ,L + Rp) dσn−1(p) =
1

|Sn−k−1|

∫
Sn−k−1

L

Ω(Γ,L⊕ Rq) dσn−k−1(q), (3.7)

where, as usual, Sn−k−1
L = Sn−1 ∩ L⊥.

Proof. Note first that for almost all p ∈ Sn−1 the subspace L + Rp is (k + 1)-

dimensional, while L ⊕ Rq is always (k + 1)-dimensional for q ∈ L⊥. Obviously,

L + Rp = L⊕ R · (PL(p)) for p /∈ L, and for p uniformly distributed over Sn−1 the

normalized projection PL(p)/‖PL(p)‖ is uniformly distributed in Sn−k−1
L . �

3.2.3. Proof of Lemma 2 for zero-dimensional subspaces. Let L = {0} be a zero-

dimensional subspace. Then the assertion of Lemma 2 can be formulated as follows:

Ω(Γ, 0) =
1

|Sn−1|

∫
Sn−1

Ω(Γ, Rp) dσn−1(p), (3.8)

Substitute into (3.4) the function χ(r) = Ω(Γ, r⊥), the oscillation around the hy-

perplane r⊥. Then by virtue of (3.3) the left hand side is just Ω(Γ, 0). On the

other hand, denoting P = Pp, we have

Ω(Γ, Rp) = Ω(P (Γ ), 0; Rn−1
p ) by (3.5)

=
1

|Sn−2|

∫
Sn−2

p

Ω(P (Γ ), q⊥ ∩ Rn−1
p ; Rn−1

p ) dσn−2(q) by (3.3)

=
1

|Sn−2|

∫
Sn−2

p

Ω(Γ, q⊥; Rn) dσn−2(q) by (3.5),

which after integration over all p ∈ Sn−1 yields the right hand side of (3.4). The

proof in the case dimL = 0 is over.

3.2.4. Proof of Lemma 2 in the general case. Consider the orthogonal projection

PL : Rn → Rn−k
L = L⊥. We have

Ω(Γ,L; Rn) = Ω(PL(Γ ), 0;L⊥) by definition

=
1

|Sn−k−1|

∫
Sn−k−1

Ω(PL(Γ ), Rp;L⊥) dσn−k−1(p) by (3.8)

=
1

|Sn−k−1|

∫
Sn−k−1

Ω(Γ,L⊕ Rp; Rn) dσn−k−1(p) by (3.6)

=
1

|Sn−1|

∫
Sn−1

Ω(Γ,L + Rp; Rn) dσn−1(p) by (3.7).

Thus the assertion of Lemma 2 is proved in full generality. �
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3.3. Integral curvature of a random projection and the proof of Lemma 1.

Let Γ be a curve with an arbitrary (not necessary natural) parametrization [0, `] 3
t 7→ x(t) ∈ Rn. We start with an analytic expression for Frenet curvatures.

3.3.1. Analytic expression for curvatures. Let v1(t), . . . , vn(t) be successive vector

derivatives v1(t) = ẋ(t), v2(t) = ẍ(t), . . . , vn(t) = dn

dtn x(t). Taken together they

constitute the osculating frame.

Denote by Vk(t) = 〈v1(t), . . . , vk(t)〉 for k = 1, . . . , n the k-dimensional volume

of the tuple v1, . . . , vk:

〈v1〉 = ‖v1‖, 〈v1, v2〉 = det1/2

[
(v1, v1) (v1, v2)
(v2, v1) (v2, v2)

]
,

and in general for any k = 1, 2, . . . , n

〈v1, . . . , vk〉 = det1/2


(v1, v1) (v1, v2) · · · (v1, vk)
(v2, v1) (v2, v2) · · · (v2, vk)

...
...

. . .
...

(vk, v1) (vk, v2) · · · (vk, vk)


(obviously, (·, ·) is the Euclidean scalar product in Rn).

The Frenet curvatures κj(t), originally defined via orthogonalization of the os-

culating frame, admit the following representation:

κk(t) =
〈v1, . . . , vk−1〉 〈v1, . . . , vk+1〉

〈v1, . . . , vk〉2 〈v1〉
=

Vk−1(t) Vk+1(t)
V 2

k (t) V1(t)
,

vj = vj(t), k = 1, . . . , n− 1.

(3.9)

Indeed, let Lk = Lk(t) = Span(v1, . . . , vk) = Span(e1, . . . , ek) be the kth subspace

of the osculating flag. Since the frame {ek} is obtained from the frame {vk} by or-

thogonalization, vk = Vk

Vk−1
ek mod Lk−1. Differentiating this equality and denoting

the natural parameter by s, we obtain from Frenet formulas (3.15)

vk+1 =
d

dt
vk =

Vk

Vk−1
· dek

ds
· ds

dt
mod Lk =

Vk

Vk−1
κkek+1 |v1| mod Lk.

On the other hand, we should have vk+1 = Vk+1
Vk

ek+1 mod Lk. This implies imme-

diately that V1κk = |v1|κk = Vk+1
Vk

: Vk

Vk−1
, which coincides with (3.9).

After integration the identity (3.9) takes the form independent of the choice of

the parametrization:

Kk(Γ ) =
∫ `

0

〈v1, . . . , vk−1〉 〈v1, . . . , vk+1〉
〈v1, . . . , vk〉2

dt =
∫ `

0

Vk−1(t)Vk+1(t)
V 2

k (t)
dt. (3.10)

If P = Pp : Rn → Rn−1
p = p⊥ is the orthogonal projection along the direction p ∈

Sn−1, then by linearity the osculating frame of P (Γ ) is the frame P (v1), . . . , P (vn),

and this identity yields explicit formulas for Frenet curvatures of the projected
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curve. If we denote by LΓ (t) = {Lj(t)}n−1
j=1 the osculating flag of Γ spanned by the

frame {vj}, then for any k = 1, . . . , n− 1

〈P (v1), . . . , P (vk)〉 = sin(p, Lk) · 〈v1, . . . , vk〉 ,

P = Pp, vj = vj(t), Lk = Lk(t) = Span(v1(t), . . . , vk(t)),
(3.11)

and sin(p, Lk) is the sine of the angle between p and Lk, defined as the Euclidean

angle in Rn between p and its orthogonal projection on Lk.

3.3.2. Demonstration of Lemma 1 for k 6 n−1. Substituting (3.11) into (3.10) for

any k between 1 and n− 2, we obtain

Kk(P (Γ )) =
∫ `

0

Vk+1(t)Vk−1(t)
V 2

k (t)
· sin(p, Lk+1(t)) sin(p, Lk−1(t))

sin2(p, Lk(t))
dt.

Denoting κk = Vk+1Vk−1/V 2
k = ‖v1‖·κk and averaging this equality over p ∈ Sn−1,

we obtain

1
|Sn−1|

∫
Sn−1

Kk(Pp(Γ )) dp

=
1

|Sn−1|

∫
Sn−1

dσn−1(p)

{∫ `

0

κk(t) · sin(p, Lk+1(t)) · sin(p, Lk−1(t))
sin2(p, Lk(t))

dt

}

=
∫ `

0

κk(t) dt

{
1

|Sn−1|

∫
Sn−1

sin(p, Lk+1(t)) · sin(p, Lk−1(t))
sin2(p, Lk(t))

dσn−1(p)
}

(!)
=
∫ `

0

κk(t) dt

{
1

|Sn−1|

∫
Sn−1

sin(p, Ek+1) · sin(p, Ek−1)
sin2(p, Ek)

dσn−1(p)
}

=
(

1
|Sn−1|

∫
Sn−1

sin(p, Ek+1) · sin(p, Ek−1)
sin2(p, Ek)

dσn−1(p)
)
×

(∫ `

0

κk(t) dt

)
= constk,n−1 ·Kk(Γ ).

(3.12)

where Ej are subspaces of the standard flag E = {Ej}n−1
1 . The transformation

marked by (!), the key point of all the computation, holds by the rotational sym-

metry: any three subspaces of the flag LΓ can be simultaneously transformed into

three subspaces of any other flag by an appropriate rotation of Rn.

In order to achieve the proof, it remains only to show that the constant factor

denoted by constk,n−1 in (3.12), converges and is in fact equal to 1. This is done

by the straightforward computation in the spherical coordinates on Rn−1. For

convenience we replace the sphere Sn−1 ⊂ Rn by Sn ⊂ Rn+1 endowed with the

Euclidean coordinates p = (p1, . . . , pn+1). Our goal is to prove the identity

constk,n =
1
|Sn|

∫
Sn

sin(p,Ek+1) · sin(p, Ek−1)
sin2(p, Ek)

dσn(p) (3.13)
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The sphere can be parameterized by the angles φ1, . . . , φn as
p1 = sinφ1,

p2 = cos φ1 sinφ2,

p3 = cos φ1 cos φ2 sinφ3,

· · ·

pn = cos φ1 · · · cos φn−1 sinφn,

pn+1 = cos φ1 · · · cos φn−1 cos φn,

φi ∈ (−π/2, π/2),

∀ i = 1, . . . , n− 1,

φn ∈ (−π, π)

so that the n-volume element on the sphere has the form

dσn(p) = cosn−1 φ1 cosn−2 φ2 · · · cos φn−1 dφ1 · · · dφn−1dφn.

Introducing the notation

Bk =
∫ π/2

−π/2

cosk θ dθ =
√

π
Γ
(

n
2 + 1

2

)
Γ
(

n
2 + 1

) ,

where Γ is the Euler gamma-function, we have the identity

1 =
2π

|Sn|
Bn−1Bn−2 · · ·B2B1, (3.14)

following from the definition
∫

Sn dσn(p) = |Sn|.
The angle between a point p and the coordinate plane Ek ⊂ Rn+1 spanned by

the first k coordinate vectors, can be easily measured: the squared sine of this angle

is equal to the squared length of projection of p on the remaining (complementary)

coordinate subspace E⊥
k . In other words, we have

sin2(p, Ek) = cos2 φ1 · · · cos2 φk×

(sin2 φk+1 + cos2 φk+1 sin2 φk+2 + · · ·+ cos2 φk+1 · · · cos2 φ2
n)

= cos2 φ1 · · · cos2 φk.

Since k 6 n−1 (the case we are interested in), all cosines are positive in the domain

of parametrization, hence for the integral (3.13) we have the expression

constn,k =
1
|Sn|

∫
Sn

(cos φ1 · · · cos φk−1)(cos φ1 · · · cos φk+1)
(cos φ1 · · · cos φk)2

dσn(p)

=
2π

|Sn|

∫
· · ·
∫

−π/26φj6π/2

cos φk+1

cos φk
· cosn−1 φ1 · · · cos φn−1 dφ1 · · · dφn−1.

Now it is immediately clear that the integral converges for n − 1 > k > 1 and is

equal to the same product (3.14) with the terms Bk and Bk+1 transposed. Hence

we have proved the identity constn,k = 1, so that the assertion of Lemma 1 is proved

for all integral curvatures Kk except for the last one, the integral inflection.
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3.3.3. Averaging integral inflection. The idea of the proof is the same as in [1].

Let e1(s), . . . , en(s) be the orthogonal osculating frame of a naturally parametrized

regular curve Γ ⊂ Rn, obtained by orthogonalization of the frame v1, . . . , vn. The

last Frenet formula takes the form

ėn(s) = −κn−1(s) en−1(s). (3.15)

Consider the curve Γ ∗, parameterized as s 7→ en(s). Since ‖en(s)‖ ≡ 1, Γ ∗ is a

spherical curve, and from (3.15) it follows that

|Γ ∗| =
∫ `

0

|κn−1(s)| ds = Kn−1(Γ ). (3.16)

Applying the formula (3.2), we conclude that

Kn−1(Γ ) =
π

|Sn−1|
· |Γ ∗ ∩ p⊥| dσn−1(p).

Now it remains only to note that if at some point s ∈ [0, `] the vector en(s) is

orthogonal to the vector p ∈ Sn−1, then the curve Pp(Γ ) ⊂ Rn−1
p = p⊥ has an

inflection point at Pp(x(s)), since the projection Pp restricted on the subspace

Ln−1 of the osculating flag LΓ , is degenerate (the rank is not full). Therefore

|Γ ∗ ∩ p⊥| = Kn−1(Pp(Γ )), and taking the coefficient π into account, we obtain the

equality

Kn−1(Γ ) =
1

|Sn−1|

∫
Sn−1

Kn−1(Pp(Γ )) dσn−1(p).

The proof of Lemma 1 is complete. �

4. Pólya theorem and demonstration of Lemma 3

4.1. Roots of linear combinations. We start with a seemingly irrelevant ques-

tion. Given a tuple of sufficiently smooth functions f1(t), . . . , fn(t) all defined on a

common interval I = [α, β] ⊂ R1, how many isolated zeros may have a (nontrivial)

linear combination λ1f1 + · · ·+ λnfn on that interval for an arbitrary choice of the

coefficients λj ∈ R? We shall address this problem in periodic and non-periodic

context, the former meaning that all fj extend as (β−α)-periodic functions on R1.

To formulate the results in the uniform way, we introduce the number δ ∈ {0, 1},
equal to 0 if the functions are periodic and 1 otherwise. The periodic context cor-

responds in fact to functions defined on the circle S1 = I/(α ∼ β) rather than on

the interval I, thus in some sense 2δ = |∂I| is the number of endpoints of I.

To that end, we fix the order of functions fj and introduce (following G. Pólya

[8, 9]) n + 1 functions Wk : I → R as the Wronski determinants of the first k
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functions f1, . . . , fk:
W0(t) ≡ 1, W1(t) = f1(t), W2(t) = f ′1(t)f2(t)− f ′1(t)f2(t), . . .

Wk(t) = det


f1(t) f2(t) · · · fk(t)
f ′1(t) f ′2(t) · · · f ′k(t)
...

...
. . .

...
f

(k−1)
1 (t) f

(k−1)
2 (t) · · · f

(k−1)
k (t)

 , k = 1, 2, . . . , n.
(4.1)

4.1.1. Chebyshev systems and Pólya theorem. In the simplest case nonvanishing of

the Wronskians implies the Chebyshev property (nonoscillation) of the linear spaces

of functions.

Theorem 5 (Pólya theorem [8]). If all Wronskians W1, . . . ,Wn are nonvanishing

on I, then any linear combination
∑n

j=1 λnfn may have at most n− 1 isolated root

on I, counting with multiplicities.

4.1.2. The general case. If the Wronskians Wj have zeros on I, not vanishing iden-

tically, then Theorem 5 holds no more. However, in this case one could find an

upper bound for the number of isolated zeros occurring in linear combinations.

Denote by νj > 0 the number of zeros of Wj on I.

The simplest way is to consider partition of I by the roots of Wronskians into

δ+
∑n

j=1 νj subintervals. Then Theorem 5 can be applied to each of them, yielding

an upper bound of (n− 1)(δ +
∑

νj) for the number of zeros outside the partition

points. Adding the number of zeros eventually occurring at these points, we arrive

to the upper bound (n− 1)δ + n
∑

νj . However, this estimate can be substantially

improved. The idea of such improvement was given in [7], where a result, though

inferior to the inequality below, but still sufficient for the purposes of [7], was

proved.

Lemma 4. If νj is the number of zeros of Wj on the segment I, then the number

of isolated zeros occurring in any nontrivial linear combination of the functions

f1, . . . , fn, does not exceed

(n− 1) · δ +
n∑

j=1

wn−jνj , (4.2)

where the sequence of wj is the same as in (1.8).

Note that if ν1 = · · · = νn = 0, then the assertion of Lemma 4 coincides with

that of Theorem 5.



CURVATURES AND OSCILLATION 181

Proof. The proof is based on the fact that all linear combinations satisfy the fol-

lowing nth order linear ordinary differential equation with variable coefficients:

DnDn−1 · · ·D1 y = 0, Di =
Wi

Wi−1
∂

Wi−1

Wi
, ∂ =

d

dt
(4.3)

(this form is due to Frobenius, and a simple proof of this fact can be found in [7]).

The equation (4.3) can be transformed to the form

∆n−1 ·
1

Wn−3
·∆n−2 · · ·∆3 ·

1
W1

·∆2 ·
1

W0
·∆1 y = const ·Wn−2Wn, (4.4)

where ∆j = W 2
j · ∂ · (Wj)−1 is the differential operator transforming a function ϕ

into W 2
j (ϕ/Wj)′, and without loss of generality one may assume that const 6= 0

(otherwise the order of the equation can be further reduced). We need first to

modify the Rolle theorem to allow for functions with poles and differential operators

other than ∂.

If g : I → R is a smooth function and N(g) < ∞ the number of its zeros on I,

then ∆jg is also smooth, and

N(g) 6 N(∆jg) + νj + δ, (4.5)

where δ is 0 or 1, depending on whether g is periodic or not. Indeed, g/Wj is a

function that is smooth on νj + δ intervals between zeros of Wj . Application of ∂

may decrease the number of zeros on each interval at most by one (Rolle theorem),

and multiplication by W 2
j restores the smoothness.

If the function g itself has p poles (e.g., g is a fraction whose denominator has p

isolated zeros), then (4.5) should be replaced by

N(g) 6 N(∆jg) + νj + p + δ, (4.6)

since the number of intervals of continuity will be in this case νj + p + δ.

Let f =
∑n

j=1 λjfj be a nontrivial linear combination of functions fj . Consider

the sequence of functions occuring in evaluation of the left hand side of (4.4):

F0 = f, F1 = ∆1F0, F2 = ∆2W
−1
0 F1, F3 = ∆3W

−1
1 F2, . . . ,

Fn−2 = ∆n−2W
−1
n−4Fn−3, Fn−1 = ∆n−1W

−1
n−3Fn−2 = const ·Wn−2Wn.

The number of poles of Fk is at most νn−2 + νn−3 + νn−4 + · · · , assuming that

ν0 = ν−1 = · · · = 0.

Iterating the inequalities (4.6), we obtain the chain of (n− 1) inequalities
N(F1) > N(F0)− ν1 − δ,

N(F2) > N(F1)− ν2 − ν0 − δ,

N(F3) > N(F2)− ν3 − (ν0 + ν1)− δ,

N(F4) > N(F3)− ν4 − (ν0 + ν1 + ν2)− δ,
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and so on. Adding up all these inequalities, we arrive to the estimate
N(WnWn−2) = N(Fn−1) > N(f)− (n− 1)δ − (ν1 + ν2 + · · ·+ νn−1)

− (n− 2)ν0 − (n− 3)ν1 − · · · − νn−3.

The left hand side of this inequality is equal to νn−2 + νn by (4.4), while ν0 = 0.

Therefore the number of zeros N(f) is estimated from above by the combination

νn + νn−1 + 2νn−2 + 2νn−3 + 3νn−4 + · · ·+ (n− 3)ν2 + (n− 2)ν1 + (n− 1)δ.

The proof is complete. �

Remark . In the above proof we have assumed that the roots of Wj are disjoint

from the roots of the corresponding factor, so that each division by Wj increases

the number of intervals of continuity by νj but does not change the number of zeros.

As a matter of fact, the coincidence may happen, so that cancellation occurs, but

then the number of intervals of continuity will be smaller on each step from that

moment on. One can easily check that the overall estimate in this case will be even

better . Alternatively, one can use small perturbation to move zeros of Wj away and

then use the semicontinuity arguments for the number of zeros.

4.2. Demonstration of Lemma 3. Let L = {Lj}n
j=1 be the complete flag and

νj = νj(Γ,L) < ∞ the number of inflection points of the orthogonal projection of

Γ on Lj .

Choose the orthogonal coordinate system in such way that the frame spans

the flag L (this choice is essentially unique, modulo change of signs of the coor-

dinates). Then the curve Γ corresponds to a smooth vector-function t 7→ x(t) =

(x1(t), . . . , xn(t)). Denote fj(t) = d
dtxj(t) and consider the Wronskians correspond-

ing to the ordered tuple f1, . . . , fn.

Then vanishing of the jth Wronskian Wj corresponds to the inflection point of

the projection of Γ on Lj (the first j coordinates), see §3.3.1. Note also that the

velocity curve Γ̇ is closed if and only if the functions fj are periodic.

By Lemma 4, the number of isolated roots of any linear combination
∑n

j=1 λjfj(t)

can be at most N = 1
2 (n− 1)|∂Γ̇ |+

∑n
j=1 wn−jνj . In geometric terms this means

that the velocity vector ẋ(t) = (ẋ1(t), . . . , ẋn(t)) intersects any linear hyperplane

{
∑

λjxj = 0} ⊂ Rn at most by N points. This is exactly the second claim of

Lemma 3. But then by the Rolle theorem, the curve Γ itself can intersect any

affine hyperplane at most by N + 1
2 |∂Γ̇ | points, which is the inequality asserted by

the Lemma, since |∂Γ̇ | 6 |∂Γ | (the velocity curve Γ̇ may be closed, while Γ not,

but the inverse is impossible).

An alternative (direct) way to prove the second assertion of Lemma 3 would

be to consider the system of n + 1 functions 1, x1(t), . . . , xn(t) and expand the
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corresponding Wronskians in elements of the first row, proving thus an upper bound

for the number of intersections of Γ with any affine hyperplane λ0+
∑

λjxj = 0. �

4.3. Demonstration of Theorem 1. The idea of demonstration is straightfor-

ward: if a hyperconvex curve Γ parameterized by the arclength t ∈ [0, `] is oscillat-

ing, then its osculating flag LΓ (t) must become non-transversal to any other flag,

in particular, to L′ = LΓ (0)⊥. But LΓ (0) is in some sense “maximally transversal”

to L′, and to take a non-transversal position, LΓ (t) must make a sufficiently long

path in the flag variety. On the other hand, the velocity of the “curve” t 7→ LΓ (t)

in this variety is controlled by the instant curvatures κj(t), j = 1, . . . , n− 1, which

means that the integral curvatures cannot bee too small.

For practical reasons it is more convenient to work not in the flag variety, but

rather in its covering space identified with the orthogonal group.

Let G : I = [0, `] → SO(n), t 7→ E(t) be the associated curve: the point t is

mapped into the orthogonal matrix whose columns are the vectors ej(t) of the

orthogonalized Frenet frame. Then the Frenet formulas take the form Ė(t) =

A(t)E(t), where A(t) is an antisymmetric matrix function with the entries ±κj(t),

j = 1, . . . , n − 1, occurring on the principal sub- (resp., super)-diagonal. Without

loss of generality we can assume that E(0) is the identity matrix (the corresponding

flag is the coordinate one E).

We embed the orthogonal group SO(n) into the Euclidean space Rn2
of square

matrices with the norm ‖X‖2 =
∑n

i,j=1 x2
ij , where xij are the entries of X.

By the Cauchy–Bunyakovskii inequality, ‖AX‖ 6 ‖A‖·‖X‖. Evidently, ‖A(t)‖2 =

2κ2
1(t) + · · ·+ 2κ2

n−1(t), and ‖E(t)‖2 ≡ n, since E(t) is an orthogonal matrix.

Therefore

‖Ė(t)‖ 6
√

2n ·
√∑n−1

j=1 κ2
j (t), |G| 6

√
2n ·

∫ `

0

√∑n−1
j=1 κ2

j (t) dt, (4.7)

where |G| is the length of G in Rn2
.

On the other hand, all matrices sufficiently close to the identity matrix, corre-

spond to flags transversal to the antipodal flag E⊥. More precisely, if all upper-left

(k × k)-minors of E(t) are nonzero, then the above transversality holds. In par-

ticular, if ‖X‖ < 1/
√

n, then E(0) + X corresponds to the flag still transversal to

E⊥. Indeed, in this case for any i = 1, . . . , n we have
(∑n

j=1 |xij |
)2

6 n
∑n

j=1 x2
ij 6

n‖X‖2 < 1, and any row of the matrix E(0)+X has a dominant diagonal element.

Thus all minors are nonzero, and the required transversality holds.

In other words, we have proved that the ball {E(0) + X ∈ Rn2
: ‖X‖ < 1/

√
n}

of radius 1/
√

n centered at E(0), consists of matrices that span flags transversal to

E⊥. If the curve Γ is oscillating, then by Shapiro theorem the associated curve G
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should leave this ball, hence its length should be at least 1/
√

n. Taken into account

the inequality (4.7), we arrive to the final estimate (1.3). �

It is clear that measuring lengths in Rn2
rather than in the group SO(n) results in

the loss of sharpness. To get the best results from this approach, one should use left-

invariant metric on SO(n) and estimate the distance from E(0) to the nearest non-

transversal matrix in this metric. However, we do not want to discuss the general

case, but rather consider three-dimensional curves where similar computation is

relatively easy.

4.4. Non-oscillating curves in R3 via Shapiro theorem. As an illustration of

the Shapiro theorem (Corollary 4), we prove that a hyperconvex (non-closed) curve

with K1(Γ ) + K2(Γ ) < π
2 is non-oscillating, Ω2(Γ ) 6 3π.

Consider the osculating flag L(s) = LΓ (s). Without loss of generality we may

assume that L(0) = E (the standard flag). If the curve is oscillating, then L(s)

should become non-transversal to the antipodal flag E⊥ at some point, by virtue of

Corollary 4. This may happen in one of the two possible scenarios:

• either the tangent e1(s) intersects the plane spanned by e2(0) and e3(0),

• or the vector e3(s) intersects the plane spanned by e1(0) and e2(0).

In both cases the length of the path made by the corresponding vector on the sphere

before the intersection occurs, is at least π
2 (the spherical distance from the north

pole to the equator).

On the other hand, from Frenet formulas ė1(s) = κ1(s)e2(s), ė3(s) = −κ2(s)e2(s),

it follows that the path made by e1(s) for s ∈ [0, `], is exactly K1(Γ ), while that

made by e3(s) is K2(Γ ). Therefore the inequality K1 + K2 < π
2 excludes either

possibility, and the contradiction thus achieved proves that the curve Γ is non-

oscillating.

5. Isoperimetric inequalities on S2 and non-oscillation

In this section we consider three-dimensional hyperconvex curves, primarily the

closed ones, and prove the inequality (1.7) for Ω2(Γ ), based on a completely different

set of arguments. We will always assume that Γ is parameterized by the arc-length

s ∈ [0, `], so the velocity curve (godograph) Γ̇ : s 7→ ẋ(s) is a spherical curve. We

also return locally to the classical terminology, referring to κ(s) = κ1(s) > 0 as the

curvature and θ(s) = κ2(s) as the torsion.

As follows from the identities (2.7), the arc-length element on Γ̇ is κ(s) ds,

while the (first and unique) geodesic curvature of Γ̇ is κ̃(s) = θ(s)/κ(s). If Γ is

hyperconvex (without inflection points), then Γ̇ is geodesically convex .
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5.1. Isoperimetric inequalities on the sphere. First we consider hemispheric

convex lobes, closed piecewise smooth curves formed by a piece A of a smooth

geodesically convex curve and an arc of a large circle (equator) E, entirely belonging

to one hemisphere. Denote by α and α′ the exterior angles at the vertices of the

lobe, and let K̃(A) be the integral geodesic curvature of the arc A (integral of the

geodesic curvature k̃(s) against the arc length). Our local goal is to prove the

inequality

α + α′ + K̃(A) + 2|A| > 2π. (5.1)

Note that α + α′ + K̃(A) is the integral geodesic curvature of the entire lobe, since

K̃(E) = 0. To prove (5.1), we first note that by the spherical excess theorem

(Gauss–Bonnet formula),

α + α′ + K̃(A) = 2π − S, (5.2)

where S is the area of the lobe [2, Chapter 1, §2.7]. Now the problem is to majorize

S in terms of |A|.
The standard isoperimetric inequality between the length |γ| of a simple closed

spherical curve and S, the area bounded by this curve, has the form

|γ|2 > 4πS − S2, (5.3)

the equality being attained only if γ has a constant geodesic curvature. In a similar

way the Dido problem of finding a shortest curve with endpoints on equator, bound-

ing together with the piece of equator the largest possible area, has only constant

curvature solutions, normally crossing the equator. For the corresponding solution

A one has the isoperimetric inequality

|A|2 > 2πS − S2, (5.4)

where S is now the area bounded by the curve and the equator together. From (5.4)

it follows that within the range 0 < S 6 8
5π the length and the area are related by

the inequality

|A| > 1
2S, 0 6 S 6 8

5π. (5.5)

Unfortunately, (5.4) without additional considerations does not imply any lower

bound for |A|, if S approaches the area of the hemisphere 2π. In order to analyze

the region of large areas, we apply instead the inequality (5.3) to the closed arc

formed by A and E together: since S 6 2π (the lobe belongs to a hemisphere), the

inequality (|A|+ |E|)2 > 4πS − S2 implies

|A|+ |E| > π + 1
2S, 2

5π 6 S 6 2π. (5.6)
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Now it remains to point out that for a convex lobe |E| 6 π. Indeed, otherwise

rotating a half-equator inside the lobe while keeping its endpoints fixed, we can

obtain an inner tangency between |A| and a geodesic curve, which is impossible.

Substituting this into (5.6), we conclude that the inequality |A| > S holds on two

overlapping intervals, [0, 8
5π] and [ 25π, 2π], covering together the entire range of

admissible areas [0, 2π]. Together with (5.2) this proves (5.1).

Our next goal is to extend the inequality (5.1) for geodesically convex hemi-

spheric curves with endpoints on an equator, but eventually self-intersecting. It

turns out to be even easier.

If a curve A is self-intersecting, forming a number of “petals”, then one can break

A into (oriented) smooth pieces and re-connect them in such a way that together

with the arc E of the equator, they will form ν > 1 closed curves, only one of them

containing E (the case ν = 1 corresponds to simple A). The domains bounded by

these curves, may overlap, but in any case their areas Si will not exceed 2π, and at

least one of them will be convex disjoint from E.

The spherical excess theorem can be applied to each domain; if we add the

corresponding equalities together, then the resulting equality will take the form

α + α′ + K̃(A) = 2πν − (S1 + · · ·+ Sν).

For each domain with the area Sj and bounded by the arc of the length |Aj | (except

for one of them whose boundary whose the length |Aj | + |E|), the isoperimetric

inequality (5.3) gives the inequality |Aj |2 > 4πSj − S2
j which, since all Sj are

less than 2π, implies that |Aj | > Sj (for the exceptional domain the latter takes

the form |Aj | + |E| > Sj). Adding these inequalities together and noting that

|A1|+ · · ·+ |Aν | = |A|, we arrive to the inequality α+α′+ K̃(A)+ |A|+ |E| > 2πν.

It remains only to observe that |E| 6 2π and ν > 1 to conclude that

α + α′ + K̃(A) + |A| > 2π(ν − 1) > 2π,

which is even stronger than asserted by (5.1).

5.2. Length–curvature inequality for geodesically convex spherical curves

oscillating around an equator. Now assume that A is a geodesically convex

spherical curve intersecting some equator at n > 2 points. We show that in this

case

K̃(A) + 2|A| > π(n− |∂A|). (5.7)

To prove this, we break A into smooth pieces between subsequent intersections with

the equator; their number is n if A is closed and n−1 otherwise. Denote by αi and

α′i the exterior angles of the lobes formed by Ai together with the corresponding
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arcs of the equator. Then, as one can easily see,

αi+1 + α′i = π i = 1, . . . , n− 1

(if A is closed, then the index i is cyclical modulo n).

Apply the inequality (5.1) to each of these lobes, and add the results together.

Then, since all curvatures K̃(Ai) are of the same sign, the resulting inequality will

take the form{
πn + K̃(A) + 2|A| > 2πn, if A is closed,

α1 + α′n−1 + π(n− 2) + K̃(A) + 2|A| > 2π(n− 1), otherwise.

Since both α1, α
′
n−1 are less than π, we arrive to the inequality (5.7).

5.3. Hyperconvex curves in R3 and on S2. The inequality (5.7) is in fact the

upper bound for oscillation of spherical curves, that coincides with (1.12) for n = 2

and r = 1. To prove the inequality Ω2(Γ ) 6 2K1(Γ ) + K2(Γ ) + 3
2 |∂Γ | which is a

particular case of Theorem 2 for three-dimensional hyperconvex curves, we apply

once again the Rolle theorem to the spherical curve A = Γ̇ , as in the proof of

Theorem 2 for hyperplanes: the resulting estimate will be then

Ω2(Γ ) 6 π
2 |∂Γ |+ π|∂Γ̇ |+ 2|Γ̇ |+ K̃(Γ̇ )

6 3
2π|∂Γ |+ 2K1(Γ ) + K2(Γ )

by virtue of the formulas (2.8). �
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