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We prove a complex analytic analogue of the classical Rolle theorem asserting that the number of zeros
of a real smooth function can exceed that of its derivative by at most 1. This result is used then to obtain
upper bounds for the number of complex isolated zeros of :

(1) functions defined by linear ordinary differential equations (in terms of the magnitude of the
coefficients of the equations) ;

(2) elements from the polynomial envelope of a linear differential equation with an irreducible
monodromy group (in terms of the degree of the envelope) ;

(3) successive derivatives of a function defined by a linear irreducible equation (in terms of the order
of the derivative).
These results generalize the bounds from [2, 5, 6] that were previously obtained for the number of real
isolated zeros.

1. Introduction

1.1. Zeros of functions defined by linear ordinary differential equations with

holomorphic coefficients

Let L be an ordinary linear differential operator with rational coefficients,

L¯ ¦n­a
"
(t) ¦n−"­I­a

n−"
(t) ¦­a

n
(t), where t `#, ¦¯

d

dt
, a

k
`#(t),

and Σ
L
Z#P" is its singular locus (the polar set for the coefficients with the point

t¯¢ added if, in the chart t*¯ 1}t, the point t*¯ 0 is singular). Solutions of the

linear ordinary differential equation Lu¯ 0 are analytic in #P"cΣ
L
, multivalued

functions. In particular, if all coefficients a
k

are constant, then any solution is a

quasipolynomial Σ
j
p
j
(t) exp λ

j
t for p

j
`#[t], λ

j
`#. There are many known results

concerning the number and position of zeros of quasipolynomials, starting from the

Descartes rule ; see, for example, [4] for the real case when p
k
`2[t] and λ

j
`2, and [8,

9] for the general complex case when both the exponents λ
j
and the coefficients of the

polynomials p
j
can be nonreal. Results concerning equations with variable coefficients

are less known. Our primary objective is to generalize the results from [2, 3] and [5,

6] to the complex case.

N. Throughout this paper we use the following notions and notation. If

AZB is a pair of subsets of the complex plane #, then A B means that the distance

between A and #cB is strictly positive. We denote this distance (the width of the gap

BcA) by gap(A,B).

We call a bounded subset AZ# a closed cur�ilinear polygon (in short, a closed

CP-gon), if A is the closure of its interior Ag , and this interior is an open connected
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simply connected subset (topological disk) whose boundary is piecewise smooth

(hence of finite length). An open CP-gon is the interior of a closed CP-gon.

The length of a piecewise smooth curve Γ is denoted by F(Γ). We say that K U is

a (properly) nested pair, if K U are CP-gons (and, of course, gap(K,U )" 0).

For any open bounded set U denote by !(U ) the space of functions holomorphic

in some open neighbourhood of the closure Ua . For a function f `!(U ) we denote

M
U
( f )¯ sup

t`U
r f (t)r¯max

t`¦U
r f (t)r.

Finally, we put ln
+
x¯max (lnx, 0).

LetK 2beacompact real segmentandUanopenCP-gonsuch thatK U #cΣ
L
.

Assume that L is an operator with real rational coefficients a
k
(t) `2(t), and denote by

sLs
U

the magnitude of the coefficients of the operator L :

sLs
U

¯ max
k=",

…,n

M
U
(a

k
)¯ max

k=",
…,n,

t`Ua

ra
k
(t)r.

In [2] it was proved that there exist a constant β¯ β(K,U ) depending only on the

relative positions of the sets K and U, such that the number of isolated zeros in K of

any solution of the equation Lu¯ 0, is at most β[(sLs
U
­n), provided that u is real

on K. In this paper we show that this result in fact holds without any realness

assumption.

T 1. Let K U be two CP-gons. Then for any linear differential operator

L¯ ¦n­Σn

k="
a
k
(t) ¦n−k with a

k
`!(U ), there exists a constant β¯ β(K,U ) such that

any solution of the equation Lu¯ 0 can ha�e at most β[(sLs
U
­n ln n) complex isolated

zeros in K.

1.2. Polynomial en�elopes of linear differential operators

As before let Lu¯ 0 be a linear ordinary differential equation with rational

coefficients. Choose an arbitrary fundamental set of solutions f
"
(t),…, f

n
(t) for this

equation, and let d be a natural number. The polynomial d-en�elope of the operator

L is defined as the linear space of combinations of the form

3
n

j="

3
n−"

k=!

p
jk
(t) f (k)

j
(t) for p

jk
`#[t], deg p

jk
% d.

There are several situations when polynomial envelopes appear naturally.

It can be shown that any complete abelian integral (that is, the integral of a polynomial

1-form ω¯P(x, y) dx­Q(x, y) dy over closed level curves of another polynomial

H¯H(x, y)), after multiplication by an appropriate polynomial, belongs to the

polynomial d-envelope of a certain Fuchsian differential operator with d¯O(degω) ;

see [10].

Another situation in which the polynomial envelopes appear is iteration of

differential operators. Let f (t) be any function analytic in some open neighbourhood

of a compact set K. Let n
k
be the number of isolated zeros of the kth derivative f (k)(t)

in K. How rapidly can the sequence n
k

grow as k!¢? If the function f were a
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solution to some linear differential equation Lf¯ 0 of order n with rational

coefficients, then clearly

f (k) ¯ 3
n−"

l=!

r
kl

f (F ) for r
kF `#(t).

The same happens if, instead of iterating the operator ¦, we take any other differential

operator D with rational coefficients. After getting rid of the common denominators

of all coefficients r
kl

one arrives at an element from the polynomial envelope (the

corresponding order d is yet to be determined) of L.

One of the main problems considered in this paper is the problem of distribution

of zeros in polynomial envelopes. More precisely, we fix the operator L and a

compact subset K #P"cΣ
L
and try to place an upper bound on the maximal number

of complex isolated zeros, which an arbitrary function from the polynomial d-

envelope of L may have in K as d!¢.

It appears that the growth of the number of zeros in polynomial envelopes

depends on the choice of the operator L. Indeed, if L is an equation with constant

coefficients and all the roots of the characteristic equation are real, then on any real

segment K a real function from the polynomial d-envelope can have at most O(d )

zeros (since such a function is a quasipolynomial).

A linear differential equation Lu¯ 0 with meromorphic coefficients defines a

complex linear representation of the fundamental group π
"
(#cΣ

L
) in the linear space

of solutions of that equation (given by analytic continuation of solutions). The

equation is said to be irreducible if this representation is irreducible. For Fuchsian

equations there exists an equivalent algebraic condition: L cannot be represented as

a nontrivial composition of two differential operators of strictly lower order with

rational coefficients, see [6].

If L is an irreducible operator with real coefficients, then it was proved in [3] that

for any compact real segment K 2cΣ
L

the number of zeros in the polynomial d-

envelope is at most double exponential in d as d!¢ : this number is at most

exp exp ch d, where ch ¯ ch (K,L)!¢ is a constant depending only on K and L. Later in

[5, 6] this estimate was improved to a simple exponential in d (as in Theorem 2 below

but for the real case only).

A. Khovanskiı3 , extending the ideas of G. Petrov [7], proved quite recently that

for an arbitrary Fuchsian equation with only real characteristic exponents at every

singular point of L, the number of isolated zeros in the polynomial d-envelope of L

is at most linear in d on any segment K, provided that we consider only functions

which are real on K (unpublished).

Our principal result is the following theorem, which gives a much weaker estimate,

but without any assumption on the types of singular points.

T2. If theoperatorL is irreducible, then for any compact subsetK #P"cΣ
L

there exists a finite number c¯ c(K,L), depending only on K and L, such that any

function from the polynomial d-en�elope of L can ha�e at most exp (cd ) complex isolated

zeros in K as d!¢.

As a corollary, we obtain an upper bound for the number of zeros of successive

derivatives of functions defined by irreducible differential equations.
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T 3. If a function f satisfies an irreducible equation Lu¯ 0 with rational

coefficients, then for any subset K #P"cΣ
L

there exists a finite constant c«¯
c«(K,L) such that the deri�ati�e f

d
¯ f (d)(t) can ha�e at most exp (c«d ) complex isolated

zeros on K for all large natural d.

1.3. Complex Rolle theorem

The proof of the simple exponential estimate in [6] is based on a number of

arguments, some of them complex analytic, others completely real. Among the latter,

the Rolle theorem is an important ingredient of the proof.

Let K be a real interval or segment and f :K!2 a real analytic function. Denote

by N
K
( f ) the number of isolated zeros of f on K, counted with their multiplicities.

Then the Rolle theorem asserts that

N
K
( f «)&N

K
( f )®1. (1.1)

If f¯ u}� is a meromorphic function on K (the ratio of two real analytic functions),

then the Rolle theorem in the above form can be applied to each interval of continuity

of f, thus yielding the inequality

N
K
( f «)&N

K
( f )®N

K
(�)®1. (1.2)

If f, g :K!2 are real analytic functions, then the following trivial equality holds:

N
K
( fg)¯N

K
( f )­N

K
(g).

Clearly, the first two inequalities (related to the Rolle theorem) do not admit a

straightforward generalization for nonreal functions. In [8, 9] M. Voorhoeve found a

very elegant generalization (or rather a substitute) for the number of isolated zeros of

f in K : he constructed an index VΓ( f ) which behaves very much like the number of

zeros, but for which the Rolle inequality holds despite the fact that f is no longer real-

valued. More precisely, instead of the number of complex isolated zeros, which is

equal to the index #Γ d}dtArg f (t) dt on the boundary Γ of an infinitesimally thin

neighbourhood of K¯ [α, β], Voorhoeve considers the total variation of the argument

function,

VΓ( f )¯,
Γ
) d

dt
Arg f (t)) rdtr¯ 2& β

α

r Im( f «}f )r dt.

Then VΓ( f «)&VΓ( f )®π and rVΓ( f )®VΓ(g)r%VΓ( fg)%VΓ( f )­VΓ(g), see [8]. These

results were then applied to an investigation of the distribution of zeros of

quasipolynomials without any realness assumption.

However, the index VΓ( f ) cannot easily be computed for classes of functions f

other than quasipolynomials and for boundaries of general domains in #.

Now let K be a closed CP-gon with boundary Γ¯ ¦K and suppose that f `!(K ).

We construct in §2 below another index, similar to the number N
K
([), which is well

defined for complex valued functions and which will exhibit a similar behaviour. This

index requires not one but rather two sets.

Let UZ# be an open CP-gon with boundary Γ, and K U a compact subset of U

(at a positive distance from Γ).
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D. The Bernstein index of an analytic function f `!(U ) with respect to

the pair of sets K U, is the number

B
K,U

( f )¯ ln
M

U
( f )

M
K
( f )

& 0 (1.3)

(recall that M
X
( f ) is the maximum modulus of f on the closure of Xa ). For f3 0 we

put B
K,U

( f )¯ 0 by definition.

This index (modulo a constant factor depending only on the geometry of the pair)

yields an upper estimate for the number of complex isolated zeros of f in K, as the

following simple result shows.

G J  [2]. For any compact subset K U of a CP-gon

U there exists a finite number γ¯ γ(K,U )!¢ such that the number N
K
( f ) of complex

isolated zeros of f in K admits an upper estimate of the form

cf `!(U ) N
K
( f )% γ(K,U )B

K,U
( f ). (1.4)

The Bernstein index can be considered as a reasonable substitute for the number

of complex zeros or the degree of a polynomial (in fact, for polynomials the Bernstein

index is asymptotically equivalent to the degree, see below). In particular, the

Bernstein index is ‘almost additive’ with respect to multiplication. On the other hand,

the following easy statement (proved in §2) shows that unlike the index N
K
([), the

Bernstein index of a function and its derivative are related by an inequality similar to

(1.1).

T4 (GeneralizedRolle theorem). LetK Ubeapair ofCP-gons (hence the

interior Kg is nonempty) and let K « K be a closed CP-gon with gap(K «,K )" 0. Then

there exists a constant ρ¯ ρ(K «,K,U )!¢ such that

cf `!(U ) B
K «,U

( f «)&B
K,U

( f )®ρ(K «,K,U ). (1.5)

The constant ρ can be described in geometric terms as follows:

ρ(K «,K,U )% 1­ln
+
F(¦K )­ln

+
F(¦U )­2 ln

+
(gap(K «,K ))−".

The property (1.2) can also be generalized for the Bernstein index. All these results

are gathered in §2 below.

1.4. Further generalizations

Theorems 1 and 2, as they are formulated above, are the simplest versions ; in fact,

many assumptions may be essentially relaxed. For functions determined by

differential equations, one may allow for singularities of the equation, provided that

the solution f (t) is analytic. The same arguments as in [2] allow us to deduce the

following result from Theorem 1.
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T 1«. Let K U be a pair of sets, as in Theorem 1, and let

L¯ a
!
(t) ¦n­a

"
(t) ¦n−"­I­a

n−"
(t) ¦­a

n
(t)

be a differential operator with analytic coefficients a
k
`!(U ), so that Σ

L
¯²a

!
(t)¯ 0´.

Assume that M
K
(a

!
)& 1 (one may always achie�e this by rescaling L*µL for µ `#).

Then any analytic solution f `!(U ) of the equation Lu¯ 0 can ha�e at most (sLs
U
­n)ν

complex isolated zeros in K, where ν¯ ν(K,U ) is a finite constant depending only on the

pair K, U.

The second result also admits a generalization. Let UX# be an arbitrary open set

with fundamental group G¯π
"
(U, E), and /(U ) the ring of functions holomorphic

(and single-valued) in U : for functions from /(U ) we do not specify any boundary

behaviour. Then the noncommutative ring $(U )¯/(U ) [¦] of differential operators

with coefficients in /(U ) is defined in the natural way. A complex vector

representation of the fundamental group G can be associated with each operator, and

an operator L `$(U ) is said to be irreducible if this representation is irreducible. In

the same way as before, the polynomial envelope of L can be defined.

T 2«. If L is a unitary irreducible operator in $(U ) and K U an arbitrary

compact set, then the number of isolated zeros of any function from the polynomial d-

en�elope of L in K can be at most exp(cd), where c(K,L,U )!¢ is a finite constant.

Reduction from Theorem 2 to Theorem 2« for the real case was explained in [6] ;

the same arguments (but with Theorem 4 replacing the Rolle lemma) also prove the

complex result.

In [5, 6] it was noted that the irreducibility condition can be relaxed to a certain

extent. This remark remains valid for the complex case as well ; and the proof

from [6], after obvious modifications, establishes the following result. An operator

L `#(t) [¦] is said to be essentially irreducible [6], if it can be factored (in this ring)

as

L¯L*aP
k
aP

k−"
aIaP

#
aP

"
for P

i
`#(t) [¦] with ordP

i
¯ 1, (1.6)

and the factor L* is irreducible in the original sense.

T 3«. If f satisfies the equation Lf¯ 0, where the operator L `#(t) [¦] has

rational coefficients, then for any compact K #cΣ
L

we ha�e

N
K
( f (d))% exp(c«d) for some c«¯ c«(K,L)!¢.

2. Bernstein index and a complex analogue of the Rolle theorem

In this section we develop the theory of the Bernstein index and prove the complex

Rolle theorem in general settings. As already noted in §1, this index is a generalization

of the degree of a polynomial. The choice of the term ‘Bernstein index’ is motivated

by the following form of the Bernstein inequality.

B  (see [1, p. 113]). Let K¯ [®1, 1] be the standard segment

and U¯²t `# ; rt®1r­rt­1r% 2R´ for R" 1, the ellipse with foci at ³1. Then for

any polynomial p of degree d one has B
K,U

(p)% d[lnR, and this bound is sharp.
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From the definition of B
K,U

([) it follows immediately that this index is a zero order

homogeneous functional : B
K,U

(λf )¯B
K,U

( f ) for any f and any complex λ1 0. Thus

without loss of generality we may rescale any function by multiplying it by an

appropriate constant.

2.1. Lower bounds for analytic functions

Let ZZ# be an arbitrary bounded subset. Consider all finite coverings of Z by

discs, and denote by rZ r the minimal sum of diameters of disks (the minimum, or

rather infimum, is taken over all finite coverings). Let KXU be a compact subset of

an open CP-gon U, and f `!(U ) a nonzero analytic function. Without loss of

generality we may rescale f in such a way that M
U
( f )¯ 1. For any ε" 0, consider the

set Zε( f )¯²t `U : r f (t)r% ε´ : then Z
!
( f ) is a finite union of points, hence rZ

!
( f )r¯ 0,

and Z
"
( f )¯U.

L 1 [3]. For any open CP-gon U and any K U there exist two finite constants

α¯α(K,U ), β¯ β(K,U ) depending only on the pair K U such that for any function

f `!(U ) and any positi�e h" 0 one can find a finite union D
h
of disks with the sum of

diameters less than h so that

min
t`KcDh

r f (t)r& 0MK
( f )

M
U
( f )1α+βln+("/h)

. (2.1)

C. For any pair K U as abo�e, there exists a pair of finite constants

C¯C(K,U ) and ν¯ ν(K,U ), depending only on the geometry of the pair, such that

cf `!(U ) rZε( f )fK r%Cε("/νd) for d¯B
K,U

( f ). (2.1*)

Proof of the Corollary. Expressing h in terms of ε from the inequality (2.1) and

substituting M
U
( f )}M

K
( f )¯ exp d, we arrive at the required form.

R. If f has a zero of multiplicity d at the origin, then locally the set of

those t for which r f (t)r% ε is a slightly distorted disc of diameter Cε"/d. The inequality

(2.1*) is a globalization of this observation. The upper bound for rZε( f )r means that

an analytic function with a bounded Bernstein index cannot be uniformly too small

on ‘ large’ subsets of K.

2.2. Properties of the Bernstein index

By definition, the Bernstein index (as a functional !(U )!2) depends on the

choice of the nested pair (K,U ). This dependence is monotonic : if K «ZK and U «ZU,

then

B
K «,U

([)&B
K,U

([)&B
K,U «([).

The following result indicates that the Bernstein index, when considered modulo

a finite factor, is independent of the choice of the inner compactum K provided that

rK r" 0.
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L 2. If K
i

U for i¯ 1, 2, are two nested pairs, and rK
i
r" 0, then the

corresponding Bernstein indices are equi�alent as functionals on !(U ) : there exists a

finite strictly positi�e constant c depending only on the geometry of the sets K
"
,K

#
,U,

such that

c[B
K

"
,U

([)%B
K

#
,U

([)%
1

c
[B

K
"
,U

([).

Proof. Let K¯K
"
eK

#
. Then clearly K U, and for an arbitrary f `!(U ) with

M
U
( f )¯ 1 we have d

i
¯B

Ki,U
( f )& d¯B

K,U
( f ). Then for ε¯ "

#
rK

#
r, any finite union

of disks with the sum of diameters less than ε cannot cover K
#
, so by Lemma 1 the

inequality M
K

#

( f )&M
K
( f )α+βln"/

ε holds; see (2.1). Since M
K
( f )¯ exp(®d ), we have

M
K

#

( f )& exp(®cd ), where c¯α­β ln (1}rK
#
r)­ln 2, so finally

d
#
% ln

1

exp(®cd )
¯ cd% cd

"
.

Later on we shall always implicitly assume (unless stated otherwise) that all nested

pairs K U are pairs of CP-gons; the condition rK r" 0 will then be automatically

satisfied. Since we have freedom in the choice of K, this is not a serious restriction.

2.3. Complex Rolle theorem in the simplest case: demonstration of Theorem 4

As usual, we consider an arbitrary f `!(U ), this time scaled so that M
K
( f )¯ 1.

Take a simple contour Γ¯ ¦K encircling K « : clearly, dist(K «,Γ)& gap(K «,K ). Then

by the Cauchy integral formula, for any point t `K « we have

r f «(t)r¯ ) 1

2πo(®1),Γ

f(ζ ) dζ

(t®z)#)% M
K
( f )[F(Γ)

2π gap#(K «,K )
% "

#
F(¦K )[gap−#(K «,K ).

On the other hand, if we take any path Γ« connecting K and Γ# ¯ ¦U (the length

of such path can be made less than F(¦U )) and integrate the differential form df (t)¯
f «(t) dt along the union of two arcs Γ«eΓ# , then (since the maximum of M

U
( f ) is

achieved somewhere on Γ# ), we have

M
U
( f )%M

K
( f )­(F(Γ«)­F(Γ# ))[M

U
( f «)% 1­2F(¦U )[M

U
( f «).

From this inequality we conclude (since expx®1& exp(x®1) for all x& 1) that

B
K «,U

( f «)¯ ln
M

U
( f «)

M
K «( f «)

& ln 0gap#(K «,K ) (expB
K,U

( f )®1)

F(¦K ) F(¦U ) 1&B
K,U

( f )®ρ(K «,K,U ),

if we put ρ¯ 1­2 ln
+
gap−"(K «,K )­ln

+
F(¦K )­ln

+
F(¦U ). This proves the inequality

(1.5) for all f with d¯B
K,U

( f )& 1. For d! 1 the inequality is valid automatically,

since B
K «,U

( f «) is always nonnegative.

R. All inequalities concerning the Bernstein index are meaningful for

large values of that index. Thus we shall not discuss specially the case of small d any

further.
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2.4. Bernstein index of a product: subadditi�ity

Let f
"
,…, f

n
`!(U ) be analytic functions and ν

"
,…, ν

n
natural numbers.

L 3. For any nested pair K U with rK r" 0 there exist two finite numbers

a(K,U ), b(K,U ) such that for any collection of f
j
and ν

j
`. we ha�e

B
K,U

( f ν
"

"
I f ν

n
n
)% (a­b ln n)3

n

j="

ν
j
B

K,U
( f

j
).

Proof. Set d
i
¯B

K,U
( f

i
), assume that M

U
( f

i
)¯ 1 and let f¯Π

j
f ν

j
j
. Take any

positive ε! rK r}n and apply the basic lower estimate (2.1) to each function; our

scaling condition implies then that there exists a point t `K, at which all lower

estimates of the type (2.1) for all f
i
hold simultaneously, hence

M
K
( f )&0

j

M
K
( f ν

j)α+βlnn−lnrK r &0
j

exp (ν
j
d
j
(a­b ln n)),

if we put a¯α®ln rK r, b¯ β. But since M
U
( f )%Π

j
M

U
( f

j
)¯ 1, we have immediately

the upper estimate for B
K,U

( f ).

C. cf, g `!(U ), B
K,U

( fg)% const(K,U ) (B
K,U

( f )­B
K,U

(g)).

2.5. Multiplication and Bernstein index

The previous assertion gives an upper estimate for the Bernstein index of the

product of two functions. The assertion of the corollary is symmetric with respect to

f and g. However, in order to formulate the inverse inequality (the lower bound for

the Bernstein index of a product) it is natural to consider the ‘differential operator’

R
g
: f* g[f of zero order.

Assume that the function g is analytic in the closure of a larger CP-gon VZ# :

g `!(V ) and U V.

L 4. Let U « U be an intermediate CP-gon: K U « U. Then there exists a

constant θ¯ θ(U «,U,V )!¢ such that

cf `!(U ) B
K,U

( fg)&B
K,U «( f )®θ(U «,U,V )B

U,V
(g). (2.2)

The constant θ¯ θ(U «,U,V ) admits the following upper estimate:

θ(U «,U,V )%α(U,V )­β(U,V ) ln
+
(gap−"(U «,U )).

The proof is based on the following simple geometrical argument.

L 5 (Thick belt lemma). Suppose that K U is a pair of closed CP-gons and

gap(K,U )¯ h. Then for any set ZZ# with rZ r! h}2 one can construct a closed simple
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contour (a topological circle) ΓZU such that K lies inside the closure of the domain

bounded by Γ and ΓfZ¯W. Moreo�er, Γ can be chosen piecewise smooth and F(Γ)

% F(¦U )­πh.

In other words, there exists an intermediate CP-gon V with KZVZU, whose

border Γ¯ ¦V is disjoint with Z.

Z

U

V

K

¡

¡1

U

K

D ¡′

(a) (b)

F. 1. (a) Avoiding one disk D.
(b) Construction of a path inside the thick belt (see the proof of Lemma 5).

Proof of Lemma 5. It is sufficient to prove this lemma when Z is a finite union

of disks with the sum of diameters less than 3h}4. Set Γ
!
¯ ¦U. The proof goes by

induction in the number of disks.

If there is only one disk D, then either ¦DfΓ
!
¯W and hence Γ

!
satisfies all

requirements and there is nothing to prove, or one may take the concentric disk D«
of radius arbitrarily close to that of D, and this will intersect Γ

!
transversally ; hence

the boundary Γ
"

of the union (#cU )eD« will be piecewise-smooth. Clearly, the

distance from Γ
"

to K will be arbitrarily close to h®diamD« and

F(Γ
"
)% F(Γ

!
)­πdiamD«.

Iterating these arguments, we arrive at the assertion of the lemma.

R. Assume that K contains a disk D of diameter h" 0. Then one can, in

addition to the contour Γ, construct a path (a simple arc) Γ« connecting K with Γ and

avoiding Z ; the length of this arc will be at most "

#
F(¦U ).

Indeed, take all rays beginning at all points of the small disk D and parallel to

some direction in the plane. Then all of these rays will meet the boundary ¦U and

hence the contour Γ, and the distance from the beginning of each ray to the point of

intersection will be at most "

#
F(¦U ). Since rZ r! h, not all rays can intersect Z, hence

there exists a segment Γ« with one endpoint in D, another endpoint on Γ and avoiding

Z.

Proof of Lemma 4. Without loss of generality we may assume that f and g are

scaled so that M
K
( f )¯ 1 and M

U
(g)¯ 1 respectively. By the basic lower estimate

(2.1), one may choose a set ZZV with rZ r! ε¯ gap(U «,U ) such that outside this set

the multiplier g admits the lower estimate:

ct `UcZ rg(t)r& exp(®θB
U,V

(g)),

θ¯ θ(U «,U,V )%α­β[ln
+
gap−"(U «,U ) with α¯α(U,V ), β¯ β(U,V ).
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Using the thick belt lemma, choose a contour Γ in the belt Ua cU «, avoiding Z.

Then
M

K
( fg)%M

K
( f )[M

K
(g)%M

K
( f )[M

U
(g)¯ 1,

and on the other hand, using the maximum modulus principle, we see that

M
U
( fg)&MΓ( fg)&MΓ( f )[min

t`Γ

rg(t)r

&M
U «( f )[min

t`Γ

rg(t)r¯ expB
K,U «( f )[exp(®θB

U,V
(g)).

From these estimates it follows immediately that

B
K,U

( fg)&B
K,U «( f )®θB

U,V
(g).

R. If p `#[t] is a polynomial of degree n, then the above arguments can

be simplified, since instead of the lower bound (2.1) one may apply the Cartan

inequality directly ; see [2]. As a result, we can simplify the final inequality :

B
K,U

( fp)&B
K,U «( f )®Θn, Θ¯Θ(U,U «)¯ 1­ln

+
gap−"(U,U «).

2.6. Meromorphic functions and the complex Rolle theorem in the general case

Now we can establish a complex analogue of the inequality (1.2). The Bernstein

index is defined for analytic functions (without poles in Ua ) ; thus one should look for

an indirect way to define B
K,U

( f ) for meromorphic f. However, we may avoid this

difficulty by the following trick.

Let f¯ h}g be a meromorphic function, g, h `!(U ). Then f «¯ (h«g®hg«)}g#, and

for the number of real zeros on any real interval KZ2 we would have N
K
( f )¯

N
K
(h), N

K
( f «)%N

K
(h«g®hg«)¯N

K
(g#f «). The inequality (1.2) would then imply the

inequality

N
K
(h«g®hg«)&N

K
(h)®N

K
(g)®1 cg, h real analytic on K. (2.3)

It is this form which allows for complex generalization.

T 4« (Complex Rolle theorem in the general case). Let K « K U «
U VX# be four nested CP-gons. Then

B
K «,U

(h«g®hg«)&B
K,U «(h)®θ[B

U,V
(g)®ρ ch `!(U ),cg `!(V ). (2.4)

Here θ, ρ!¢ are two constants depending only on the geometry of the sets and similar

to the constants from Theorem 4 and Lemma 4 respecti�ely:

θ¯ θ(U «,U,V )% 2α(U,V )­2β(U,V ) ln
+
(gap−"(U «,U )),

ρ¯ ρ(K «,K,U )% 1­ln
+
F(¦K )­ln

+
F(¦U )­2 ln

+
(gap−"(K «,K )).

(2.5)

Proof. The inequality (2.4) combines some features of both (1.5) and (2.2) ; to

obtain a lower estimate for the Bernstein index of h«g®hg«, one pays by decreasing

the size of the interior compactum and enlarging the ambient open set. The proof is

also a ‘ linear combination’ of ideas used when proving (1.5) and (2.4).

We rescale h and g so that M
U
(g)¯ 1 and M

K
(h)¯ 1 respectively, and denote by

D
g
the operator h* gh«®g«h. Then by the Cauchy integral formula (cf. Theorem 4),

M
K «(Dg

h)%M
K «(g)[M

K «(h«)­M
K «(g«)[M

K «(h)

% 2F(¦K )}2π gap#(K «,K )% "

#
F(¦K )[gap−#(K «,K ),

since M
K
(g), M

K
(h)% 1.
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To estimate M
U
(D

g
h) from below, we apply once again the thick belt lemma to

the pair U «,U and construct a connected path Γ¯Γ«eΓ# consisting of two parts : a

topological circle (contour) Γ« UcU« and an arc (segment) Γ# connecting K « with Γ«
in such a way (see the remark after the thick belt lemma) that

MΓ(g−")%A¯ exp (θB
U,V

(g)),

where θ¯ θ(U «,U,V )%α(U,V )­β(U,V )[ln
+
gap−"(U «,U ) and F(Γ)% 2F(¦U ).

Along this path f is continuously differentiable (the denominator does not vanish),

hence by the mean value theorem MΓ( f )%M
KfΓ( f )­F(Γ)[MΓ( f «).

Since MΓ(g)% 1, we have

MΓ( f )&MΓ(h)&M
U «(h), M

KfΓ( f )%MΓ(g−")[M
K
(h)%A[1¯A,

and so we finally obtain the inequalities

M
U
(D

g
h)&MΓ(Dg

h)&A−#MΓ( f «)&
1

A#F(Γ)
[(M

U «(h)®A).

Taking into account the fact that M
U «(h)¯ expB

K,U «(h), A¯ exp θB
U,V

(g) and

expx®exp y& exp(x®1) for x®y& 1, we obtain

B
K «,U

(D
g
h)& ln 0 M

U «(h)®A

A#F(¦U )[F(¦K )[gap−#(K «,K )1
&B

K,U «(h)®2(α(U,V )­β(U,V )[ln
+
gap−"(U «,U ))[B

U,V
(g)

®(1­ln
+
F(¦K )­ln

+
F(¦U )­2 ln

+
gap−"(K «,K )),

which is the estimate we need.

3. Applications: oscillations of solutions of linear ordinary differential equations with

analytic coefficients

In this section we prove the theorems from §1 concerning the number of zeros of

functions defined by linear ordinary differential equations with analytic coefficients.

Throughout this section we assume without loss of generality that all sets are CP-

gons. In fact, the proofs below reproduce essentially the proofs given in [6], except for

one crucial feature : instead of the real Rolle theorem one must use its complex

analogue from §2. Modulo this change, all the rest goes with only minor and evident

changes, and thus the exposition below is rather schematic. We refer the reader to [5,

6] for more details if necessary.

3.1. Oscillation and the magnitude of coefficients: demonstration of Theorem 1

Let (K,U ) be a pair of sets and L a unitary linear ordinary differential operator of

order n with coefficients in !(U ), that is,

L¯ ¦n­3
n

l="

a
k
(t) ¦n−k for a

k
`!(U ).

Then any solution of the equation Lu¯ 0 is necessarily analytic in U, since L has no

singular points there. Recall that sLs¯max
k=",

…,n
M

U
a (a

k
) is the magnitude of the

coefficients of the operator.
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The proof of Theorem 1 can be obtained by a small modification of the proof of

[3, Theorem 1], by replacing the reference to the classical Rolle theorem by that to the

complex Rolle theorem (Theorem 4). In [3] it is shown that Lf¯ 0 implies that for

some derivative f (k) with 0%k% n®1 the Bernstein index admits the following

estimate:

B
K

†
,U

( f (k))% ln n­const(K †,U )[(sLs­1)

for any set K † [K. Then, iterating the complex Rolle theorem (in the form given by

Theorem 4) k times, one can show that B
K,U

( f )%O(sLs) if n is considered as a fixed

parameter.

To obtain a more precise inequality which would take the order n into account,

we choose a sequence of nested CP-gons K¯K
n
ZK

n−"
ZIZK

"
ZK

!
¯K † with

gap(K
i+"

,K
i
)& const(K )}n. It is clear that all lengths F(¦K

i
) are bounded by a certain

constant independent of n, hence each ρ
i
¯ ρ(K

i+"
,K

i
,U ) will be of order of

magnitude const
"
(K,U )­const

#
(K,U ) ln n.

Iterationof the complexRolle theoremapplied toall collectionsK
i+"

K
i

U forall

i¯k,k®1,…, 1, 0 then gives

B
Kn,U

( f )%B
K

!
,U

( f (k))­const
"
(K,U )[n­const

#
(K,U )[n ln n.

As for Theorem 1«, it can be reduced to Theorem 1 in the same way as in [2] : if

L¯ a
!
(t) ¦n­I­a

n−"
(t) ¦­a

n
(t) is a non-unitary differential operator with analytic

coefficients, then one can find a set Z
!

with rZ
!
r as small as necessary, such that on

the complement UcZ
!
the leading coefficient admits a lower estimate given by Lemma

1, in terms of B
K,U

(a
!
)% ln

+
sLs. Then Theorem 1 can be applied to the unitary

operator Lh ¯ a−"

!
(t)L in the same way as in [2], since one may control effectively the

magnitude of coefficients of Lh on UcZ
!
.

3.2. Oscillation in polynomial en�elopes: demonstration of Theorems 2 and 2«

We use the following result proved in [3]. Let L be an irreducible operator (in the

sense described in §1.5), let K « U « U be two nested CP-gons and let f
"
,…, f

n
be any

fundamental system of solutions of the equation Lu¯ 0.

Consider the monomials F
jkl

(t)¯ tlf (k−")

j
(t) for j,k¯ 1,…, n, l¯ 0, 1,…, d ordered,

say, lexicographically, and let W
s
(t) be the Wronskian of the first s monomials,

s¯ 1,…, n#(d­1). The monomials F
jkl

span the polynomial d-envelope of L.

L 6 (see [3]). If L is an irreducible operator, then the Bernstein indices of the

Wronskians W
s

for all s¯ 1,…, n#(d­1) allow the following upper estimate, which

grows at most exponentially with d:

cs¯ 1,…, n#(d­1) B
K «,U «(Ws

)% exp (c
"
d ), c

"
¯ c

"
(K «,U «).

The differential operator ,
d

annulating all monomials, F
jkl

for l¯ 1,…, d, and

hence all their linear combinations, can be written in the Frobenius form

,
d
¯

W
N

W
N−"

[¦[
W #

n−"

W
N

W
N−#

[¦[
W #

N−#

W
N−"

W
N−$

[¦I¦[
W #

"

W
#
W

!

[¦[
W

!

W
"

¯R
N

a ¦ aR
N−"

a ¦ aIaR
"
a ¦ aR

!
,

where N¯N(d )¯ n#(d­1) is the total number of monomials ; the order of this

operator is N¯O(d ).
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Now the complex Rolle theorem in the general form can be applied. The operator

,
d

is decomposed as a product of 2N­1 operators of orders alternating between 0

and 1. Choose a sequence of 2N­1 CP-gons K I K
i+"

K
i

I K † U « U

with boundaries Γ
i
: this can be done with gap(K

i+"
,K

i
)¯O(1}N ). If f is analytic

in U «, then each partial result

f
s
¯R

s
a ¦ aR

s−"
aIaR

!
f

can be represented as a meromorphic function,

f
s
¯

h
s

g
s

, g
s
¯W #

s

!
W #

s−"

"
IW

s
,

hence by the complex Rolle theorem 4« the operators of differentiation cannot incur

the loss of more than expO(d )­const[lnN¯ expO(d ) units of the Bernstein index

of the numerators. The impact of applying R
s
is well described by Lemmas 3 and 4.

Finally we conclude that the operator ,
d

cannot cancel more than d expO(d )¯
expO(d ) units of the Bernstein index, which proves Theorem 2 in the irreducible

case, since any function from the polynomial d-envelope is annulated by ,
d
, and

B
K,U

(0)¯ 0.

As for the general case of the composition of an irreducible operator and several

operators of order 1, it is shown in [6] that for any function f from the polynomial

d-envelope of LP
k
IP

#
P
"

one can explicitly construct a differential operator of the

form

Q
s
a ¦ aQ

s−"
a ¦ aIaQ

"
a ¦ aQ

!
,

in general depending on f, with rational factors Q
j
of degree at most O(d ), that would

take f into a function from the polynomial envelope of L«¯LP
k
IP

#
. This

immediately implies an upper estimate for the Bernstein index.

3.3 Zeros of deri�ati�es: proof of Theorem 3

As already mentioned in §1, for any function satisfying an equation Lf¯ 0 with

L¯Σn

!
a
j
¦n−j `#(t) [¦] with ordL¯ n, its dth derivative can be expressed as a linear

combination of f, f «,…, f (n−") with rational coefficients from #(t). In this section we

show that for a fixed L the degrees of the coefficients will be at most O(d ). This will

reduce Theorem 3 to Theorem 2.

If one wishes to differentiate the identity

f (n) ¯ 3
n−"

j=!

r
j
(t) f (j) for r

j
¯®

a
n−j

a
!

,

then, since each differentiation in general doubles the degree of a rational function,

degφ«% 2degφ for φ `#(t), the straightforward estimate for the growth of degrees of

coefficients will be exponential in d. In order to show that this growth is at most linear,

we take into account the fact that the singularities of all the derivatives will remain

the same. We prove by induction that

a
!
(t)d−n+"f (d)¯ 3

n−"

j=!

p
j,d

(t) f (j)(t) cd¯ n, n­1,…,

a
!
, p

j,d
`#[t], deg p

j,d
% (d®n­1)maxdeg a

j
¯O(d ).
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Indeed, for d¯ n this is the differential equation Lf¯ 0. Differentiating this identity

for an arbitrary d and multiplying it by a
!
, we obtain

(d®n­1) ad−n+"

!
a!

!
f (d)­ad−n+#

!
f (d+") ¯ 3

n−"

j=!

a
!
(p!

j,d
­p

j−",d
) f (j)­a

!
p
n−",d

f (n)

¯ 3
n−"

j=!

a
!
(p!

j,d
­p

j−",d
) f (j)­3

n−"

j=!

p
n−",d

p
j,n

f (j),

and hence

ad−n+#

!
f (d+") ¯ 3

n−"

j=!

(a
!
(p!

j,d
­p

j−",d
)­p

n−",d
p
j,n

®(d®n­1) a!

!
p
j,d

) f (j).

Thus the degrees of the coefficients p
j,d+"

compared to those of p
j,d

will be increased

by at most max (deg a
!
, deg p

j,n
) ; the latter number is the maximum of the degrees of

the coefficients of L put into the unitary form.

Thus we see that, after multiplication by an appropriate rational function ad−n+"

!

which does not change the number of zeros, the derivative f (d) belongs to the

polynomial O(d )-envelope of the operator L. Theorem 2 now gives an upper estimate

for the number of isolated zeros of f (d).
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