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UNIMODULARITY OF POINCARÉ POLYNOMIALS OF LIE

ALGEBRAS FOR SEMISIMPLE SINGULARITIES

MAMUKA JIBLADZE AND DMITRY NOVIKOV

Abstract. We single out a large class of semisimple singularities with
the property that all roots of the Poincaré polynomial of the Lie algebra
of derivations of the corresponding suitably (not necessarily quasihomo-
geneously) graded moduli algebra lie on the unit circle; for a still larger
class there might occur exactly four roots outside the unit circle. This
is a corrected version of a theorem by Elashvili and Khimshiashvili.
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1. Formulations

1.1. Tensor product of graded algebras and their gradings. An important
invariant of an isolated singularity S given by a holomorphic germ f : (Cn, 0) →

(C, 0) is the algebra C[[x]]/( ∂f
∂x

). We will denote this algebra by A(S).
For complex isolated singularities Sj given by germs fj ∈ C[[xj ]], xj ∈ Cnj ,

j = 1, . . . , k, their direct sum S =
⊕k

j=1 Sj is the singularity given by the germ

of f(x) =
∑k

j=1 fj(xj) in C

Pk
j=1

nj , see [1]. The algebra A(S) of such a direct

sum can be naturally identified with the tensor product of algebras A(Sj) of the
summands.

Simple singularities are those without moduli, see [1] for precise definition. They
are classified by the Coxeter groups Ak, Dk and the exceptional ones E6, E7 and
E8, and are denoted by Ak, Dk, E6, E7 and E8 correspondingly. A semisimple
singularity is a direct sum of simple singularities.

Suppose that each algebra A(Sj) is endowed with a Z-grading. Then their tensor
product A(S) acquires a natural Z

k-grading.

Definition 1. For a finite-dimensional Z
k-graded algebra A =

⊕
α∈Zk Aα we define

its Poincaré polynomial PA by the equality

PA(t1, . . . , tk) =
∑

α

dim(Aα)tα1

1 . . . tαk

k .
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The Poincaré polynomial P (S) of A(S) is equal to the product of the Poincaré
polynomials P (Sj)(tj) of A(Sj):

P (S)(t) =
k∏

j=1

P (Sj)(tj), t = (t1, . . . , tk) ∈ C
k.

Lie algebras L(Sj) of derivations of the graded algebras A(Sj) inherit Z-gradings
following the convention deg(∂/∂x) = − deg(x) for all involved variables x. Simi-
larly, the Zk-grading of the algebra A(S) induces a Zk-grading on the Lie algebra
L(S) of its derivations. Let PL(Sj) denote the Poincaré polynomials of L(Sj) cor-
responding to these gradings. A theorem of Block [2] implies that the Poincaré
polynomial of L(S) is

PL(S)(t) =

[
k∑

j=1

PL(Sj)(tj)

P (Sj)(tj)

]
k∏

j=1

P (Sj)(tj).

The above Zk-gradings can produce various Z-gradings of A(S) and L(S) via
linear functionals φ : Zk → Z. In other words, one can define a Z-grading on A(S)
and on L(S) as a linear combination with integer weights wj of the Z-gradings
for Sj . The Poincaré polynomial Pφ

L (S)(t) of L(S) with respect to the resulting
grading will be just PL(S)(tw1 , . . . , twk).

For the semisimple singularities the most natural grading is the quasihomoge-
neous one. Indeed, since the functions fj defining simple singularities are quasiho-
mogeneous, their sum f =

∑
fj(xj) is quasihomogeneous as well.

That said, in this paper we follow a different choice of weights considered in [3].
It corresponds to the linear functional alluded to above given by φ(n1, . . . , nk) =
n1 + · · · + nk, or, in terms of the weights, w1 = · · · = wk = 1. This choice of
weights, together with a suitable choice of quasihomogeneous weights for simple
singularities, leads to our main result — Theorem 1 below.

This theorem can be viewed as an alternative version of Theorem 4.5 from [3].
There it is stated that, in our terms, polynomials P+

L (S) are unimodular, i. e. have
all their roots on the unit circle, for certain two classes of semisimple singularities,
i. e., the sums of simple ones.

As it turns out, this is actually not true for the semisimple singularities from the
second named class. The first counterexample occurs for the singularity D17 ⊕ E7,
as shown in our table below (note that, although some of our gradings are different,
those for D2k+1 and E7 are identical with those from [3]).

The problem lies in the proof of 4.5 in [3]. That proof involves an argument from
the proof of Proposition 4.2 of the same paper. Although the proposition itself is
correct, its proof, belonging to the first author of the present paper, contains an
erroneous claim, as pointed out by the second author (namely, it was falsely assumed
that for any two polynomials of the same degree with positive leading coefficients
which are both odd or both even and all of their roots are real and lie in the segment
[−2, 2], all roots of their sum are also real and lie in the same segment).

Thus our aim is to describe certain class of semisimple singularities for which
the statement of Theorem 4.5 from [3] holds true. This is done in our Theorem
1. As already mentioned, we choose different quasihomogeneous gradings for some
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simple singularities — namely, for Ak and D2k. This gives unimodularity of Poincaré
polynomials for Lie algebras of a class of semisimple singularities that is strictly
larger than the one corresponding to gradings considered in [3].

1.2. Two types of singularities and unimodularity of their Poincaré poly-

nomials. The quasihomogeneous gradings of algebras A(S) (and, correspondingly,
their Lie algebras L(S)) of simple singularities S = Ak, Dm and Ej (j = 6, 7, 8)
are defined by the following quasihomogeneous weights ω of variables:

Ak, k > 1 xk+1 ω(x) = 2;

Dm, m > 4 x2y + ym−1 ω(x) = m − 2, ω(y) = 2;

E6 x3 + y4 ω(x) = 4, ω(y) = 3;

E7 x3 + xy3 ω(x) = 3, ω(y) = 2;

E8 x3 + y5 ω(x) = 5, ω(y) = 3.

(1)

Proposition 1 (cf. [3]). Poincaré polynomials P (S) and PL(S) for simple singu-

larities S with respect to the above weights are:

P (Ak)(t) =
1 − t2k

1 − t2
, PL(Ak)(t) =

1 − t2k−2

1 − t2
;

P (Dm)(t) =
(1 + tm−2)(1 − tm)

1 − t2
, PL(Dm)(t) =

(1 + tm−4)(1 − tm)

1 − t2
;

P (E6)(t) =
(1 + t4)(1 − t9)

1 − t3
, PL(E6)(t) =

(1 + t4)(1 − t6) + 1 − t9

1 − t3
;

P (E7)(t) =
(1 + t3)(1 − t7)

1 − t2
, PL(E7)(t) =

(1 + t3)(1 + t)(1 − t4)

1 − t2
;

P (E8)(t) =
(1 + t5)(1 − t12)

1 − t3
, PL(E8)(t) =

(1 + t5)(1 − t9) + 1 − t12

1 − t3
.

These formulæ conform with those from [3] except for E6 and E8, as for the
latter the non-quasihomogeneous gradings are used in [3]. In these two remaining
cases, the polynomials are easily obtained by direct calculation.

We define semisimple singularities of type A ⊕ D to be the direct sums of any
number of Ak’s and Dm’s.

Theorem 1. For the above choice of weights the Poincaré polynomial P+
L (S) of

the Lie algebra of a semisimple singularity S of type A⊕D is unimodular, i. e. has

all roots on the unit circle {|t| = 1}.

For the same choice of weights the Poincaré polynomial P+
L (S ⊕E⊕l

7 ) of the Lie

algebra of the direct sum of a semisimple singularity S of type A ⊕ D and any

number l of copies of E7 is either unimodular or has exactly four roots outside the

unit circle {|t| = 1}.

Note that E6 = A2 ⊕A3 and E8 = A2⊕A4. However, the gradings of E6 and E8

in (1) differ from gradings of A2 ⊕ A3 and A2 ⊕ A4 in Theorem 1. Indeed, for the
direct sums of Ak the weights of all variables in Theorem 1 are chosen to be equal.
For the quiasihomogeneous weights the Poincaré polynomials PL(E6) and PL(E8)
are not palindromic, therefore not unimodular (see Definitions 2, 3 below).
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2. Proofs

2.1. Palindromic polynomials

Definition 2. A polynomial
∑n

k=0 aktk of degree n is called palindromic if ak =
an−k for all k.

Definition 3. A polynomial is called unimodular if all its roots lie on the unit
circle.

A real unimodular polynomial P (t) is either palindromic or becomes palindromic
after division by 1 − t.

Remarkably, Poincaré polynomials P (S) and PL(S) for singularities S = Ak, Dk

and E7 are palindromic (this is a consequence of the duality existing on the moduli
algebras) and moreover unimodular, see [3].

Any product of two palindromic polynomials and a sum of palindromic polyno-
mials of the same degree is again palindromic. Therefore the Poincaré polynomials
considered in Theorem 1 are palindromic.

Lemma 1. The function t−dP (t), where P is a palindromic polynomial of degree

2d with real coefficients, takes real values on the unit circle {|t| = 1}.

Proof. Indeed, t−dP (t) = ad +
∑d

k=1 ad−k(tk + t−k). Since tk + t−k is real on the
unit circle and ak are real by assumption, the result follows. �

Any palindromic polynomial P (t) of odd degree is a product of 1 + t and a
palindromic polynomial of even degree. Therefore the following is a corollary of the
previous lemma.

Lemma 2. Let Q =
∑ Pj

ePj

be a rational function, where Pj , P̃j are palindromic

polynomials with real coefficients, and assume that the differences deg Pj − deg P̃j

are all equal to some number 2d. Then t−dQ(t) takes real values on the unit circle

{|t| = 1}.

For such rational functions Q the function ϕ(x) = e−2dixQ(e2ix) is a real π-
periodic function on R. Moreover, since Q is real, the function ϕ(x) is even. In
fact, ϕ(x) is a rational function of the cos(kx), k ∈ Z.

Lemma 3. Let ϕ be as above and assume that ϕ has only simple poles on some

interval [a, b]. Denote by n+ (resp. n−) the number of poles of ϕ on an interval

[a, b] with positive (resp. negative) residue. Then the number of different zeros of

ϕ on [a, b] is at least |n+ − n−| − 1.

Proof. Call an interval (x1, x2) “good” if x1, x2 are two poles of ϕ with residues
of the same sign, and ϕ is continuous on (x1, x2). Evidently, ϕ has a zero in any
good interval: ϕ tends to +∞ at one endpoint, and to −∞ at another.

The number of good intervals is at least |n+ − n−| − 1. �

In fact, one can prove a stronger result.

Lemma 4. Let ϕ, n+ and n− be as above and assume that a, b are neither zeros

nor poles of ϕ. Let c be 1 if ϕ(a)ϕ(b) < 0 and 0 otherwise.
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Then the number of zeros of ϕ on [a, b] counted with multiplicities is at least

|n+ − n−| − c and differs from the latter expression by an even number.

Proof. Choose a smooth extension Φ of ϕ to S = R/(|a − b| + 1)Z ∼= S1 having
exactly c additional simple zeros and without additional poles. It defines a smooth
mapping Φ : S → RP 1 = R ∪ {∞}. Taking standard orientations and looking on
Φ−1(∞) we conclude that deg Φ = n− − n+.

Zeros of ϕ fall into three classes: zeros of odd multiplicity where ϕ increases
(denote their number by m+), zeros of odd multiplicity where ϕ decreases (denote
their number by m−), and zeros of even multiplicity. Evidently deg Φ = m+ −
m− ± c, and the claim easily follows. �

2.2. Proof of Theorem 1. The Poincaré polynomial PL(S) for S of type A⊕ D
has the following form:

P (t) =

[
k∏

j=1

P (Akj
)(t)

M∏

j=1

P (Dmj
)(t)

]
Q(t),

where Q(t) =
∑k

j=1

PL(Akj
)(t)

P (Akj
)(t) +

∑M
j=1

PL(Dmj
)(t)

P (Dmj
)(t) . All roots of the first two factors

of P lie on the unit circle, so one has to prove that all roots of Q lie on the unit
circle as well.

Note that Q(t) is a sum of ratios of palindromic polynomials and one has
deg PL(Akj

) − deg P (Akj
) = deg PL(Dmj

) − deg P (Dmj
) = −2.

Taking the table from Proposition 1 into account, we can compute ϕ(x) =
e2ixQ(e2ix):

ϕ(x) =

k∑

j=1

sin((2kj − 2)x)

sin(2kjx)
+

M∑

j=1

cos((mj − 4)x)

cos((mj − 2)x)
.

Note that ϕ is an even π-periodic trigonometric function.

Lemma 5. Residues of poles of the functions fA
kj

=
sin((2kj−2)x)

sin(2kjx) and fD
mj

=
cos((mj−4)x)
cos((mj−2)x) are negative for x ∈ (0, π/2).

Proof. Consider first fA
kj

. Let x be a pole of fA
kj

, i. e. 2kjx = nπ for some n ∈ Z.

Then the residue of fA
kj

at x is equal to
sin((2kj−1)x)
2kj cos(2kjx) .

If n is odd, then cos(2kjx) = −1, and sin((2kj − 2)x) = sin(nπ − 2x) = sin 2x,
which is positive for x ∈ (0, π/2).

Similarly, if n is even, then cos(2kjx) = 1, and sin((2kj − 2)x) = sin(nπ − 2x) =
− sin 2x, which is negative for x ∈ (0, π/2).

For fD
mj

the argument is similar. Poles of fD
mj

are at x = (π/2 + nπ)/(mj − 2).

The residue is equal to −
cos((mj−4)x)

(mj−2) sin((mj−2)x) .

For even n we have sin((mj − 2)x)) = 1, and cos((mj − 4)x) = cos(π/2 − 2x),
which is positive for x ∈ (0, π/2).

For odd n we have sin((mj − 2)x)) = −1, and cos((mj − 4)x) = cos(−π/2− 2x),
which is negative for x ∈ (0, π/2). �
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Therefore by Lemma 3 the number of zeros of ϕ on [0, π/2] is at least the number
of poles of ϕ on [0, π/2] minus 1. Since ϕ is even, the same holds for the interval
[−π/2, 0]. We conclude that the number of different zeros of ϕ(x) on (−π/2, π/2)
is at least the number of its poles on (−π/2, π/2) minus 2 (note that ϕ(x) has no
poles at 0 and ±π/2).

Equivalently, the number of zeros of Q on the unit circle is at least the number
of its poles on the unit circle minus 2.

The rational function Q has a double zero at infinity. Therefore the number of
all finite zeros counted with multiplicities is equal to N −2, where N is the number
of poles of Q counted with multiplicities. But the poles of Q are simple and lie on
the unit circle. Therefore the number of zeros of Q on the unit circle is already at
least N − 2, i. e. the maximum possible. We conclude that all zeros of Q are on the
unit circle (and they are all simple).

The case of S ⊕E⊕l
7 : The Poincaré polynomial PL(S ⊕E⊕l

7 ) in Theorem 1 has the
following form:

P =

[
(P (E7)(t))

l
k∏

j=1

P (Akj
)(t)

M∏

j=1

P (Dmj
)(t)

]
Q(t),

where Q = l PL(E7)(t)
P (E7)(t)

+
∑k

j=1

PL(Akj
)(t)

P (Akj
)(t) +

∑M
j=1

PL(Dmj
)(t)

P (Dmj
)(t) .

Taking Proposition 1 into account, we see that the real function ϕ(x) = Q(e2ix)
has the form

ϕ(x) = l
sin 4x cos x

sin 7x
+

k∑

j=1

sin((2kj − 2)x)

sin(2kjx)
+

M∑

j=1

cos((mj − 4)x)

cos((mj − 2)x)
.

Again, the function ϕ is even and π-periodic.
The function fE7 = sin 4x cos x

sin 7x has 3 poles in the interval [0, π/2] at points kπ/7,
k = 1, 2, 3. The residues are negative at π/7, 2π/7 and positive at 3π/7.

Therefore by Lemma 3 the number of zeros of ϕ on the interval (0, π/2) is at
least the number of poles of ϕ on this interval minus 3.

Let us apply Lemma 4 to ϕ and [0, π/2]. First, ϕ(0) = l ·4/7+
∑ kj−1

kj
+M > 0.

Also, ϕ(π/2) = −
∑ kj−1

kj
+

∑
lim

x→π/2

cos((mj−4)x)
cos((mj−2)x) < 0, since lim

x→π/2

cos((mj−4)x)
cos((mj−2)x) is

either −1 or −m−4
m−2 depending on whether mj is even or odd. Therefore the number

c in Lemma 4 is equal to 1.
We conclude that the number of zeros of ϕ on the interval (0, π/2) differs from

the number of poles of ϕ on this interval by an odd number.
Again, since ϕ is even, the number of different roots of Q on the unit circle is at

least the number of its poles on the unit circle minus twice an odd number.
As before, Q has a double zero at infinity, and does not have poles outside the

unit circle. Therefore the total number of zeros of Q counted with multiplicities is
equal to the number of poles of Q lying on the unit circle minus 2. Subtracting the
zeros lying on the unit circle we get that the number of zeros not lying on the unit
circle is either 4 or 0.
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2.3. Final notes. Of course one would like to have more conceptual proof of the
above theorem, e. g. by relating to a semisimple singularity some naturally defined
unitary operator whose characteristic polynomial would coincide with the Poincaré
polynomial of the corresponding Lie algebra.

Results of some numerical computations reproduced in the table below show
that for the Poincaré polynomials of Lie algebras corresponding to S ⊕ E⊕l

7 both
possibilities mentioned in Theorem 1 are indeed realised. That is, there might occur
4 non-unimodular roots, and there might be none too.

Number of roots outside the unit circle for

k Ak ⊕ E7 D2k ⊕ E7 D2k+1 ⊕ E7

2 0
3 0 0
4 0 0 0
5 0 4 0
6 0 4 0
7 0 4 0
8 4 0 4
9 4 0 4

10 4 0 4
11 4 0 4
12 0 4 0
13 0 4 0
14 0 4 0
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