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Abstract

Consider a foliation defined by two commuting polynomial vector fields V1, V2 in Cn , and p a non-
singular point of the foliation. Denote by L the leaf passing through p, and let F, G ∈ C[X ] be two
polynomials. Assume that F |L = 0, G|L = 0 have several common branches. We provide an effective
procedure which produces an upper bound for the multiplicity of intersection of remaining branches of
F |L = 0 with G|L = 0 in terms of the dimension n and the degrees of V1, V2, F, G.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Let F be the foliation generated in X = Cn by several commuting polynomial vector fields
V1, . . . , Vk . A restriction of a polynomial F ∈ C[X ] to a leaf of F is called a Noetherian function.
The main result of this paper is motivated by the following question: is it possible to effectively
bound the topological complexity of objects defined by Noetherian functions solely in terms of
the dimensions n, k and the degrees of the vector fields and the polynomials?

An important subclass of the class of Noetherian functions is that of Pfaffian functions. The
theory of Fewnomials developed by Khovanskii provides effective upper bounds for global
topological invariants (e.g., Betti numbers) of real varieties defined by Pfaffian equations
(see [8]). Evidently, for complex varieties such bounds are impossible: the only holomorphic
functions which admit “finite complexity” (e.g., finitely many zeros) in the entire complex
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domain are the polynomials. One may trace the dichotomy between the real and complex settings
to the absence of a complex analog of the Rolle theorem (which is a cornerstone of the real
Fewnomial theory) — the derivative of a holomorphic function with many zeros may have no
zeros at all.

While the global Rolle theorem fails in the complex setting, certain local analogs still hold.
Perhaps the simplest of these analogs is the statement that, if a derivative f ′ admits a zero of
multiplicity n at some point, then f may admit a zero of multiplicity at most n + 1 at the same
point. This trivial claim, together with its ramifications, was used by Gabrielov to build a local
theory of complex Pfaffian sets, and to provide effective estimates on the local complexity of
complex Pfaffian sets [2].

The topology of global real Noetherian sets is usually infinite, as demonstrated by the
Noetherian function sin(x), which admits infinitely many real zeros (and is therefore non-
Pfaffian). However, an old conjecture due to Khovanskii claims that the complexity of the local
topology of the Noetherian functions can be estimated through the discrete parameters of the set.
This conjecture is motivated as follows: in view of Morse theory, to estimate local Betti numbers
it is essentially sufficient to bound the number of critical points of Noetherian functions on germs
of Noetherian sets. The latter can be bounded through a suitably defined multiplicity of a common
zero of a tuple of Noetherian functions. In [4], the multiplicity of an isolated common zero is
bounded from above. To build the general theory one has to generalize this result to non-isolated
intersections.

For non-isolated intersections, even the notion of multiplicity becomes non-trivial. For a point
p lying on a leaf L0 of the foliation F one can define the multiplicity of the common zero p of
the functions Fi |L0 as the maximal number of common isolated zeros of Fi |L on neighboring
leaves L converging to p as L → L0. The multiplicity defined in this manner is not intrinsic to
the leaf L0. It depends on the foliation F in which L0 is embedded.

The case of two-dimensional leaves is the first case where the problem of non-isolated
intersections presents substantial difficulties. Many of the ideas presented in this paper appear
to be applicable in higher dimensions as well. However, some technical details still make the
two-dimensional case easier to handle. We therefore chose in this paper to restrict attention to
the case of two-dimensional leaves.

In the context of two-dimensional leaves, we consider another notion of non-isolated
multiplicity, suggested by Gabrielov, which is defined intrinsically on the leaf under
consideration (see Section 5.2). We prove that this multiplicity can be explicitly bounded in
terms of the dimension n and the degrees of the vector fields defining the foliation.

2. Setup and notation

Let F be the foliation generated in X = Cn by two commuting polynomial vector fields
V1, V2. For us, a Noetherian function will be the restriction of a polynomial function to a leaf of
such a foliation. It is worth noting that in [4] a somewhat more general definition is used, along
with a reduction between the two definitions; see [4, Section 2]. Given the reduction, our results
can be carried over to the general definition as well, and we have chosen the simpler definition
in order to simplify the exposition.

Given two polynomial functions F, G, we denote by J(F, G) the Jacobian of the map
(F, G)|L with respect to the leaves of the foliation,

J(F, G) = V1(F)V2(G) − V2(F)V1(G). (1)
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In the entire paper L denotes some particular fixed leaf of the foliation, and p ∈ L a particular
fixed smooth point of L. We will denote functions defined on X using uppercase letters, and
functions defined on L by lowercase letters. We will also denote ideals of functions on X by
capital letters, and ideals of functions on L by calligraphic letters.

We denote by O(X) the ring of polynomial functions on X , and by O p(L) the ring of
germs of analytic functions on L at p. Given an ideal I ⊂ O p(L), we denote by multp I the
Hilbert–Samuel multiplicity of I on O p(L) (see [5, Definition 11.1.5]),

multp I =
d!

nd lim
n→∞

λ(O p(L)/I n), d = dim O p(L) = 2, (2)

where λ(·) denotes the length as an O p(L)-module. This number is finite whenever I contains
a power of the maximal ideal at the point p. We remark that, for an ideal generated by a regular
sequence, this notion of multiplicity agrees with the usual geometric multiplicity of the sequence;
see [5, Proposition 11.1.10].

Recall that the integral closure I of an ideal I ⊂ O p(L) is the ideal generated by all elements
x ∈ O p(L) satisfying the equation xm

+ a1xm−1
+ · · · + am = 0, with ak ∈ I k . By a theorem

of Rees (see [5, Theorem 11.3.1]), we have the equality

multp I = multp I. (3)

Let I ⊂ O(X) be a polynomial ideal. We will be particularly interested in the case when I is
generated by two polynomial functions F, G. We denote by V (I ) the algebraic set associated to
I . We denote by I |L the ideal generated by the restriction of I to O p(L).

We will say that the intersection of I (or V (I )) and F is isolated at a point p ∈ V (I ) if there
exists an open neighborhood U of p such that U ∩ V (I ) ∩ L = {p}.

Suppose that I = ⟨F, G⟩. If the intersection of I and F is isolated at p, then the intersection
multiplicity of F and G at p is defined to be multp I |L. Otherwise, near p we have the following
decomposition:

F |L = h f f, (4)

G|L = hgg, (5)

where h f , hg contain the factors which are common to F |L and G|L (note that they may appear
with different multiplicities).

Definition 1. The (non-isolated) intersection multiplicity of F and G at p is defined to be
multp⟨ f, g⟩|L.

3. Results and motivating corollaries

Upper bounds for the multiplicity of an isolated intersection were given in [4]. The main result
of this paper is as follows.

Theorem 1. Let F, G be two polynomials. Then the non-isolated intersection multiplicity of F
and G at p can be explicitly bounded in terms of the dimension n and the degrees of V1, V2, F, G.

This theorem is proved by presenting an effective procedure for computing an upper bound
for non-isolated intersection multiplicities. In the interest of clarity, we have chosen to present
a version of this procedure which illustrates the key ideas, rather than a more technical version
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achieving better bounds. In light of this, while it is possible to follow the proposed algorithm and
write out an explicit upper bound, we have chosen to postpone this computation to a forthcoming
publication in which a more technically refined version of the algorithm will be given.

In the following subsections, we give several examples of applications of this result. In
addition to their independent interest, these examples motivate Definition 1 above.

3.1. Rational Noetherian functions and blow-up transformations

Let S = F/Q, T = G/Q be two rational functions. Suppose that S, T restrict to holomorphic
functions on the leaf L. This, of course, does not imply that S, T are holomorphic on nearby
leaves, as illustrated by the example C3

= (x, y, z), F = ⟨∂x , ∂y⟩, L = {z = 0} and S =

(xy + z)/y.
In order to give an upper bound on the intersection multiplicity multp⟨S|L, T |L⟩ of S and T

at p, we may clear the denominator Q and consider instead the intersection multiplicity of F and
G. Note that, even assuming that the original intersection S = T = 0 is isolated on L, clearing
the denominator will create a non-isolated intersection on Q = 0. However, it is easy to see that
the non-isolated intersection multiplicity of F and G is equal to the intersection multiplicity of
S and T .

This construction is of particular interest in the context of blow-up transformations. If Z is
a smooth blow-up locus transversal to F near L, then one may show that the blow-up of a
Noetherian function F remains Noetherian in each blow-up chart. However, the strict transform
of F is given by F/yk , where {y = 0} is the equation defining the exceptional divisor in a
given chart, and k is the multiplicity of the exceptional divisor in the blow-up of F . Since k may
be larger on L than on nearby leaves, this brings us to the situation discussed in the paragraph
above.

The possibility of explicitly controlling the behavior of Noetherian functions after blow-
up was previously missing from the theory, and will hopefully improve our understanding of
desingularization in the Noetherian category.

3.2. Desingularization of Noetherian foliations

In the two-dimensional case being considered in this paper, our results on non-isolated
intersections enable us to explicitly estimate the complexity of desingularization, not only of
Noetherian functions, but more generally of foliations given by Noetherian one-forms.

Indeed, suppose that, in addition to our usual Noetherian data, we are given a polynomial
one-form ω ∈ Λ1(Cn). Denote by s, t the local coordinates on L such that ∂s = V1, ∂t = V2. In
these local coordinates,

ω|L = ω(V1) ds + ω(V2) dt. (6)

The foliation L ∩ {ω = 0} is independent of multiplication by a scalar function, and is
thus unaffected by clearing the common components of ω(V1)|L, ω(V2)|L. Furthermore, after
clearing these common components, the foliation admits an isolated singular point. It is well
known, see [6, p. 138], that in this case the number of blow-ups needed to achieve full
desingularization is controlled by the Milnor number of the foliation, equal to the intersection
number of ω(V1) and ω(V2) (with the common components removed). Thus our result on non-
isolated intersection applies directly to give a bound on the complexity of desingularization.



G. Binyamini, D. Novikov / Advances in Mathematics 231 (2012) 3079–3093 3083

3.3. Łojasiewicz inequalities

In [2], it is shown that Łojasiewicz exponents can be explicitly estimated for the class
of Pfaffian functions. To develop an effective geometric theory of Noetherian functions, it is
desirable to extend this result to the Noetherian case. Below, we provide an example of how non-
isolated intersection multiplicities can be used to derive upper bounds for Łojasiewicz exponents.

Corollary 2. Let F, G be real polynomials vanishing at p ∈ Rn , let F be a two-dimensional
foliation defined and non-singular in a neighborhood of p, and let L be the leaf of F containing
p. Let C ⊂ L be a connected component of (the germ of) L ∩ {G > 0}. Suppose that F > 0 on
C. Then, for x ∈ C sufficiently close to the origin, we have

F(x) ≥ G(x)d , (7)

where d is an exponent which can be explicitly estimated in terms of the dimension n and the
degrees of V1, V2, F, G.

Proof. Let H = J(F, G) = V1(F)V2(G) − V1(G)V2(F). Then the zero set of H contains the
curves where F takes a minimum on the level sets G = ε (unless this minimum is attained
on the boundary of C , in which case one may reduce the problem to the same problem in one
dimension). It will suffice to prove the claim over such curves. Furthermore, we may assume (by
restricting x to a small neighborhood) that each such curve passes through the origin.

Let γ ⊂ {h = 0} ⊂ {H = 0} be a real curve whose real part intersects C , where h is one
of the irreducible components of H |L. Since F > 0 on C , F is not identically vanishing on
{h = 0}.

Let c(t) : (C, 0) → γ be a good parameterization of γ . Clearly, ord0G(c(t)) ≥ 1. On the
other hand,

ord0(F(c(t)) = mult(F, h) ≤ mult(F, H), (8)

where the latter multiplicity denotes the non-isolated intersection multiplicity of F and H
(which may be explicitly estimated). Thus along the curve γ we have (in a sufficiently small
neighborhood of the origin)

F(c(t)) ≥ K td
≥ K ′G(c(t))d d = mult(F, H), (9)

with K , K ′ constants, and increasing d by one we may drop the constant K ′ to obtain the desired
estimate. �

4. Noetherian pairs and controllable inclusions

When studying the restriction of algebraic functions to the leaves of a foliation, we shall
often find it necessary to simultaneously keep track of functions defined locally on a particular
leaf, and their algebraic counterparts defined globally. In this section, we introduce notation and
terminology to facilitate the manipulation of such data.

Definition 3. A pair of ideals (I, I) with I ⊂ O(X), I ⊂ O p(L) is called a Noetherian pair for
the leaf L if I |L ⊂ I .

By an inclusion of pairs (I, I) ⊂ (J, J ), we mean simply that I ⊂ J, I ⊂ J . The pair
(J, J ) is said to extend the pair (I, I).
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We will introduce a number of operations which generate for a given pair (I, I) an extension
(J, J ). The goal is to form an extension in such a way that the multiplicity of I can be estimated
from that of J . More precisely, we introduce the following notion.

Definition 4. An inclusion (I, I) ⊂ (J, J ) is said to be controllable if the following hold.

• The complexity of J can be bounded in terms of the complexity of I .
• The multiplicity of I can be bounded in terms of the multiplicity of J and complexity of I .

Here, by complexity of an ideal of O(X), we mean the maximal degree of its generators.
The precise estimates on the complexity and the multiplicity in the definition above will vary

for the various types of inclusion we form.
We record two immediate consequences of this definition.

Proposition 5. If each inclusion in the sequence

(I0, I0) ⊂ · · · ⊂ (Ik, Ik) (10)

is controllable, then the inclusion (I0, I0) ⊂ (Ik, Ik) is controllable.

Proposition 6. Suppose that (I, I) ⊂ (J, J ) is an controllable inclusion, and that p ∉ V (J ).
Then one can give an upper bound for multp I .

Proof. By definition, one can give an upper bound for multp(I) in terms of multp(J ). But
J ⊂ J and p ∉ V (J ), so multp J = 0, and the proposition follows. �

These two proposition lay out the general philosophy of this paper. We start with a pair (I, I)

and attempt, by forming a sequence of controllable inclusions, to reach a pair (J, J ) with V (J )

as small as possible. If we manage to get a pair with p ∉ V (J ), then we obtain an upper bound
for multp I .

We now introduce three controllable inclusions which will be used in this paper.

4.1. Radical extension

Let (I, I) be a Noetherian pair. We define a new pair (J, J ) by letting J =
√

I and J =

⟨I, J |L⟩. The complexity of the ideal J , as well as the degree n such that J n
⊂ I , can be

computed from that of I using effective radical extraction algorithms.
The multiplicity of I can be estimated from that of J by the following simple lemma.

Lemma 7. Let K, K′
⊂ O p(L) be ideals of finite multiplicity, and suppose that Kn

⊂ K′. Then

multp K′
≤ ndmultp K, d = dim O p = 2. (11)

Proof. By Huneke and Swanson [5, Proposition 11.2.9], multp Kn
= ndmultp K. The result

follows. �

4.2. Jacobian extension

Let (I, I) be a Noetherian pair, and let F, G ∈ I be of known degrees. We define a new pair
(J, J ) by letting J = ⟨I, J(F, G)⟩ and J = ⟨I, J(F, G)⟩. We claim that (J, J ) is a controllable
extension of (I, I).
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Indeed, the complexity of the ideal J can clearly be estimated from that of I . Also, the
multiplicity of I can be estimated from that of J , as shown in the following lemma, which
may be regarded as a multi-dimensional analog of the Rolle theorem.

Lemma 8. Let K ⊂ O p(L) be an ideal of finite multiplicity, and suppose that f, g ∈ K. Then

multK ≤ mult⟨K, J( f, g)⟩ + 1, (12)

with equality only if one of f, g has a non-vanishing linear part.

Proof. According to Vasconcelos [1, p. 102, Corollary 3], the Jacobian J( f, g) spans the one-
dimensional socle of the local algebra O p(L)/⟨ f, g⟩.

If f, g both have vanishing linear parts, then by Vasconcelos [10, Proposition 1.69] the ideal
⟨ f, g⟩ is not integrally closed, and it follows that the socle element J( f, g) is integral over ⟨ f, g⟩.
In this case, by (3), we have multK = mult⟨K, J( f, g) ⟩.

In the remaining case, where f or g has a non-vanishing linear part, one can assume by an
analytic equivalence that f = y and g = xm for some m ∈ N. In this case, we have multK =

mult⟨K, J( f, g)⟩ + 1. �

4.3. Transversal extension

Let (I, I) be a Noetherian pair, and let F ∈ I be of known degree. Assume that I is a radical
ideal and that all intersections of V (I ) and F are non-isolated. Write F |L = f h, where h consists
of the irreducible factors of F |L which vanish on V (I ) ∩ L and f consists of the other factors.
Finally, assume that f ∈ I .

Let h′ denote the reduced form of h. Denote by k and K respectively the minimal and the
maximal multiplicities of a factor of h, so that h is divisible by (h′)k (but not by (h′)k+1) and h
divides (h′)K .

Remark 9. The order E of any function F ∈ I of bounded degree can be effectively bounded
from above. Indeed, let ℓ be a generic linear function on X vanishing at p. Then E = multp⟨h, ℓ⟩,
and the multiplicity of this isolated intersection can be bounded from above, either using the
considerations above, or using the main result of [3] (which gives a better bound).

In particular, E is an upper bound for the total number of branches of h, counted with
multiplicities, and therefore for K above.

In the notation above, we define a new Noetherian pair (J, J ) by letting

J = ⟨I, {V α1
1 V α2

2 F | α1 + α2 = k}⟩ (13)

J = ⟨I, h′⟩. (14)

We claim that (J, J ) is a controllable extension of (I, I).
First, to prove that this is a Noetherian pair, it suffices to show that all derivatives of order k

of F |L belong to J . This follows from the Leibnitz rule,

V α1
1 V α2

2 F |L = V α1
1 V α2

2 ( f h)

= (derivatives of order ≤ k − 1of h) · (· · ·) + (· · ·) f ∈ J , (15)

since f ∈ I ⊂ J and derivatives of order ≤k − 1 of h are divisible by h′
∈ J .
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It is clear that the complexity of J can be estimated in terms of the complexity of I . It remains
to show that the multiplicity of I can be estimated in terms of the multiplicity of J . By (3),
taking integral closure does not affect the multiplicity of an ideal. Therefore, by Lemma 7, it
will suffice to show that, for some explicit number N , we have (h′)N

∈ I . This follows from
Lemma 13, since I |L ⊂ I .

To end this section, we remark that, crucially, V (J ) ( V (I ). Indeed, the derivatives of order
k of F added to I ensure that the lowest-order factors of h are not contained in V (J ).

Remark 10. In the particular case of h being reduced, one can omit the integral closure in the
definition of J . Lemma 17 from the Appendix shows that in this case (h′)N

∈ I |L for N = 2K .

5. Proofs

In this section, we prove the main result of the paper. First, we consider the multiplicities of
isolated intersections. In following subsection, we extend the result to the case of non-isolated
intersections.

5.1. Isolated intersection multiplicities

Let I ⊂ O(X) be a polynomial ideal. Assume that the intersection of I (or V (I )) and F is
isolated at a point p ∈ V (I ) ∩ L. We are interested in an upper bound for multI |L.

Proposition 11. Let I be a radical ideal of known complexity, and suppose that it has isolated
intersections with F . Then there exist F, G ∈ I of bounded degrees such that V (⟨I, J(F, G)⟩)

has smaller dimension than V (I ).

Proof. We may assume without loss of generality that V (I ) is irreducible. Since the condition
of having an isolated intersection is open, generic points of V (I ) are isolated intersections of I
and F .

We claim that, at a generic point p of V (I ), TpV (I ) t F . Indeed, otherwise the intersection
of these spaces defines a line field whose integral trajectories lie in the intersection V (I ) ∩ L
(where L is the leaf containing p), in contradiction to the assumption that p is an isolated point
of intersection.

The tangent space TpV (I ) is defined by differentials of functions in I . By transversality, there
exist F, G ∈ I such that dF |L, dG|L are linearly independent at the point p. Moreover, these
F, G can be chosen from among the generators of I , which have bounded degrees. Thus J(F, G)

is non-vanishing at p, and the claim is proved. �

Corollary 12. For any pair (I, I), there exists a controllable inclusion (I, I) ⊂ (J, J ) such
that J is radical and V (J ) is the variety of non-isolated intersections of I and F .

Proof. We obtain this inclusion using Proposition 11 by forming an alternating sequence of
controllable inclusions of radical and Jacobian type. Each pair of inclusions in this sequence
reduces the dimension of the set of isolated intersections, so after at most n steps the sequence
stabilizes on the variety of non-isolated intersections. �

Suppose now that I = ⟨F, G⟩ and that p is an isolated intersection point of I and F . Con-
sider the pair (I, I |L). Applying Corollary 12 and Proposition 6, we obtain an upper bound for
multp I |L.
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5.2. Non-isolated intersection multiplicities

We now consider the case of non-isolated intersection multiplicities. Let I = ⟨F, G⟩, and
suppose that the intersection of I and F at a point p is not isolated. Let L be the leaf of F
containing p.

Near p, we may write

F |L = h f f, (16)

G|L = hgg, (17)

where h f , hg contain all the factors which are common to F |L and G|L, as before. We stress that
h f,g, f, g are defined only on L, and the decomposition of F and G as products of these factors
need not extend outside of L. We let

I = ⟨ f, g⟩. (18)

We now prove Theorem 1, namely that the multiplicity multp I can be bounded from above
in terms of degrees of V1, V2, F, G and the dimension n. We begin in the same manner as in the
isolated-intersection case.

Let (I0, I0) = (I, I). We apply Corollary 12 to obtain an controllable inclusion (I0, I0) ⊂

(I1, I1) such that I1 is radical and V (I1) is the variety of non-isolated intersections of I and F .
We can now form a transversal extension to obtain a controllable inclusion (I1, I1) ⊂ (I2, I2).

Indeed, V (I1) is the locus of non-isolated intersections, and with h1 = h f we have

• V (I1)|L = {h1 = 0},
• F |L = h1 f ,
• f ∈ I0 ⊂ I1,

and the conditions of transveral extension are satisfied. By the remark at the end of Section 4.3,
V (I2) ( V (I1).

Applying Corollary 12 again, we obtain a controllable inclusion (I2, I2) ⊂ (I3, I3) such that
I3 is radical and V (I3) is the variety of non-isolated intersections between I2 and F .

We can now again form a transversal extension to obtain a controllable inclusion (I3, I3) ⊂

(I4, I4). Indeed, V (I3) has only non-isolated intersections with F , and letting h3 denote the
factors of h f which remain in V (I3)|L we have

• V (I3)|L = {h3 = 0},
• F |L = h3 f · (h f /h3),
• f · (h f /h3) ∈ I0 ⊂ I1,

and the conditions of transversal extension are satisfied. Once again by the remark at the end of
Section 4.3, V (I4) ( V (I3).

Repeating these two alternating types of controllable inclusion and applying Proposition 5, we
obtain an inclusion (I0, I0) ⊂ (I2k+1, I2k+1), where at least k factors of h f have been removed
from V (I2k+1). In particular, for K equal to the number of factors of h f (effectively bounded by
Remark 9), we know that p ∉ V (I2K+1). Thus, applying Proposition 6, we obtain the required
upper bound for multp I0 = multp I .

6. Ideals of non-isolated intersections

In this section, we prove that, if a radical ideal I has only non-isolated intersections near a leaf
L, then I |L contains (some effectively bounded power of) the ideal of definition of V (I ) ∩ L.
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This is in contrast to the general situation, where the restriction of a radical ideal to an analytic
set may be far from radical.

Lemma 13. Let I ⊂ C[X ] be a radical ideal of known complexity, and suppose that every
intersection of I and F is non-isolated.

Let I ⊂ O p(L) denote the ideal of functions vanishing on V (I ) ∩ L. Then

I N
⊂ I |L (19)

for some N effectively bounded from above.

Let h ∈ I denote any function vanishing on V (I ) ∩ L. We will prove that hN
∈ I |L for some

N effectively and uniformly bounded from above. We also let F ∈ I denote an arbitrary function
in I (since I is of bounded complexity, F can be assumed to be of bounded degree).

The proof of the lemma is based on the following characterization of the algebraic closure of
an ideal [9, Theorem 2.1].

Lemma 14. Let f1, . . . , fk be generators of an ideal I ⊂ O p(L). The function hN belongs to I
if and only if, for any germ of an analytic curve γ : (C, 0) → (L, p), the ratio

hN (γ (t))

max
i=1,...,k

| fi (γ (t)) |
(20)

remains bounded as t → 0.

As the first step, we reformulate this statement in terms of the metric properties of V (I ) and
V (I ) ∩ L. By an effective version of the Łojasiewicz inequality, see [7], we can choose the
generators of I in such a way that

max
i=1,...,k

| fi (q) | ≥ dist(q, V (I ))M , q ∈ Cn, (21)

with some explicit and effective M . Also, by continuity, |h(q)| ≤ Cdist(q, V (I ) ∩ L) with some
constant C for any q ∈ (L, p). Therefore, instead of (20), it is enough to prove the boundedness
of

dist(γ (t), V (I ) ∩ L)N

dist (γ (t), V (I ))M (22)

on any germ of curve γ : (C, 0) → (L, p), for some explicit uniform N .
Let us denote by λ the coordinates on a germ of a transversal to F passing through p, with p

corresponding to λ = 0, and by Lλ the leaf of F intersecting this transversal at the point λ (so
L = L0). We claim that it is enough to give an effective upper bound for the Łojasiewicz-type
constant Ñ appearing in the following lemma.

Lemma 15. There exists a constant C̃ > 0 and a natural number Ñ such that, for any point
q ∈ Lλ ∩ V (I ), we have

dist(q, V (I ) ∩ L)Ñ
≤ C̃∥λ∥. (23)

The number Ñ is bounded by the Gabrielov estimate for the multiplicity of an isolated zero of F
on a trajectory of a vector field of degree max(deg V1, deg V2).
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This lemma immediately implies (22). Indeed, let γ (t) ∈ L, and let q(t) ∈ V (I ) be a point
where the minimum of the distance from γ (t) to V (I ) is achieved. Let q(t) ∈ Lλ(t). Evidently
dist(γ (t), q(t)) ≥ ∥λ(t)∥. Therefore

dist(γ (t), V (I ) ∩ L)

(dist(γ (t), V (I )))
1
Ñ

≤
dist(γ (t), q(t)) + dist(q(t), V (I ) ∩ L)

(dist(γ (t), q(t)))
1
Ñ

≤ 1 + ∥λ(t)∥−
1
Ñ · dist(q(t), V (I ) ∩ L) ≤ 1 + C̃

1
Ñ , (24)

where C̃ is the same constant as in (23). So it is enough to take N = Ñ M in (22).
To prove Lemma 15, we will bring F into Weierstrass form and use the following quantitative

statement about the continuous dependence of a root of a polynomial on its coefficients.

Lemma 16. Let P(z) = zN
+

N−1
k=0 aN−k zk be a polynomial with roots at zk, k = 1, . . . , N

with |zk | ≤ 1/2. Let P̃(z) =
N−1

k=0 bN−1−k zk be another polynomial of degree at most N − 1,
with


|bk | ≤ δ < 2−N . Then any root of P + P̃ is of distance at most δ1/N from the roots

of P.

Proof. Take any point z of distance more than δ1/N from the roots of P . Then evidently |P(z)| =
|z −zk | ≥ δ. Since |z| < 1 by the choice of δ, we have

P̃(z)
 < δ. Therefore, by the argument

principle, the N zeros of P + P̃ lie in a δ1/N -neighborhood of the roots of P . �

6.1. Choosing Weierstrass coordinates on the leaf L

Replacing V1, V2 by their linear combinations, we can assume that F is not identically zero
on the trajectory of V2 passing through p on the leaf L, and, moreover, that the branches of F |L
at p are not tangent to this trajectory.

Let us choose coordinates (x, y, λ) with the origin at p in such a way that ∂y = V2. Then,
after a multiplication by a unit, F = F(x, y, λ) becomes a Weierstrass polynomial Fx,λ(y) in y.
The degree NF of F in y is effectively bounded by Gabrielov [3]: it is just a multiplicity at the
origin of the restriction of F on the trajectory of V2, as in Remark 9. This degree will be equal to
the degree Ñ in Lemma 15.

Let {y = φi (x)} be the branches of F = 0 at the origin on the leaf λ = 0. Let us choose
R ∈ (0, 1/2] such that for every θ ∈ [0, 2π ] the distances |φi (teiθ ) − φ j (teiθ )| grow monoton-
ically as t ∈ [0, R] grows.

6.2. Shadowing

Define C as the speed of change of the coefficients a j (x, λ) of Fx,λ(y) =
Ñ

j=0 aÑ− j (x, λ)y j

as λ changes,

C = sup
j

sup
|x |≤R

sup
|λ|≤λ0

a j (x, 0) − a j (x, λ)

λ

1/Ñ

. (25)

We will prove Lemma 15 by contradiction. Let p = (x1, y1, λ) ∈ V (I ) be a point where the
inequality (23) with Ñ = NF and the constant C̃ = (2NF + 1)C is violated. By increasing |x0|

and keeping λ fixed, we will construct a point p̃ = (x̃, ỹ, λ) ∈ V (I ) with |x̃ | = R which is
Cλ1/NF -close to {F |L = 0} \ V (I ).
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Supposing we have constructed such a point p̃(λ) for each sufficiently small λ, consider a
point of accumulation of the set of the points p̃(λ) as λ → 0. By closedness, it lies in V (I ). On
the other hand, it must lie in the set of components of {F |L = 0}∩ {|x | = R} disjoint from V (I ).
This is impossible, since these two sets do not intersect. This contradiction proves Lemma 15.

We proceed with the construction of p̃. For a point q = (x, y, λ), we define its shadow as the

point
◦
q = (x, y, 0).

The projection of {F = 0} ∩ Lλ to {y = 0} ∩ Lλ is a ramified cover for all sufficiently
small λ. Furthermore, by our assumption, V (I ) ∩ Lλ is a union of components of this cover, as
it contains no isolated points. Therefore, there is a continuous family p(t) = (xt , yt , λ) ∈ V (I ),
with xt = t x0, 1 ≤ t ≤ t1 = R/|x0|, such that p̃ = p(R/|x0|) lies in |x | = R. We claim that

◦

p(t) is Cλ1/NF -close to {F |L = 0} \ V (I ) for all t .

By Lemma 16,
◦

p(t) is Cλ1/NF -close to St = {(xt , y, 0)|F(xt , y, 0) = 0}, as F(p(t)) = 0
for all t . On the line {x = xt , λ = 0}, consider the union Ut of Ñ discs of radius Cλ1/NF with
centers at points of St .

For t = 1, the connected component of Ut containing the point
◦
p does not contain points of

V (I ). Otherwise, the distance from
◦
p to V (I ) would be less than 2NF Cλ1/NF , and thus the

distance from p to V (I ) would be less than C̃λ1/NF , contrary to our assumption that p does not
satisfy (23).

By choice of R, as t grows, the distances between the centers of discs grow as well, so the

connected components of Ut cannot join. This means that for all t the point
◦

p(t) remains in a
connected component of Ut disjoint from V (I ).

Let p̃ =
◦

p(t) where t = R/|x0|. By the above, p̃ ∈ V (I ) is Cλ1/NF -close to {F |L =

0} \ V (I ), thus concluding our construction, and with it the proof of Lemma 15.
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Appendix

The statement of Lemma 13 involves the integral closure of the ideal I |L. Integral closure does
not affect the multiplicity of an ideal, so for our purposes this makes little difference. However,
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it is not clear that this closure is necessary — in fact, we believe that a similar result should hold
without taking integral closures.

While we are currently not able to prove this result, we were able to prove it in a special case
where the components of non-isolated intersection near p are simple. More accurately, we prove
the following.

Lemma 17. Let I ⊂ C[X ] be a radical ideal of known complexity, and suppose that every
intersection of I and F is non-isolated. Assume that ⟨I, V1 I, V2 I ⟩ has an isolated intersection
at p.

Let I ⊂ O p(L) denote the ideal of functions vanishing on V (I ) ∩ L. Then

I N
⊂ I |L (26)

for some N effectively bounded from above.

Proof. Since V (I ) ∩ L has only non-isolated components, it follows that

I = ⟨h⟩, h ∈ O p(L). (27)

We will prove that there exists a function H ∈ Oan(X) such that H |L divides h2µ
and V (I ) ⊂

V (H), where µ is the order of h at p. Since I is radical, it will follow that H ∈ Ian, and therefore

I 2µ

= ⟨h2µ

⟩ ⊂ ⟨H |L⟩ ⊂ I |L, (28)

as claimed.
We proceed with the construction of H . By the assumption that ⟨I, V1 I, V2 I ⟩ has an isolated

intersection at p, it follows that, for every irreducible component of h, we can choose a generator
G of I such that G|L contains this component with multiplicity one. Taking F to be a generic
linear combination of the generators, we get

F |L = f h, f ∈ O p(L), (29)

with f, h coprime in O p(L).
Let (x, y) denote a system of coordinates on L, and let (z) denote the coordinates parame-

terizing the leaves, with p being the origin and L = {z = 0}. Possibly making a linear change
of coordinates in (x, y), we may assume that the projection π : (x, y, z) → (x, z) restricted to
{F = 0} defines a ramified covering map in a neighborhood of the origin.

Fix an annulus Ax around the origin in (x), a sufficiently small disc Dy in (y), and a suf-
ficiently small point x0 ∈ Ax . Then the x0-fibre of π restricted to {F = 0} ∩ L is a discrete
set B parameterizing the branches of F on L. We write B as the disjoint union of branches
corresponding to h and f , B = Bh ⨿ B f .

On L, one may express the branches of {F = 0} as multi-valued functions yb(x) for b ∈ B de-
fined on Ax . Furthermore, since the h-branches of F are simple, for b ∈ Bh and z in a sufficiently
small polydisc Dz these functions extend as holomorphic functions yb(x, z) on Ax × Dz .

We will call a set S ⊂ B monodromic if it is invariant under the monodromy of Ax on L.
Assume now that S in monodromic and that S ⊂ Bh , and consider the function

FS(x, y, z) =


yb:b∈S

(y − yb(x, z)). (30)

By continuity, the Ax -monodromy is constant for sufficiently small z. Shrinking Dz if neces-
sary, we conclude that FS is a single-valued function on Ax × Dy × Dz . We develop FS as a
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Puiseux series in Ax , and let F ′

S denote the holomorphic part obtained by removing all negative
and fractional terms. The result is a holomorphic function in a neighborhood of p.

On L, the functions yb actually extend from Ax to the punctured disc of the same radius,
as the only ramification point occurs at the origin. Furthermore, since S is assumed to be mon-
odromic on L, it follows that FS|L is single valued and holomorphic outside the origin. Since it is
bounded, it extends holomorphically at the origin well. Since S ⊂ Bh , we see that FS|L divides h.

On nearby leaves, the functions yb may exhibit several ramification points (as the ramification
at the origin on L may bifurcate). But suppose that for a certain nearby leaf Lz0 the set S happens
to be monodromic with respect to the full monodromy in the (x) variable. Then, arguing just as
we did for the leaf L, we deduce that FS is in fact holomorphic on Lz0 . Hence for such leaves
we have FS|Lz0

≡ F ′

S|Lz0
.

Now define the function H as follows:

H =


S⊂Bh monodromic

F ′

S . (31)

As a product of holomorphic functions, H is holomorphic in a neighborhood of p.
On L, we have shown that, for monodromic S ⊂ Bh , F ′

S ≡ FS and FS|L divides h. The
number of monodromic sets is certainly bounded by |P(Bh)| = 2µ, and we deduce that H |L
divides h2µ

.
It remains to show that H vanishes on V (I ) (at least in a sufficiently small neighborhood of

the origin). Consider a fixed value of z0 ∈ Dz . By assumption, all intersections of V (I ) with Lz0

are non-isolated, so V (I )|Lz0
necessarily consists of some set Sz0 of branches. This set, being

the set of branches of an analytic set on Lz0 , is necessarily monodromic.
We claim that, for sufficiently small z0, Sz0 ⊂ Bh . Otherwise, V (I )|Lz0

contains branches
from B f for arbitrarily small values of z0. Then, since V (I ) is closed, V (I )|L contains branches
of f = 0, which is impossible, since f and h are coprime.

To conclude, Sz0 is monodromic and Sz0 ⊂ Bh , and hence as we have seen that FS|Lz0
≡

F ′

S|Lz0
. Since FSz0

vanishes on V (I )|Lz0
by definition, and F ′

Sz0
is a factor of H , we conclude that

H vanishes on V (I )|Lz0
. Since this is true for any sufficiently small z0, the claim is proved. �
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