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REDUNDANT PICARD–FUCHS SYSTEM FOR ABELIAN
INTEGRALS

D. NOVIKOV∗, S. YAKOVENKO†

Abstract. We derive an explicit system of Picard–Fuchs differential equa-
tions satisfied by Abelian integrals of monomial forms and majorize its coef-
ficients. A peculiar feature of this construction is that the system admitting

such explicit majorants, appears only in dimension approximately two times
greater than the standard Picard–Fuchs system.

The result is used to obtain a partial solution to the tangential Hilbert
16th problem. We establish upper bounds for the number of zeros of arbitrary

Abelian integrals on a positive distance from the critical locus. Under the
additional assumption that the critical values of the Hamiltonian are distant

from each other (after a proper normalization), we were able to majorize the
number of all (real and complex) zeros.

In the second part of the paper an equivariant formulation of the above
problem is discussed and relationships between spread of critical values and
non-homogeneity of uni- and bivariate complex polynomials are studied.
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1. Tangential Hilbert Sixteenth Problem, complete Abelian
integrals and Picard–Fuchs equations

The main result of this paper is an explicit derivation of the Picard–Fuchs system
of linear ordinary differential equations for integrals of polynomial 1-forms over level
curves of a polynomial in two variables, regular at infinity.

The explicit character of the construction makes it possible to derive upper
bounds for the coefficients of this system. In turn, application of the bounded
meandering principle [18, 16] to the system of differential equations with bounded
coefficients allows to produce upper bounds for the number of complex isolated
zeros of these integrals on a positive distance from the ramification locus.

1.1. Abelian integrals and tangential Hilbert 16th problem. If H(x, y) is
a polynomial in two real variables, called the Hamiltonian, and ω = P (x, y) dx +
Q(x, y) dy a real polynomial 1-form, then the problem on limit cycles appearing in
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the perturbation of the Hamiltonian equation,

dH + εω = 0, ε ∈ (R, 0) (1.1)

after linearization in ε (whence the adjective “tangential”) reduces to the study of
complete Abelian integral

I(t) = I(t; H,ω) =
∮

H=t

ω, (1.2)

where the integration is carried over a continuous family of (real) ovals lying on the
level curves {H = t}.

Problem 1 (Tangential Hilbert 16th problem). Place an upper bound for the num-
ber of real zeros of the Abelian integral I(t; H,ω) on the maximal natural domain
of definition of this integral, in terms of deg H and deg ω = max(deg P, deg Q) + 1.

A more natural version appears after complexification. For an arbitrary complex
polynomial H(x, y) having only isolated critical points, and an arbitrary complex
polynomial 1-form ω, the integral (1.2) can be extended as a multivalued analytic
function ramified over a finite set of points (typically consisting of critical values of
H). The problem is to place an upper bound for the number of isolated complex
roots of any branch of this function, in terms of deg H and deg ω.

1.2. Abelian integrals and differential equations. Despite its apparently alge-
braic character, the tangential Hilbert problem still resists all attempts to approach
it using methods of algebraic geometry. Almost all progress towards its solution so
far was based on using methods of analytic theory of differential equations.

In particular, the (existential) general finiteness theorem by Khovanskĭı–Var-
chenko [13, 25] claims that for any finite combination of d = deg ω and n = deg H
the number of isolated zeros is indeed uniformly bounded over all forms and all
Hamiltonians of the respective degree. One of the key ingredients of the proof is
the so called Pfaffian elimination, an analog of the intersection theory for varieties
defined by Pfaffian differential equations [14].

Another important achievement, an explicit upper bound for the number of
zeros in the elliptic case when H(x, y) = y2 + p(x), deg p = 3 and forms of
arbitrary degree, due to G. Petrov [22], uses the fact that the elliptic integrals
Ik(t) =

∮
xk−1y dx, k = 1, 2, in this case satisfy an explicit system of linear first

order system of differential equations with rational coefficients. This method was
later generalized for other classes of Hamiltonians whose level curves are elliptic
(i.e., of genus 1), see [11, 8, 28] and references therein.

In [17] the authors constructed a linear differential equation satisfied by all
Abelian integrals of 1-forms of degree 6 d and obtained using the tools from [12]
an asymptotically exponential in d upper bound for tangential Hilbert problem.

The ultimate achievement in this direction is a theorem by Petrov and Khovan-
skii, placing an asymptotically linear in deg ω upper bound for the number of zeros
of arbitrary Abelian integrals, with the constants being uniform over all Hamil-
tonians of degree 6 n (unpublished). However, one of these constants is purely
existential: its dependence on n is totally unknown.

It is important to remark that all the approaches mentioned above, require a very
basic and easily obtainable information concerning the differential equations (their
mere existence, types of singularities, polynomial or rational form of coefficients, in
some cases their degree).
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1.3. Meandering of integral trajectories. A different approach suggested in
[15] consists in an attempt to apply a very general principle, according to which
integral trajectories of a polynomial vector field (in Rn or Cn) have a controllable
meandering (sinuosity), [18, 16]. More precisely, if a curve of known size is a part of
an integral trajectory of a polynomial vector field whose degree and the magnitude
of the coefficients are explicitly bounded from above, then the number of isolated
intersections between this curve and any affine hyperplane in the ambient space
can be explicitly majorized in terms of these data. The bound appears to be
very excessive: it is polynomial in the size of the curve and the magnitude of the
coefficients, but the exponent as the function of the degree and the dimension of
the ambient space, grows as a tower (iterated exponent) of height 4.

In order to apply this principle to the tangential Hilbert problem, we consider
the curve parameterized by the monomial integrals,

t 7→ (I1(t), . . . , IN (t)), Ii(t) =
∮

H=t

ωi,

where ωi, i = 1, . . . , N are all monomial forms of degree 6 d. Isolated zeros of
the Abelian integral of an arbitrary polynomial 1-form ω =

∑
i ciωi correspond to

isolated intersections of the above curve with the hyperplane
∑

ciIi = 0. If this
monomial curve is integral for a system of polynomial differential equations with
explicitly bounded coefficients, then the bounded meandering principle would yield
a (partial) answer for the tangential Hilbert 16th problem.

The system of polynomial (in fact, linear) differential equations can be written
explicitly for the case of hyperelliptic integrals corresponding to the Hamiltonian
H(x, y) = y2 +p(x) with an arbitrary univariate potential p(x) ∈ C[x], see §2 below
and references therein. Application of the bounded meandering principle allowed
us to prove in [15] that the number of zeros of hyperelliptic integrals is majorized
by a certain tower function depending only on the degrees of n = deg H = deg p
and d = deg ω. (Actually, it was done under an additional assumption that all
critical values of p are real, but we believe that this restriction is technical and can
be removed).

1.4. Picard–Fuchs equations and systems of equations. In order to general-
ize the construction from [15] for the case of arbitrary (not necessarily hyperelliptic)
Hamiltonians it is necessary, among other things, to write a system of polynomial
differential equations for Abelian integrals and estimate explicitly the magnitude
of its coefficients.

The mere existence of such a system is well known since times of Riemann if not
Gauss. In today’s language, the monodromy group of any form depends only on
the Hamiltonian. Denote by µ the rank of the first homology group of a typical
affine level curve {H = t} ⊂ C2. Then for any collection of 1-forms ω1, . . . , ωµ the
period matrix X(t) can be formed, whose entries are integrals of ωi over the cycles
δ1(t), . . . , δµ(t) generating the homology. If the determinant of this matrix if not
identically zero, then X(t) satisfies a linear ordinary differential equation of the
form

Ẋ(t) = A(t)X(t), A(·) ∈ Matµ×µ(C(t)), (1.3)

with a rational matrix function A(t). This system of equations is known under
several names, from Gauss–Manin connection [21, especially p. 18] to Picard–Fuchs
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system (of linear ordinary differential equations with rational coefficients, in full).
We shall systematically use the last name.

The rank of the first homology can be easily computed: for a generic Hamiltonian
of degree n + 1 it is equal to n2. The degree deg A(t) can be relatively easily
determined if the degrees of the forms ωi are known. However, the choice of the
forms ωi may also be a difficult problem for some Hamiltonians. The matrix A(t)
apriori may have poles not only in the ramification points of the Abelian integrals,
which leads to additional difficulties. But worst of all, this topological approach
gives absolutely no control over the magnitude of the (matrix) coefficients of the
rational (matrix) function A(t).

1.5. Regularity at infinity and Gavrilov theorems. Part of these problems
can be resolved. In particular, if the Hamiltonian is sufficiently regular at infinity,
then all questions concerning the degrees, can be answered.

Definition 1. A polynomial H(x, y) ∈ C[x, y] of degree n + 1 is said to be regular
at infinity , if one of the three equivalent conditions holds:

(1) its principal homogeneous part Ĥ, a homogeneous polynomial of degree
n + 1, is a product of n + 1 pairwise different linear forms;

(2) Ĥ has an isolated critical point (necessarily of multiplicity µ = n2) at the
origin (x, y) = (0, 0);

(3) the level curve {Ĥ = 1} ⊂ C2 is nonsingular.

This condition means that after the natural projective compactification of the
(x, y)-plane C2, all “interesting” things still happen only in the finite part of the
compactified plane. In particular, for a polynomial regular at infinity:

(1) all level curves {H = t} intersect the infinite line CP 1
∞ ⊂ CP 2 transversally,

(2) all critical points {(x, y) : dH(x, y) = 0} are isolated and their number is
exactly µ = n2 if counted with multiplicities,

(3) the rank of the first homology of any regular affine level curve {H = t} is
µ = n2,

(4) the map H : C2 → C1 is a topological bundle over the set of the regular
values of H, hence the Abelian integrals can be ramified only over the
critical values of H.

In [6, 7] L. Gavrilov proved that for polynomials regular at infinity, the space of
Abelian integrals is finitely generated as a C[t]-module by µ basic integrals that can
be chosen as integrals of any ν forms ωi of degree 6 2n whose differentials form the
basis of the quotient space Λ2/dĤ∧Λ1, where Λk is the space of polynomial k-forms
on C2. This assertion is a global analog of the local result due to E. Brieskorn and
M. Sebastiani [4, 24].

As a corollary, it follows that the collection of these basic integrals satisfies a
system of equations (1.3) of size µ×µ with µ = n2, and it is easy to place an upper
bound for the degree of the corresponding matrix function A(t). This system is
minimal (irredundant): generically (for Morse Hamiltonians regular at infinity),
all branches of full analytic continuation of an Abelian integral span exactly µ-
dimensional linear space.

From this theorem one can also derive further information concerning the Picard–
Fuchs system. Namely, one can prove that if in addition to being regular at infinity,
H is a Morse function on C2, then the matrix A(t) of the Picard–Fuchs system
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(1.3) has only simple poles (Fuchsian singularities) at the critical values of the
Hamiltonian and only at them (the point t = ∞ is a regular though in general
non-Fuchsian singularity).

However, these results do not yet allow an explicit majoration of the coefficients
(e.g., the residue matrices) of the matrix function A(t) in (1.3).

1.6. Redundant Picard–Fuchs system: the first main result. We suggest
in this paper a procedure of explicit derivation of the Picard–Fuchs system of
equations, based on the division by the gradient ideal 〈Hx,Hy〉 ⊂ C[x, y] in the
polynomial ring. It turns out that if instead of choosing µ = n2 forms of degree
6 2n constituting a basis modulo the gradient ideal, one takes all ν = n(2n − 1)
cohomologically independent monomial forms of degree 6 2n, then the resulting
Picard–Fuchs system can be written in the (generalized) hypergeometric form [2]

(tE −A)Ẋ(t) = BX(t), A, B ∈ Matν×ν(C), (1.4)

where E is the identity matrix, and X(t) is the rectangular period ν × µ-matrix.
The procedure of deriving the system (1.4), being completely elementary, can

be easily analyzed and upper bounds for the matrix norms ‖A‖ and ‖B‖ derived.
These bounds depend on the magnitude of the all non-principal terms H − Ĥ of
the Hamiltonian, relative to the principal part Ĥ.

More precisely, we introduce a normalizing condition (quasimonicity) on the ho-
mogeneous part: this condition plays the same role as the assumption that the
leading term has coefficient 1 for univariate polynomials. The quasimonicity con-
dition can be always achieved by an affine change of variables, provided that H
is regular at infinity, hence it is not restrictive. Theorem 2, our first main result,
allows to place an upper bound for the norms ‖A‖+‖B‖ in terms of the norm (sum
of absolute values of all coefficients) of the non-leading part H − Ĥ, assuming that
H is quasimonic.

1.7. Corollaries: theorems on zeros. The above information on coefficients of
Picard–Fuchs system already suffices to apply the bounded meandering principle
and obtain an explicit upper bound for the number of zeros of complete Abelian
integrals away from the critical locus of the Hamiltonian (Theorem 3), which seems
to be the first known explicit result of that kind.

In addition to this bound valid for some zeros and almost all Hamiltonians, one
can apply results (or rather methods) from [23]. If in addition to the quasimonicity
and bounded lower terms, all critical values t1, . . . , tµ of the Hamiltonian H are far
away from each other (i.e., a lower bound for |ti − tj | is known for i 6= j), then
one can majorize the number of zeros on any branch of the Abelian integral by a
function depending only on n, d and the minimal distance between critical values.
The accurate formulation is given in Theorem 4.

1.8. Equivariant formulation. However, the description given by Theorem 2,
is not completely sufficient for further advance towards solution of the tangential
Hilbert problem by studying zeros of Abelian integrals near the critical locus when
the latter (or some part of it) shrinks to one point of high multiplicity.

One reason is that in order to run an inductive scheme similar to that con-
structed in [15], one has to make sure that the Hamiltonian H : C2 → C1 can be
rescaled (using affine transformations in the preimage C2 and the image C1) so that
simultaneously :
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(1) the critical values of H do not tend to each other (e.g., their diameter is
bounded from below by 1), and

(2) the “non-homogeneous part” H − Ĥ is bounded by a constant explicitly
depending on n

(each of the two conditions can be obviously satisfied separately).
Another, intrinsic reason is the equivariance (or, rather precisely, non-invariance

of neither Theorem 2 nor Theorems 3 and 4) by the above affine group action. In
order to be geometrically sound, all assertions should be related to a certain privi-
leged affine chart on the t-plane. Since our future goal is to study a neighborhood
of the critical locus, it is natural to choose the privileged chart so that the critical
locus will not shrink into one point.

More detailed explanations and motivations are given in §4 below, where we for-
mulate several problems all in the following sense: for a polynomial whose principal
homogeneous part is normalized (in a certain sense) and whose critical values are ex-
plicitly bounded, it is required to place an upper bound for the “non-homogeneous”
part, eventually after a suitable translation (which does not affect the principal part,
naturally).

1.9. Geometry of critical values of polynomials. The reason why several prob-
lems of the above type were formulated instead of just one, is very simple: we do
not know a complete solution, so partial, existential or limit cases were considered
as intermediate steps towards the ultimate goal. In §5 we prove that:

• if a monic complex polynomial p(x) = xn+1 + · · · ∈ C[x] has all critical
values in the unit disk, then its roots form a point set of diameter < 11
(Theorem 6) and hence by a suitable translation the norm of the non-
principal part can be made 6 12n+1 (this gives a complete solution in the
univariate and hyperelliptic cases);

• all critical values of a Hamiltonian regular at infinity, cannot simultaneously
coincide unless the Hamiltonian is essentially homogeneous (Theorem 5);

• for any normalized principal part Ĥ there exists an upper bound for H−Ĥ
(eventually after a suitable translation), provided that the critical values of
H are all in the unit disk (Corollary to Theorem 5).

All these are positive results towards solution of the problem on critical values. It
still remains to compute the upper bound from the last assertion explicitly: the
proof below does not provide sufficient information for that.

However, it can be shown already in simple examples that this bound cannot
be uniform over all homogeneous parts. As some of the linear factors from Ĥ
approach too closely to each other, an explosion occurs and the non-principal part
may be arbitrarily large without affecting the “moderate” critical values. The
phenomenon can be seen as “almost occurrence” of atypical values, ramification
points for Abelian integrals that are not critical values of H: such points are known
to appear if the principal part Ĥ has a non-isolated singularity.

Acknowledgements. We are grateful to J. M. Aroca, F. Cano, J.-P. Françoise,
L. Gavrilov, Yu. Ilyashenko, A. Khovanskii, P. Milman, R. Moussu, R. Roussarie
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2. Picard–Fuchs system in the hyperelliptic case

2.1. Gelfand–Leray residue. The derivative of an Abelian integral
∮

H=t
ω can

be computed as the integral over the same curve of another 1-form θ called the
Gelfand–Leray derivative (residue). More precisely, if a pair of polynomial 1-forms
ω, θ satisfies the identity dω = dH ∧ θ, then for any continuous family of cycles δ(t)
on the level curves {H = t}

d

dt

∮
δ(t)

ω =
∮

δ(t)

θ, ∀δ(t) ⊂ {H = t} (2.1)

(the Gelfand–Leray formula). The identity remains true if θ is only meromorphic
but has zero residues after restriction on each curve H = t.

The identity between ω, dH and θ explains the standard notation θ = dω/dH:
to find θ, one has to divide dω by dH. In general this division is not possible in the
class of polynomial 1-forms, but one can always divide dω by dH with remainder :
the corresponding identity after integration will give a differential equation relating
Abelian integrals with their derivatives.

We illustrate this idea by deriving explicitly the Picard–Fuchs system for hy-
perelliptic Hamiltonians. In the hyperelliptic case the outlined approach yields a
complete and in some sense minimal (irredundant) system that could be in prin-
ciple derived by a number of different ways, e.g., as in [9]. Moreover, using the
explicit nature of Euclid’s algorithm of division of univariate polynomials, one can
produce explicit upper bounds for the magnitude of the coefficients of the resulting
equations, that are difficult (if possible at all) to obtain applying methods from [9].
The constructions from this section serve as a paradigm for further exposition §3.

2.2. Division by polynomial ideals and 1-forms. Let q1, q2 ∈ C[x, y] be a pair
of polynomials generating the ideal 〈q1, q2〉 ⊂ C[x, y] that has a finite codimension
µ. By definition, this means that there exist µ polynomials r1, . . . , rµ ∈ C[x, y]
(the remainders) such that any polynomial f ∈ C[x, y] admits representation v =
q1u2 − q2u1 +

∑µ
1 λiri with polynomials u1, u2 ∈ C[x, y] and constants λi ∈ C.

It is convenient to interpret this identity as a division formula for polynomial
2-forms: any polynomial 2-form Ω = f(x, y) dx ∧ dy can be divided by the given
1-form ξ = q1 dx + q2 dy with the “incomplete ratio” η = u1 dx + u2 dy and the
remainder that is a linear combination of the 2-forms Ωi = ri dx ∧ dy,

Ω = ξ ∧ η +
µ∑

i=1

λiΩi.

Denoting by Λk, k = 0, 1, 2, the modules (over the ring C[x, y]) of polynomial
k-forms on C2, we say that the tuple of 2-forms {Ωi}µ

1 generates the quotient
Λ2/ξ ∧ Λ1.

The gradient ideal 〈Hx,Hy〉 has a finite codimension provided that H is regular
at infinity. Applying the division formula in the particular case ξ = dH and Ω =
dω, where ω is a differential polynomial 1-form and representing the generators
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explicitly as Ωi = dωi for appropriate polynomial primitives ωi ∈ Λ1 yields the
divisibility

dω = dH ∧ η +
µ∑

i=1

λi dωi. (2.2)

This means that the Gelfand–Leray derivative of the form ω−
∑µ

1 λiωi can be found
in the class of polynomial 1-forms, η ∈ Λ1.

2.3. Appearance of Picard–Fuchs systems: the general scheme. The prim-
itive remainder 1-forms ωi from (2.2) are determined (non-uniquely) by the Hamil-
tonian H. The 2-forms H dωi are polynomial 2-forms that in turn can be divided
by dH as above, yielding the system of identities

H dωi = dH ∧ ηi +
µ∑

j=1

aijdωj , i = 1, . . . , µ, aij ∈ C. (2.3)

After taking the Gelfand–Leray residues and integration over any cycle δ(t) on
the level curve, we obtain a system of linear identities relating derivatives of the
integrals Ii =

∮
ωi with integrals of some other polynomial forms Ji =

∮
ηi:

tİi = Ji +
∑

j

aij İj . (2.4)

From Gavrilov theorems it already follows that the “quotient” integrals Ji can be
expressed as combinations of “remainder” integrals Ii with coefficients polynomial
in t; after substitution into the system (2.4) this would already yield a linear system
of differential equations with rational coefficients on Ii as functions of t. In some
cases (e.g., in the hyperelliptic case considered below) both the division and the
representation of Ji via Ii can be performed explicitly and bounds on the coefficients
of the resulting system obtained.

Alternatively, if H is regular at infinity then the polynomial forms ηi have the
same degree as ωi. If we increase the number of the forms ωi including all monomial
forms of a given degree n + 1, then ηj can be always represented as the linear
combinations of ωi with constant coefficients. After minor modifications this yields
the redundant system (1.4).

2.4. Derivation of the Picard–Fuchs system in the hyperelliptic case.
Throughout this section we assume that H(x, y) = 1

2y2 + p(x), where p ∈ C[x]
is a monic polynomial of degree n + 1 in one variable without the term xn: p(x) =
xn+1 + cn−1x

n−1 + · · · + c1x + c0. Denote by c the `1-norm of the string of its
non-principal coefficients, c = |c0|+ · · ·+ |cn−1|.

The gradient ideal and the corresponding quotient algebra in this case can be
easily computed:

〈Hx,Hy〉 = 〈p′(x), y〉 , C[x, y]/ 〈Hx,Hy〉 ' C[x]/ 〈xn〉 '
n⊕

k=1

Cxk−1,

so that the quotient algebra is an algebra of truncated univariate polynomials of
degree 6 n− 1. This observation motivates the following computation.
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Denote by ωi = xi−1y dx, i = 1, . . . , n, the differential 1-forms whose derivatives
dωi = xi−1 dx ∧ dy generate Λ2/dH ∧ Λ1. Then

H dωi =
(

1
2y2 + p(x)

)
xi−1 dx ∧ dy

=
[
1
2xi−1yHy + (bi(x)Hx + ai(x))

]
dx ∧ dy

=
(

1
2xi−1y dx− bi(x) dy

)
∧ dH + ai(x) dx ∧ dy

=
[

1
2ωi +

n∑
j=1

bijωj + d(ybj(x))
]
∧ dH +

n∑
j=1

aijdωj ,

where we used the following identities:
(i) division with remainder: the polynomial xi−1p(x) of degree n+ i is divided

out by p′(x) = Hx as

xi−1p(x) = bi(x)p′(x) + ai(x), deg bi 6 i, deg ai 6 n, (2.5)

(ii) the form bi(x) dy is represented as a linear combination of the basic forms
modulo an exact term:

bi(x) dy = d(ybi)− b′i(x)y dx =
i∑

j=1

bijx
j−1y dx + dFi, (2.6)

since the degree of b′i ∈ C[x] never exceeds i− 1;
(iii) the remainders ai(x) dx ∧ dy can be represented as linear combinations of

dωj :

ai(x) dx ∧ dy =
n∑

j=1

aijx
j−1 dx ∧ dy =

n∑
j=1

aij dωj . (2.7)

Integrating over closed ovals of the level curves H = t (so that the exact forms
dFi disappear) and using the Gelfand–Leray formula (2.1), we conclude with the
system of linear ordinary differential equations

tİi −
n∑

j=1

aij İj = 1
2Ii +

n∑
j=1

bijIj (2.8)

or, in the matrix form,

(tE −A)İ = BI, I ∈ Cn, A,B ∈ Matn×n(C), (2.9)

where, obviously, Ij(t) =
∮

ωj are the Abelian integrals and I = (I1, . . . , In) the
column vector.

Remark 1. The computation above does not depend on the choice of the cycle of
integration, therefore the system of equations will remain valid if we replace the
column vector I by the period matrix X(t) obtained by integrating all forms ωi over
all vanishing cycles δj(t), j = 1, . . . , n (see [1]) on the hyperelliptic level curves.

2.5. Spectral properties of matrices A and B. The matrices A,B can be
completely described using the division algorithm. The identities (2.5) imply the
following claim, which gives a complete description (eigenbasis and eigenvalues) of
A.

Proposition 1. Let x∗ ∈ C be a critical point of p and t∗ = p(x∗) the corresponding
critical value. Then the column vector (1, x∗, x

2
∗, . . . , x

n−1
∗ ) ∈ Cn is the eigenvector

of A with the eigenvalue t∗. �
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Corollary 1. If the potential p is a Morse polynomial, then A is diagonalizable
and its eigenvalues are the critical values of H. �

Entries of the matrix B can be described similarly: bij = 0 for j > i because of
the assertion about degrees of bj(x), so B is triangular. The diagonal entries can be
easily computed by looking at the leading terms: since p is monic, bi(x) = xi

n+1 +· · · ,
hence −b′i(x) = − i

n+1xi−1 + · · · . Substituting this to the formula (2.6), we obtain
a complete spectral description of the matrix B. Notice that the eigenvalues of B
coincide with the growth exponents of the hyperelliptic integrals

∮
y2+p(x)=t

xiy dx

as t → +∞ along, say, the positive semiaxis.

Proposition 2. The matrix B is always diagonalizable. Its spectrum consists of
the numbers 1

2 −
i

n+1 , i = 1, . . . , n. �

However, knowledge of the critical values of H is not yet sufficient to produce an
upper bound for the norms ‖A‖, ‖B‖, since the conjugacy by the Vandermonde ma-
trix (whose columns are the above eigenvectors (1, xj , x

2
j , . . . , x

n−1
j )T , j = 1, . . . , n)

may increase arbitrarily the norm of the diagonal matrix diag(t1, . . . , tn), where
tj are all critical values of H (or p, what is the same). On the contrary, a linear
change in the space of 1-forms that makes A diagonal, can increase in an uncon-
trollable way the norm of the matrix B, whose eigenbasis differs from the standard
one by a triangular transformation. It is the explicit division procedure that allows
to majorize the matrix norms.

2.6. Bounds for the matrix norms. For a polynomial p ∈ C[x] let ‖p‖ be the
sum of absolute values of its coefficients (we will refer to it as the norm, or `1-norm
of p). It has the advantage of being multiplicative, ‖pq‖ 6 ‖p‖ · ‖q‖.

Proposition 3. If q = xn + · · · ∈ C[x] is a monic polynomial with ‖q − xn‖ = c,
then any other polynomial f ∈ C[x] of degree d > n can be divided with remainder,

f(x) = b(x)q(x) + a(x), deg a 6 n− 1, (2.10)

so that

‖b‖+ ‖a‖ 6 K‖f‖, K = 1 + C + C2 + · · ·+ Cd−n, C = 1 + c = ‖q‖. (2.11)

Proof. The proof goes by direct inspection of the Euclid algorithm of univariate
polynomial division. The assertion of the Proposition is trivial for q = xn: in this
case the string of coefficients of r has to be split into two, and immediately we have
the decomposition r = bxn + a with ‖b‖+ ‖a‖ = ‖r‖.

The general nonhomogeneous case is treated by induction. Suppose that the
inequality (2.11) is valid for any polynomial f̃ of degree 6 d − 1 (for d = n − 1
it is trivially satisfied by letting b = 0 and a = f̃). Take a polynomial f of
degree d and write the identity f = bxn + a = bq + b(xn − q) + a = bq + f̃ ,
where the polynomial f̃ = a + b(xn − q) is of degree 6 d − 1 and has the norm
explicitly bounded: ‖f̃‖ 6 c‖b‖ + ‖a‖ 6 (1 + c)(‖b‖ + ‖a‖) 6 C‖f‖. By the
induction assumption, f̃ can be divided, f̃ = b̃q + ã, with the norms satisfying the
inequality (2.11). Collecting everything together, we have f = (b + b̃)q + ã and
‖b + b̃‖+ ‖ã‖ 6 ‖f‖+ C‖f‖(1 + C + · · ·+ Cd−1−n) 6 ‖f‖(1 + · · ·+ Cd−n). �
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As a corollary to this Proposition and the explicit procedure of the division,
we obtain upper bounds for norms of the matrices A,B. Recall that we use the
`1-norm on the “space of columns”, so the norm of a matrix A = (aij)n

i,j=1 is

‖A‖ = max
j=1,...,n

n∑
i=1

|aij | (2.12)

Theorem 1. Suppose that p(x) = xn+1 +
∑n−1

i=0 cix
i is a monic polynomial of

degree n + 1 and the non-principal part of p is explicitly bounded:
∑n−1

i=0 |ci| 6 c.
Then the entries of the matrices A,B determining the Picard–Fuchs system (2.9)

are explicitly bounded:

‖A‖+ ‖B‖ 6 n2(1 + C + · · ·+ Cn+1), C = 1 + c = ‖p‖. (2.13)

Proof. The derivative p′(x) is not monic, but the leading coefficient is explicitly
known: p′(x) = (n + 1)(xn + · · · ), with the non-principal part denoted by the dots
bounded by c in the sense of the norm. Applying Proposition 3 to q = p′/(n + 1),
we see that any polynomial can be divided by p′ and the same inequalities (2.11)
would hold (since n + 1 > 1).

Thus we have ‖bi‖+‖ai‖ 6 K‖xi−1‖‖p‖ = KC, where K = 1+C+· · ·+Cn, then
obviously ‖b′j‖ 6 n‖bj‖ and finally for the sum of matrix elements A,B occurring
in the ith line, we produce an upper bound 1

2 +
∑

j |bij | +
∑

j |aij | 6 nC(1 + C +
· · ·+Cn)+ 1

2 6 n(1+C + · · ·+Cn+1). Clearly, this means that every entry of these
matrices is majorized by the same expression and therefore for the matrix `1-norms
on Cn we have the required estimate. �

2.7. Digression: doubly hyperelliptic Hamiltonians. The algorithm suggest-
ed above, works with only minor modifications for doubly hyperelliptic Hamiltonians
having the form H(x, y) = p(x)+q(y) (the hyperelliptic case corresponds to q(y) =
1
2y2). Assume that n + 1 = degx p, m + 1 = degy q (there is no reason to require
that n = m).

In this case the quotient algebra by the gradient ideal is generated by nm mono-
mials xiyj , 0 6 i 6 n−1, 0 6 j 6 m−1. We claim that any collection of monomial
primitives ωij to the monomial 2-forms dωij = xiyj dx∧dy satisfies a system of nm
equations having the same form (2.9) though a different size. Indeed,

H dωij = p(x)xi dx ∧ yj dy − q(y)yj dy ∧ xi dx.

Dividing the 1-form p(x)xi dx with remainder by the 1-form dp(x), we express the
former as bi(x) dp(x) + ai(x) dx with deg bi 6 i + 1 6 n + 1, deg ai 6 n − 1 and
multiply the result by yj dy. The second term can similarly be rewritten involving
the representation q(y)yj = b∗j (y) dq + a∗j (y) dy. Putting everything together, we
conclude that

H dωij = [dp(x) ∧ bi(x)yj dy − dq(y) ∧ b∗j (y)xi dx] + [ai(x)yj − xia∗j (y)] dx ∧ dy.

Since dH = dp(x) + dq(y), we see that the first bracket is actually the wedge
product dH ∧ ηij , where ηij = bi(x)yj dy + b∗j (y)xi dx is a polynomial 1-form whose
differential

dηij =
(

∂bi

∂x
yj −

∂b∗j
∂y

xi

)
dx ∧ dy

has the coefficient of degree 6 i in x and 6 j in y and hence can be expanded as
a linear combination of the forms ωij modulo an exact form. The second bracket,
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being a 2-form with coefficient of degrees 6 n− 1 in x and 6 m− 1 in y, is a linear
combination of the forms dωij . Thus we have the equations

H dωij = dH ∧
( ∑

k,l=0

Bij,kl ωkl + dFij

)
+

∑
k,l

Aij,kl dωkl,

i, k = 0, . . . , n− 1, j, l = 0, . . . ,m− 1.

Rescaling x and y by appropriate factors independently , we can assume that the
polynomials p(x) and q(y) are both monic. Then all divisions will be bounded pro-
vided that the norms ‖p‖ and ‖q‖ are explicitly bounded, and in a way completely
similar to the arguments from §2.6, we can derive upper bounds for the matrix
coefficients Aij,kl, Bij,kl.

Thus the case of doubly hyperelliptic Hamiltonians does not differ much from the
ordinary hyperelliptic case, at least as far as the Picard–Fuchs systems for Abelian
integrals are concerned.

2.8. Discussion. The Picard–Fuchs system written in the form (2.9) for a generic
hyperelliptic Hamiltonian (with the potential p(x) being a Morse function on C),
is a system remarkable for several instances:

• it possesses only Fuchsian singularities (simple poles) both at all finite sin-
gularities t = tj , j = 1, . . . , n, and at infinity;

• it has no apparent singularities: all points tj are ramification points for the
fundamental system of solutions X(t) that is obtained by integrating all
forms ωi over all vanishing cycles δj(t) (the period matrix);

• it is minimal in the sense that analytic continuations of any column of the
period matrix X(t) along all closed loops span the entire space Cn.

• its coefficients can be explicitly bounded in terms of ‖H‖.
(All these observations equally apply to doubly hyperelliptic Hamiltonians.)

In the next section we generalize this result for arbitrary bivariate Hamiltoni-
ans. It will be impossible to preserve simultaneously all properties, and we shall
concentrate on the derivation of the redundant system, eventually exhibiting ap-
parent singularities, but all of them (including that at infinity) Fuchsian and with
explicitly bounded coefficients.

3. Derivation of the redundant Picard–Fuchs system

3.1. Notations and conventions. Recall that Λk denotes the space of polynomial
k-forms on C2 for k = 0, 1, 2. They will be always equipped with the `1-norms: the
norm of a form is always equal to the sum of absolute values of all its coefficients.
This norm behaves naturally with respect to the (wedge) product: for any two
forms η ∈ Λk, θ ∈ Λl, 0 6 k + l 6 2, we always have ‖η ∧ θ‖ 6 ‖η‖ · ‖θ‖.

It is also convenient to grade the spaces of polynomial forms so that the degree
of a k-form is the maximal degree of its (polynomial) coefficients plus k. Under
this convention the exterior derivation is degree-preserving: deg dθ = deg θ (unless
dθ = 0). An easy computation shows that ‖dθ‖ 6 deg θ · ‖θ‖ for any 0- and 1-form
θ. On several occasions the finite-dimensional linear space of k-forms of degree 6 d
will be denoted by Λk

d.
If ω ∈ Λ1 is a polynomial 1-form and H ∈ Λ0, then by dω/dH is always de-

noted the Gelfand–Leray derivative (2.1), while by dω
dx∧dy we denote the polynomial

coefficient of the 2-form dω.



14 D. NOVIKOV, S. YAKOVENKO

The space Λ2 sometimes will be identified with Λ0 ' C[x, y], the submodule
dH ∧ Λ1 with the gradient ideal 〈Hx,Hy〉 ⊂ C[x, y], and the quotient algebra as a
linear space over C with the quotient Λ2/dH ∧ Λ1.

3.2. Normalizing conditions and quasimonic Hamiltonians. In the ring C[x]
of univariate polynomials division by the principal ideal 〈p〉 is a linear operator
whose norm can be controlled in terms of ‖p‖ provided that the leading term of p is
bounded from below, in particular when the polynomial is monic (see the proof of
Proposition 3). The definition below introduces a generalization of this condition
for ideals in the ring C[x, y] of bivariate polynomials.

Recall that two homogeneous polynomials a, b ∈ C[x, y] of the same degree n
have no common linear factors if and only if their resultant is nonzero and hence
the Sylvester matrix is invertible. In this case an arbitrary homogeneous polyno-
mial f of degree 2n − 1 can be represented as f = au + bv with uniquely defined
homogeneous polynomials u, v of degree n− 1 each.

Definition 2. A pair of homogeneous polynomials a, b ∈ C[x, y] of degree n is said
to be normalized if the linear operator (u, v) 7→ au + bv restricted on the subspace
of pairs of homogeneous polynomials of degree n − 1, has the inverse of the unit
norm, in other words, if any homogeneous polynomial f of degree 2n − 1 can be
represented as f = au + bv with an explicit control over norms of the homogeneous
“ratios” u, v of degree n− 1:

f = au + bv, ‖u‖+ ‖v‖ 6 ‖f‖. (3.1)

Definition 3. A homogeneous polynomial 1-form η = a dx + b dy of degree n + 1
is normalized if its coefficients a, b ∈ C[x, y] form a normalized pair.

For nonhomogeneous objects we impose normalizing conditions on their principal
homogeneous part.

Definition 4. A polynomial 1-form ξ ∈ Λ1 of degree n is normalized at infinity , if
its principal homogeneous part ξ̂ is normalized.

A Hamiltonian H(x, y) ∈ C[x, y] of degree n + 1 is said to be normalized at
infinity or quasimonic, if dH is normalized at infinity in the sense of the previous
definition.

Remark 2. To be normalized at infinity has nothing to do with the `1-norm of a
form or Hamiltonian. We will mostly use the term “quasimonic”.

3.3. Balanced Hamiltonians. In order to simplify the calculations below, we
impose additional normalizing condition on H meaning that the non-principal (low
degree) terms are not dominating the principal part.

Definition 5. A Hamiltonian H ∈ C[x, y] will be called balanced , if it is quasimonic
(the principal homogeneous part Ĥ is normalized) and ‖H − Ĥ‖ 6 1.

For a balanced Hamiltonian, its differential dH is a 1-form that is (by definition)
normalized at infinity and differs from its principal homogeneous part dĤ by the
form of degree n and ‖dH − dĤ‖ 6 n.

The two conditions, normalization at infinity and that of balance between prin-
cipal and non-principal parts, can be obtained simultaneously by suitable affine
transformations. If the Hamiltonian H is regular at infinity, then after a suitable
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choice of λ ∈ C one can make any of the two polynomials, λH(x, y) or H(λx, λy) be-
ing normalized at infinity (the same refers to 1-forms). Furthermore, if H is already
quasimonic, one can always choose a suitable λ ∈ C so that λn+1H(λ−1x, λ−1y)
will be balanced while remaining quasimonic.

3.4. Lemma on bounded division. Division by a balanced 1-form is a linear
operator whose norm can be easily controlled.

Let ξ ∈ Λ1 be a polynomial 1-form of degree n + 1 normalized at infinity, with
the principal homogeneous part denoted by ξ̂.

Lemma 1. Any polynomial 2-form Ω ∈ Λ2 can be divided with remainder by ξ,

Ω = ξ ∧ η + Θ, (3.2)

where the remainder Θ ∈ Λ2 is a 2-form of degree 6 2n and the “incomplete ratio”
η ∈ Λ1 is a 1-form of degree deg Ω− deg ξ.

The decomposition (3.2) is in general non-unique. However, one can always find
η and Θ so that if ‖ξ − ξ̂‖ = c, then

‖η‖+ ‖Θ‖ 6 K‖Ω‖, K = (1 + C + · · ·+ Cd−2n), (3.3)

where C = c + 1 and d = deg Ω.

Proof. The proof reproduces almost literally the division algorithm for univariate
polynomials, see Proposition 3.

1. For a homogeneous form Ω = f dx ∧ dy of degree 2n + 1 the divisibility
Ω = ξ̂∧η by the homogeneous form ξ̂ = a dx+b dy is the same as the representation
(3.1) (recall that our convention concerning the degrees of the form means that in
this case deg f = 2n − 1). From the normalization condition it follows then that
‖η‖ = ‖u‖+ ‖v‖ 6 ‖f‖ = ‖Ω‖ simply by definition.

2. Writing the division identities for all monomial forms of degree 2n + 1, mul-
tiplying them by arbitrary monomials and adding results we see then that any
polynomial 2-form Ω containing no terms of degree 2n and less, can be divided by
ξ̂ and the norm of the “ratio” η̃ does not exceed ‖Ω‖. Finally, any form can be
represented as the sum of a “remainder” Θ̃, the collection of terms of degree 6 2n,
and the higher terms divisible by ξ̂.

All together this means that if ξ̂ is a homogeneous normalized 1-form of degree
n + 1, then any polynomial 2-form Ω can be divided out as

Ω = ξ̂ ∧ η̃ + Θ̃, ‖η̃‖+ ‖Θ̃‖ 6 ‖Ω‖, deg η̃ 6 deg Ω− deg ξ̂. (3.4)

3. To divide by a nonhomogeneous form ξ normalized at infinity, we first divide
by its principal part ξ̂ as in (3.4). Then

Ω = ξ ∧ η̃ + (ξ̂ − ξ) ∧ η̃ + Θ̃ = ξ ∧ η̃ + Ω̃. (3.5)

It remains to notice that ‖η̃‖ 6 ‖η̃‖ + ‖θ̃‖ 6 ‖Ω‖ and Ω̃ is a new 2-form whose
degree is strictly less than d = deg Ω, provided that d > 2n. Since the norm of ξ− ξ̂
is explicitly bounded by c, we have

‖Ω̃‖ 6 c‖η̃‖+ ‖Θ̃‖ 6 (1 + c)(‖η̃‖+ ‖Θ̃‖) 6 C‖Ω‖.
We may now continue by induction, accumulating the divided parts η̃ and reducing
the degrees of “incomplete remainders” Ω̃ until the latter become less or equal to
2n. More accurately, we use the inductive assumption to divide out Ω̃ = ξ ∧ η′ + Θ
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with ‖η′‖+ ‖Θ‖ 6 ‖Ω̃‖(1 + C + · · ·+ Cd−1−2n) 6 ‖Ω‖(C + C2 + · · ·+ Cd−2n) and
put η = η̃ + η′ so that Ω = ξ ∧ η + Θ. Since ‖η̃‖ 6 ‖Ω‖, we have ‖η‖ + ‖Θ‖ 6
‖η‖+ ‖η′‖+ ‖Θ‖ 6 (1 + C + · · ·+ Cd−2n)‖Ω‖. �

Corollary 2. If H is a balanced Hamiltonian of degree n + 1, then any polynomial
2-form Ω of degree 6 3n can be divided by dH,

Ω = dH ∧ η + Θ, ‖η‖+ ‖Θ‖ 6 (n + 1)n+1 · ‖Ω‖. (3.6)

Proof of the Corollary. It is sufficient to remark that for a balanced Hamiltonian
the form dH is normalized at infinity and the difference between dH and its prin-
cipal homogeneous part dĤ is of norm 6 n. �

3.5. Derivation of the redundant Picard–Fuchs system. Now we can write
explicitly a system of first order linear differential equations for Abelian integrals,
with coefficients explicitly bounded provided the Hamiltonian is balanced (i.e., its
lower order terms do not dominate the principal homogeneous part). The reason
why this system is called redundant, will be explained below.

Consider ν = n(2n − 1) monomial 2-forms Ωi spanning Λ2
2n, and let ωi ∈ Λ1

2n

be their monomial primitives (arbitrary chosen), dωi = Ωi, with unit coefficients so
that ‖ωi‖ = 1 and ‖dωi‖ 6 2n. Then any 2-form of degree 6 2n can be represented
as a linear combination of dωi, hence any 1-form of degree 6 2n admits represen-
tation as a linear combination of ωi, i = 1, . . . , ν modulo an exact differential.

Theorem 2. Let H be a balanced Hamiltonian of degree n + 1.
Then the column vector I = (I1(t), . . . , Iν(t)) of integrals of all monomial 1-

forms ωi of degree 6 2n over any cycle on the level curves {H(x, y) = t} satisfies
the system of linear ordinary differential equations

(tE −A)İ = BI, I = I(t) ∈ Cν , A, B ∈ Matν×ν(C). (3.7)

The norms of the constant matrices A,B are explicitly bounded:

‖A‖+ ‖B‖ 6 6n(n + 1)n+1. (3.8)

Remark 3. We use here the norms of matrices (2.12), associated with `1-norms on
the spaces of polynomials, as defined in (2.12).

Remark 4. As was already mentioned, the assumption that H is balanced, does not
involve loss of generality, since any Hamiltonian regular at infinity can be balanced
by appropriate affine transformation (see however the discussion below).

Proof of the Theorem. We start with a computation showing that the system can
be indeed written in the form (3.7): this derivation will be later slightly modified
to produce explicit bounds.

For any i = 1, . . . , ν the 2-form H dωi of degree 6 n + 1 + 2n can be divided out
with remainder by the form dH (which is, by assumption, normalized at infinity):

H dωi = dH ∧ ηi + Θi, deg ηi 6 deg dωi 6 2n, deg Θi 6 2n. (3.9)

Since 2-forms dωi span the whole space of 2-forms of degree 6 2n, every dηi and
Θi are linear combinations of dωj :

dηi =
ν∑

j=1

bij dωj , Θi =
ν∑

j=1

aij dωj ,
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with appropriate complex coefficients aij , bij forming two ν × ν-matrices A,B re-
spectively, and certain polynomials Fj ∈ C[x, y].

The first identity implies that ηi =
∑

j bijωj + dFi for suitable polynomials Fi.
Integrating over cycles on the level curves {H = t} and using the Gelfand–Leray
formula for derivatives, we conclude that

tİi =
∑

j

bijIj +
∑

j

aij İj , i, j = 1, . . . , ν,

which is equivalent to the matrix form (3.7) claimed above.
In order to place the upper bounds on the matrix norms ‖A‖ and ‖B‖, we

can use the bounded division lemma, but additional efforts are required. Indeed,
the normalization at infinity does not imply any upper bound on the norm of the
principal part ‖Ĥ‖, so the norm of the left hand side in (3.9) is apriori unbounded
and does not allow for application of Lemma 1.

To construct a system satisfying the inequalities (3.8), we decompose H into the
principal part Ĥ and the collection of lower terms h = H − Ĥ and treat two parts,
Ĥ dω and h dωi separately.

Let ρ ∈ Λ1
2 be the 1-form x dy − y dx with ‖ρ‖ = 2. Then by the Euler identity,

(n + 1)Ĥ dx ∧ dy = dĤ ∧ ρ, (3.10)

and therefore

Ĥ dωi =
dωi

dx ∧ dy
· Ĥ dx ∧ dy =

dωi

(n + 1) dx ∧ dy
· dĤ ∧ ρ = (dH − dh) ∧ η′i, (3.11)

where ‖η′i‖ 6 ‖dωi‖‖ρ‖/(n + 1) 6 2 · 2n/(n + 1) 6 4. Now the term H dωi can be
explicitly expanded as

H dωi = Ĥ dωi + h dωi = dH ∧ η′i − dh ∧ η′i + h dωi = dH ∧ η′i + Ω′i,

where ‖Ω′i‖ 6 ‖η′‖ ‖dh‖ + ‖h‖‖dωi‖ 6 4n + 2n = 6n and deg Ω′i 6 3n. Applying
Corollary 2, we write

Ω′i = dH ∧ η′′i + Θi

with ‖η′′i ‖+‖Θi‖ 6 6n(n+1)n+1 which together with the previous bounds for ‖η′i‖
would imply the inequality

‖ηi‖+ ‖Θi‖ 6 6(n + 1)n+2. (3.12)

for the identities (3.9)
Since all forms ωi, dωi are monomial with norms > 1, expanding ηi and Θi leads

to coefficients satisfying the conditions
µ∑

j=1

|aij | 6 ‖θi‖,
µ∑

j=1

|bij | 6 ‖Θi‖,

which gives the required bounds on ‖A‖ and ‖B‖. �

In order to incorporate the case of quasimonic but not balanced Hamiltonians,
we derive an obvious corollary.

Corollary 3. If H is quasimonic and the difference between H and its principal
homogeneous part Ĥ is explicitly bounded,

‖H − Ĥ‖ 6 c, (3.13)



18 D. NOVIKOV, S. YAKOVENKO

then one can choose the monomial forms so that the system (3.7) for their integrals
involves the matrices A,B satisfying the inequality

‖A‖+ ‖B‖ 6 6(n + 1)n+2 · cn+1. (3.14)

Proof. It is sufficient to make a transformation replacing the initial Hamiltonian
H(x, y) by c−(n+1)H(cx, cy). This will make H balanced and the main theorem
applicable. Notice that such transformation implies the change of time (the inde-
pendent variable) t 7→ c−(n+1) for the resulting system (3.7). With respect to the
original variable the system (3.7) will take the form with the same matrix B, and
A multiplied by cn+1. �

Remark 5. Note that the system in the non-balanced case is written for forms ωi in
general not satisfying the condition ‖ωi‖ = 1, as was the case with balanced Hamil-
tonians: the linear rescaling (x, y) 7→ (cx, cy) results in a diagonal transformation
that is in general non-scalar on the linear space of differential forms.

3.6. Abelian integrals of higher degrees. The system of differential equations
(3.7) holds for integrals of the basic monomial forms ωi generating all polynomial
differential 1-forms of degree 6 2n. To write an analogous system for integrals of
1-forms of higher degrees, one can use the fact that the integrals

∮
ωi generate the

space of all Abelian integrals as a free C[t]-module, provided that H is Morse and
regular at infinity, see [6]. More precisely, if deg ω = d, then for any cycle δ(t) on
the level curve {H = t} one can represent∮

δ(t)

ω =
ν∑

i=1

pi(t)
∮

δ(t)

ωi, pi ∈ C[t], (n + 1) deg pi + deg ωi 6 deg ω, (3.15)

(in fact, it is even sufficient to take any µ = n2 forms ωi whose differentials span
Λ2/dH ∧ Λ1).

Thus the linear span of all functions tkIj(t), j = 1, . . . , ν, 0 6 k 6 m =
bd/(n + 1)c, contains all Abelian integrals of forms of degree 6 d. The genera-
tors {tkIj(t)}16j6n

06k6m of this system satisfy a block upper triangular system of linear
first order differential equations obtained by derivation of (3.7):

(tE −A)
d

dt
(tkI) = B tkI + k(tE −A) tk−1I, k = 1, . . . ,m. (3.16)

This system can be written in the matrix form involving two constant (m + 1)ν ×
(m+1)ν-matrices exactly as (3.7) and the entries of these matrices will be explicitly
bounded, though this time the bounds and the size of the system will depend
explicitly on d. Nevertheless this allows to treat integrals of forms of arbitrary
fixed degree d exactly as integrals of the basic forms.

3.7. Properties of the redundant Picard–Fuchs system. Directly from the
form in which the system (3.7) was obtained, it follows that it has singular points
at all critical values t = tj of the Hamiltonian; the eigenvector corresponding to
the eigenvalue tj has coordinates dωi

dx∧dy (xj , yj), i = 1, . . . , ν. However, in general
(since µ < ν) these eigenvalues do not exhaust the spectrum of A.

The other eigenvalues of A actually depend on the division with remainder, that
is non-unique because the forms ωi are linear dependent in Λ2/dH ∧ Λ1. Thus
no invariant meaning can be associated with this part of the spectrum, and the
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corresponding singularities are apparent for the Abelian integrals (though other
solutions can apriori have singularities at these “redundant” points).

However, this freedom can be used to guarantee that all these singularities (both
“true” and “apparent”) can be made Fuchsian, by slightly perturbing the matrices.

Proposition 4. If H is a Morse function on C2, then the system (3.7) can be
constructed so that the matrix A has a simple spectrum while satisfying the same
inequalities as before.

Corollary 4. The redundant system (3.7) can be always constructed having only
Fuchsian singularities on the Riemann sphere.

Proof of the Corollary. The Fuchsian condition at infinity is satisfied automatically,
as the matrix function (tE − A)−1B has a simple pole at τ = 0 in the chart
τ = 1/t. The inverse (tE − A)−1 can be obtained by dividing the adjugate matrix
(a matrix polynomial of degree ν−1 in t) by the determinant of tE−A, i.e., by the
characteristic polynomial of A. As the latter has only simple roots by Proposition 4,
all poles of (tE −A)−1B at finite points are simple. �

Proof of the Proposition. Assume that the enumeration of the forms ωi is arranged
so that the first µ of them constitute a basis in Λ2/dH ∧ Λ1. The procedure of
division of the forms H dωi by dH can be altered to produce a unique answer, if we
require that the remainder is always a linear combination of only the first µ forms.
Moreover, instead of dividing the forms H dωi with µ + 1 6 i 6 ν, we will divide
the forms (H − λi) dωi with arbitrarily chosen constants λi ∈ C, i = µ + 1, . . . , ν:

H dωi −
µ∑

j=1

aijdωj ∈ dH ∧ Λ1, i = 1, . . . , µ,

(H − λi)dωi −
µ∑

j=1

aijdωj ∈ dH ∧ Λ1, i = µ + 1, . . . , ν.

After division organized in such a way, the matrix A of the system (3.7) obtained
after expanding the incomplete fractions, will have block lower-triangular form.
The upper-left block of size µ×µ has as before the eigenvalues t1, . . . , tµ, while the
lower-right block of size (ν − µ) × (ν − µ) is diagonal with λi being the diagonal
entries. Note that in this alternative derivation we lost control over the magnitude
of the coefficients of remainders and incomplete ratios.

Thus for the same column vector of Abelian integrals we have constructed two
essentially different systems of the same form (3.7) but with different pairs (A,B)
of ν × ν-matrices (the first bounded in the norm, the second with a predefined
spectrum). By linearity, any linear homotopy between the two systems will also
admit all Abelian integrals as solutions.

Consider such a homotopy parameterized by s ∈ [0, 1]. The eigenvalues of the
matrix A do depend algebraically on the parameter s. For s = 1 they are equal
to the critical values t1, . . . , tµ of H and arbitrarily prescribed values λµ+1, . . . , λν .
Since ti 6= tj and λi can be also chosen different from all tj and from each other,
the eigenvalues are simple for s = 1 and hence they remain pairwise different for
almost all values of s, in particular, for arbitrarily small positive s when the system
is arbitrarily close to the first system (of explicitly bounded norm). Perturbing in
that way achieves simplicity of the spectrum of the matrix A while changing the
norms of A,B arbitrarily small. �
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4. Zeros of Abelian integrals away from the singular locus and
related problems on critical values of polynomials

In this section we show how the explicitly derived hypergeometric system for
Abelian integrals allows to obtain partial solution of the tangential Hilbert 16th
problem. First we recall the general results on zeros of functions defined by poly-
nomial ordinary differential equations.

4.1. Meandering theorem and upper bounds for zeros of Abelian inte-
grals. A (scalar) linear ordinary differential equation with explicitly bounded coef-
ficients admits an explicit upper bound for the number of isolated (real or complex)
zeros of all its solutions, see [12, 26].

The system of equations (3.7) can be reduced to one linear equation of degree
6 ν2 with rational in t coefficients in such a way that any linear combination
u(t) =

∑ν
i=1 ciIi(t) of the integrals Ii(t) with constant coefficients c1, . . . , cν ∈ C,

will be a solution to this equation: it is sufficient to find a linear dependence between
any fundamental ν × ν-matrix X(t) and its derivatives up to order ν2 − 1 over the
field C(t) of rational functions.

Unfortunately, this procedure does not allow to place any bound on the mag-
nitude of coefficients of the resulting equation. Instead, in [16, Appendix B] we
described an algorithm of derivation of another linear equation of much higher or-
der, whose coefficients are polynomially depending on the coefficients of the initial
system (3.7). This algorithm is explicit, so that all degrees and coefficients admit
explicit upper bounds. As a result, the system (3.7) is reduced to a Fuchsian linear
differential equation of the form

∆`(t) u(`) + h`−1(t)∆`−1(t) u(`−1) + · · ·+ h1(t)∆(t) u′ + h0(t) u = 0, (4.1)

where ∆(t) = (t − t1) . . . (t − tν) is the characteristic polynomial of the matrix A
and all polynomial coefficients hi(t) ∈ C[t], i = 0, . . . , `−1, have degrees deg hi and
heights ‖hi‖ explicitly bounded by elementary functions of n. It is important to
note here that the bounds, though completely explicit, are enormously excessive,
being towers (iterated exponents) of height 4.

The coefficients of the equation (4.1) are explicitly bounded from above on the
complement to sublevel sets {|∆(t)| > ε} for every given positive ε > 0. At the
roots of ∆ (eigenvalues of A) the equation (4.1) has Fuchsian singularities, but the
eigenvalues of A that are not critical values of H, are apparent singularities for all
linear combinations of the Abelian integrals Ij (see §4).

Recall that Σ is the critical locus (collection of all critical values) of the Hamil-
tonian H. Let R be a finite positive number and KR b C r Σ the set obtained by
cutting the set

{t ∈ C : ∀j = 1, . . . , µ |t− tj | > 1/R, |t| < R} (4.2)

along no more than µ line segments to produce a simply connected compact “on
the distance 1/R from both Σ and infinity”.

Applying a general theorem on oscillations of solutions of linear equations with
bounded coefficients [18, 16, 26], we arrive to the following theorem.

Theorem 3 (see [16]). Let H be a balanced Hamiltonian of degree n + 1 and KR

a compact on distance 1/R from the critical locus of H in the sense of (4.2).
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Then the number of zeros inside KR of any Abelian integral of a form of degree
d does not exceed (2 + R)N , where N = N(n, d) is a certain elementary function
depending only on n and d.

The function N(n, d) can be estimated from above by a tower (an iterated expo-
nent) of four stories and certainly gives a very excessive bound. Yet we would like to
remark that this is absolutely explicit answer, involving no undefined (existential)
constants.

Remark 6. The necessity of cutting in the definition of KR is due to the fact that
Abelian integrals are multivalued and a choice of branch should be specified each
time when zeros are counted.

The coefficients of the equation (4.1) blow up as t → Σ, so no upper bound for
zeros can be derived from the general theorem [12]. However, if the singularity ti is
apparent and distant from all other points, say, at least by 1, then one can place an
upper bound on the coefficients of (4.1) on the boundary of the disk {|t− ti| = 1

2}
and then by [26, Corollary 2.7] the variation of argument of any solution along
the boundary can be explicitly bounded and by the argument principle, this would
imply an upper bound for the number of zeros also inside the disk, where the
coefficients are very large.

It turns out that a similar construction can be also carried out when ti is a true
(non-apparent) singularity, provided that it is of Fuchsian type and the spectrum
of the monodromy operator is on the unit circle.

Suppose that a function u(t) analytic in the punctured disk {0 < |t − ti| 6 1}
admits a finite representation u(t) =

∑
λ,k fk,λ(t)(t−ti)λ lnk(t−ti) with coefficients

fk,λ analytic in the closed disk {|t−ti| 6 1}, involving only real exponents λ. If this
function satisfies a linear ordinary differential equation (with a Fuchsian singularity
at t = ti) whose coefficients are explicitly bounded on the boundary circumference
of this disk, then it is proved in [26, Theorem 4.1] that any branch of u admits an
upper bound for the number of zeros in this disk in terms of the magnitude of the
coefficients on the boundary and the order of the equation (the first result of this
type was proved in [23]).

The assumption on the spectrum always holds for Abelian integrals, since the
above exponents λ are always rational [1] (in particular, equal to 1 for a Morse
critical value). Thus the above result (together with the bounded meandering
principle) can be applied to the tangential Hilbert problem provided that all critical
values of the Hamiltonian are at least 1-distant from each other. An arbitrary Morse
Hamiltonian one can rescaled to such form, yet the number mini 6=j |ti−tj | will enter
then into the expression for the bound.

By analogy with the previous result, denote by K∞ a simply connected open set
obtained by slitting C r Σ along rays connecting critical values with infinity.

Theorem 4. Let H be a balanced Hamiltonian of degree n+1, whose critical values
t1, . . . , tµ satisfy for some positive R < ∞ the condition

|ti − tj | > 1/R, |ti| 6 R ∀i 6= j.

Then the number of zeros inside K∞ of any Abelian integral of a form of degree
d does not exceed (2 + R)N ′

, where N ′ = N ′(n, d) is a certain elementary function
depending only on n and d.
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Sketch of the proof. Multiplying the Hamiltonian by R and applying the bounded
meandering principle to the Picard–Fuchs system (3.7), we construct a scalar lin-
ear equation of a very large order, satisfied by all Abelian integrals, so that its
coefficients are explicitly bounded on distance > 1 from the critical locus by an
expression polynomial in R as above.

To count zeros of Abelian integral inside the set K 1
2
, one can use Theorem 3.

The remaining part K∞ r K 1
2

consists of disjoint disks of radius 1/2 centered at
the critical values ti and slit along radii. Theorem 4.1 from [26] applies to ever
such disk and gives an upper bound for the number of zeros in these disks, thus
completing the proof. �

Note the difference between two apparently similar results: Theorem 3 gives a
uniform upper bound for the number of zeros in a certain domain (depending on
the Hamiltonian, but always nonvoid for Morse Hamiltonians regular at infinity).

On the contrary, Theorem 4 formally solves the tangential Hilbert problem for all
Morse Hamiltonians (giving an upper bound for the number of all zeros, wherever
they occur), but the bound is not uniform and explodes when the Hamiltonian
approaches the boundary of the set of Morse polynomials regular at infinity.

4.2. Discussion. The group of affine transformations of variables x, y acts natu-
rally on the space Hamiltonians and polynomial 1-forms, hence to be geometrically
sound, upper bounds for the number of zeros of Abelian integrals should be in-
variant by this action. In particular, the above mentioned “positive distance to the
critical locus” (resp., “distance between the critical values”) occurring in the formu-
lation of Theorems 3 and 4 should be invariant by affine rescaling of Hamiltonians.
Besides intrinsic considerations, the need for the bounds invariant by this action
is motivated by the future study of zeros of Abelian integrals near singularities
(cf. with [15]).

From the analytic point of view, the problem is in the choice of normalization
on the variety of Hamiltonians regular at infinity. The geometric invariance re-
quires this normalization to be imposed in terms of geometry of configurations
of the critical values of the Hamiltonians. On the other hand, the assertion of
Theorems 3 and 4 derived from the explicit form of the system (3.7), uses the
pre-normalization in terms of the coefficients of the Hamiltonian, more precisely,
the `1-norms of its nonhomogeneity (the difference between H and its principal
homogeneous part).

Thus in a natural way the problem on equivalence of the two normalizing con-
ditions arises. The rest of this section contains an accurate formulation of this
problem.

4.3. Affine group action and equivariant problem on zeros of Abelian
integrals. Consider the affine complex space of Hamiltonians H = Λ0

n+1 and the
space of 1-forms F = Λ1

d of a given degree d. The Abelian integrals are multivalued
functions on

(
(C×H) r Σ

)
×F , where Σ is the global discriminant ,

Σ ⊂ C×H, Σ = {(t, H) : t is a critical value of H}.

The group G2 of affine transformations of C2 and the group G1 of affine transfor-
mations of C1 act naturally on C×H,

(H, t)
g2,g17−→ (g1 ◦H ◦ g2, g1t),
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leaving Σ invariant. The problem of counting zeros of Abelian integrals should be
also formulated for subsets in (C×H) r Σ that are invariant by this action.

To achieve this equivariant formulation, we follow the ideology of normal forms
and choose a convenient representative from each orbit of the group action. To
factorize by the action of G1, we notice that any point set t1, . . . , tµ not reducible
to one point, can be put by a suitable affine transformation of C1 (or, what is
equivalent, by the choice of a chart t) to a configuration satisfying two conditions,

t1 + · · ·+ tµ = 0, max
t=1,...,µ

|tj | = 1, (4.3)

and such transformation is determined uniquely modulo rotation of C, preserving
the Euclidean metric on C ' R2. Any set K in (C × H) r Σ invariant by the
G1-action, leaves its trace on the t-plane as a subset K disjoint from the points
Σ = {tj}µ

1 and the distance from K to Σ measured in this privileged chart, is the
natural equivariant distance between K and Σ.

We arrive thus to the following equivariant formulation of the problem on zeros
of Abelian integrals, restricted in the sense that it concerns only zeros distant from
singularities (this terminology was recently suggested by Yu. Ilyashenko).

Problem 2 (Equivariant restricted tangential Hilbert 16th problem). Let H be
a Hamiltonian of degree n + 1 regular at infinity, whose critical values t1, . . . , tµ,
µ = n2, satisfy the normalizing conditions (4.3).

For any finite R > 0 it is required to place an upper bound for the number of
isolated zeros of Abelian integrals

∮
H=t

ω of any form of degree 6 d in the sets KR

as in (4.2). The bound should depend only on n, d and R.

4.4. From Theorem 3 to Equivariant problem. In order to derive from The-
orem 3 a solution to the equivariant problem, one should try to find in the orbit of
the G2-action on H a Hamiltonian as close to be balanced as possible.

Indeed, if for some affine transformation g ∈ G2 the Hamiltonian H̃ = H ◦ g
is already balanced, then integrals of any form ω over any level curve H = t are
equal to integrals of the form g∗ω over the curve H̃ = t (by the simple change of
variables in the integral). But as g : C2 → C2 is an affine map, the form g∗ω is
again a polynomial 1-form of the same degree as ω, while the new Hamiltonian H̃
is balanced. Hence Theorem 3 can be applied to produce the upper bound for the
number of zeros exactly in the form we need to solve the equivariant problem: the
result will be automatically a bound which is polynomial in R with the exponent
depending only on d and n.

In fact, it is sufficient to find in the G2-orbit of H a Hamiltonian H̃ that would
be quasimonic and whose difference from its principal homogeneous part Ĥ would
be of norm explicitly bounded in terms of n. Indeed, if H̃ is such a polynomial and
‖H̃ − Ĥ‖ 6 τ = τ(n), then the transformation

H̃(x, y) H∗(x, y) = τ−(n+1)H̃(τx, τy) (4.4)

will preserve the principal homogeneous part Ĥ while dividing all other terms by
appropriate positive powers of τ so that in any case ‖H∗ − Ĥ‖ 6 1. This means
that H∗ is balanced and Theorem 3 can be applied and will give a bound on zeros
1/R-distant from the critical locus of H∗ in terms of R,n, d as required. The
transformation (4.4) does not preserve the normalizing conditions (4.3), but the
conclusion of Theorem 3 can be rescaled to produce an upper bound on zeros
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1/τn+1R-distant from the (normalized) critical locus of H, by a suitable power of
Rτn+1, which will give a solution to the equivariant problem.

Recall that the balance condition consists of the two parts: the (quasimonic)
normalization of the principal homogeneous terms and the unit bound for the norm
of all non-principal terms. The first part can be easily achieved by a suitable
G2-action. Indeed, replacing H(x, y) by H(τx, τy), one can effectively multiply the
principal homogeneous part Ĥ by τn+1 and thus achieve the required normalization.

It will be convenient in the future not to change the principal part any more, once
it was made quasimonic. This means that the only remaining degree of freedom to
use is the group of translations of C2 (and rotations that do not affect norms).

Summarizing this discussion, we see that in order to derive from Theorem 3 the
equivariant restricted tangential Hilbert 16th problem (Problem 2), it would be
sufficient to solve the following problem.

Definition 6. For a quasimonic polynomial H with the principal part Ĥ we call
its effective nonhomogeneity the lower bound

κ(H) = inf
T∈G2

‖H ◦ T − Ĥ‖, T a translation of C2. (4.5)

Problem 3. Given a quasimonic Hamiltonian H of degree n + 1, whose critical
values satisfy the normalizing conditions (4.3), place an upper bound for the effective
nonhomogeneity κ(H).

This and related problem, completely independent from all previous considera-
tions, is discussed and partially solved in the next section.

5. Critical values of polynomials

It can be shown relatively easily that a quasimonic polynomial whose non-
principal part is bounded from above (in the sense of the norm), has all critical
values inside a disk of known radius shrinking to a point as the non-principal part
tends to zero (Proposition 6 below).

One might hope that a converse statement is also true: if all critical values of a
Hamiltonian H come very close to each other, then (eventually after appropriate
translations in the preimage and the image) H differs from its principal homoge-
neous part Ĥ by a small polynomial.

This fact indeed holds true for univariate (and hence hyperelliptic) polynomials,
where we were able to produce explicit inequalities between the diameter of the
critical locus diam Σ = maxi,j=1,...,µ |ti− tj | and the nonhomogeneity ‖H− Ĥ‖, see
Theorem 6 and Corollary 7.

Yet for the truly bivariate polynomials the problem turned out to be considerably
harder, and the best we were able to do is to show that for any fixed principal part
Ĥ the above two normalizations are equivalent , but as different linear factors of Ĥ
approach each other, the equivalence explodes.

5.1. Geometric consequences of quasimonicity. The normalizing condition at
infinity (for 1-forms and Hamiltonians) was introduced in purely algebraic terms as
an inequality imposed on the principal homogeneous part of a 1-form (resp., Hamil-
tonian). However, one can provide a simple geometric meaning to this condition.

Recall that if H is regular at infinity, then its principal homogeneous part Ĥ has
an isolated critical point at the origin. This means that the gradient ∇Ĥ never
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vanishes outside the origin, and in particular its minimal (Hermitian) length on
the boundary of the unit bidisk B = {|x| 6 1, |y| 6 1} ⊂ C2 is strictly positive.
Because of the homogeneity, this is sufficient to place a lower bound on the length
of ∇Ĥ everywhere on C2 r {0}.

Proposition 5. If Ĥ is normalized (quasimonic), then everywhere on the boundary
of the unit bidisk B the Hermitian length of ∇Ĥ is no smaller than 1.

Proof. Consider the part ∂B1 of the boundary ∂B which is given by the inequalities
|x| = 1, |y| 6 1 (the other part is treated similarly). The homogeneous polynomial
x2n−1 can be represented as aĤx + bĤy with ‖a‖ + ‖b‖ 6 1. Restricting this
on ∂B1 we see that the Hermitian product of the gradient ∇Ĥ = (Ĥx, Ĥy) and
the vector field V with coordinates (ā, b̄) is everywhere equal to 1 in the absolute
value. The Hermitian length of V at any point of ∂B1 can be easily majorized by√
|ā(x, y)|2 + |b̄(x, y)|2 which is no greater than

√
‖a‖2 + ‖b‖2 6 1 on ∂B1 = {|x| =

1, |y| 6 1}. But then by the Cauchy inequality, the length of ∇Ĥ cannot be smaller
than 1 on ∂B1. �

5.2. Almost-homogeneity implies close critical values. We begin by showing
that a quasimonic Hamiltonian whose non-principal part is bounded, admits an
upper bound for the moduli of critical values. This solves the problem inverse to
Problem 3.

Proposition 6. If H is a quasimonic Hamiltonian of degree n+1 with the principal
part Ĥ and ‖H − Ĥ‖ 6 1

n
√

2
, then the critical values of H are all in the disk

{|t| 6 3/n}.

Proof. Denote H = Ĥ + h. The gradient of each monomial of degree 6 n has the
Hermitian length bounded by n

√
2 on the unit bidisk B. Thus if ‖h‖ < 1

n
√

2
, then

∇h has its length strictly bounded by 1 everywhere in B.
By Proposition 5, the length of ∇Ĥ is at least 1 everywhere on the boundary of

B, so by the topological index theorem, all µ = n2 critical points of H must be be
inside B.

Note that a quasimonic principal part Ĥ admits no apriori upper bound on B
hence supB |Ĥ| can be arbitrary large. However, the critical values of H = Ĥ + h
can be explicitly majorized by the absolute value. Indeed, at any critical point
(x∗, y∗), the gradient of H vanishes so ∇Ĥ(x∗, y∗) = −∇h(x∗, y∗). By the Euler
identity, (n + 1) |Ĥ(x∗, y∗)| = |(x∗, y∗) · ∇Ĥ(x∗, y∗)| = |(x∗, y∗) · ∇h(x∗, y∗)| 6

√
2,

since the Hermitian length of ∇h(x, y) is explicitly bounded by 1 in B. Finally,
since |h(x, y)| 6 ‖h‖ 6 1

n
√

2
in B, we conclude that |H(x∗, y∗)| 6 |Ĥ(x∗, y∗)| +

|h(x∗, y∗)| 6
√

2
n+1 + 1

n
√

2
6 3/n

√
2 6 3/n. �

Thus when discussing the equivariant restricted Hilbert problem, only the other
direction (Problem 3) is interesting.

5.3. Dual formulation, limit and existential problems. Problem 3 that can
be considered as a constrained minimization problem in the space of polynomials
in two variables, admits reformulation in dual terms as follows.
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Problem 4 (dual to Problem 3). Given a quasimonic Hamiltonian H of effective
nonhomogeneity κ(H) = 1, place a lower bound on the diameter of its critical values

diam Σ = max
16i 6=j6µ

|ti − tj |.

Having solved this problem, one can easily derive from it by the rescaling argu-
ments as above a solution to Problem 3 and vice versa.

The dual formulation of Problem 4 allows a limit version: one is required to
show that if H cannot be reduced to a homogeneous polynomial by a translation,
i.e., κ(H) > 0, then diam Σ > 0, i.e., not all critical values coincide.

This limit problem can be settled.

Theorem 5. If a polynomial H(x, y) regular at infinity has only one critical value
(necessarily of multiplicity µ = n2), then by a suitable translations in the preimage
and the image H can be made homogeneous: H(x, y) = Ĥ(x + α, y + β) + γ, where
Ĥ is the principal homogeneous part of H.

We postpone the proof of Theorem 5 until §5.6, deriving first as a corollary an
existential solution of either of the two equivalent Problems 3 and 4.

Corollary 5. For a quasimonic Hamiltonian H = Ĥ + h of degree n + 1 there
exist two positive finite constants, α = α(Ĥ) and β = β(Ĥ), depending only on
the principal part Ĥ, such that the critical locus Σ = Σ(H) and the effective non-
homogeneity κ(H) are related as follows:

κ(H) > 1 =⇒ Σ ∩ {|t| > α} 6= ∅,

Σ ⊆ {|t| 6 1} =⇒ κ(H) 6 β.
(5.1)

Proof of the Corollary. Consider the affine space Hn ' C(n+1)(n+2)/2 of polynomi-
als of degree 6 n in two variables, and define two nonnegative functions on it,

f(h) = κ(Ĥ + h) = inf
T∈C2

‖T ∗(Ĥ + h)‖, g(h) =
∑

t∈Σ(Ĥ+h)

|t|2,

where T ranges over all translations of the plane T 2 and Σ(H) is the collection of
all critical values of the Hamiltonian H = Ĥ + h with the fixed principal part Ĥ.

Both functions, as one can easily see, are semilagebraic on C2 ' R4. From
Theorem 5 it follows that f(h) must vanish if g(h) = 0, i.e., that the zero locus of
g is contained in that of f .

By the  Lojasiewicz inequality, there exist two positive finite constants C, ρ > 0,
such that

f(h) 6 Cgρ(h), ∀h ∈ Hn.

From this inequality the assertion of the Corollary easily follows if we let β = Cnρ

and α = (nC)−1/2ρ. Since C, ρ depend only on the construction of f, g, that is, on
Ĥ, the Corollary is proved. �

Unfortunately, the proof gives no means to compute explicitly the bounds α and
β. Moreover, below we will show that they cannot be chosen uniformly over all
quasimonic principal parts.
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5.4. Parallel problems for univariate polynomials. One can easily formulate
analogs of all the above problems for univariate polynomials, in which case monic
rather than quasimonic polynomials are to be considered. Note that the critical
values of the hyperelliptic Hamiltonian H(x, y) = y2 + p(x) coincide with that of
the univariate potential p ∈ C[x], and also the effective nonhomogeneity (more
accurately, non-quasihomogeneity) of H coincides with that κ(p). Thus all results
proved below, are valid not only for univariate polynomials, but also for hyperelliptic
bivariate Hamiltonians.

The limit problem for this case is fairly elementary. It was solved by A. Chade-
man [5] as a step towards the existential solution of Problem 3 for univariate poly-
nomials (Corollary 6 below).

Proposition 7 (Chademan [5]). A complex polynomial that has only one critical
value at t = 0, is a translated monomial α(x− a)n+1.

Proof. Assuming without loss of generality that the polynomial p(x) is monic, we
can always write the derivative

p′(x) = (n + 1)(x− a1)ν1 · · · (x− ak)νk ,

where a1, . . . , ak are geometrically distinct critical points and all νk > 0. For any
j = 1, . . . , k the polynomial p can be expressed as the primitive of p′ integrated
from aj ,

p(x) = p(aj) +
∫ x

aj

p′(s) ds = 0 + (x− aj)νj+1qj(x), qj ∈ C[x],

in other words, p is divisible by (x − aj)νj+1. As this holds for all points aj ,
j = 1, . . . , k, hence deg p > deg p′ + k and therefore only one νj can be different
from zero. �

In the standard way (see the proof of Corollary 5 above) the following existential
majorant can be derived.

Corollary 6 (Chademan [5]). If p(x) = xn+1+pn−1x
n−1+· · ·+p1x+p0 is a monic

polynomial of degree n + 1 without the term xn, and all complex critical values of p
lie in the unit disk {|t| 6 1}, then

|pn−1|+ · · ·+ |p1|+ |p0| 6 Cn,

where Cn is a constant depending only on n. �

However, in the same way as before, the proof based on solution of the limit
problem gives no possibility of effectively computing the constant Cn. We compute
it using a completely different approach.

5.5. Spread of roots vs. spread of critical values for univariate monic
complex polynomials.

Theorem 6. If all critical values {t1, . . . , tn} of a monic univariate polynomial
p(x) =

∏n
j=0(x − xj) are in the unit disk, then the diameter of the set of its roots

is no greater than 4e:

Σ ⊂ {|t| 6 1} =⇒ ∀j, k = 0, . . . , n |xj − xk| 6 4e.
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Proof. Consider the real-valued function f : C → R, f(x) = |p(x)|. It is smooth
outside the roots of the polynomial p. Moreover, its critical values (different from
zero) coincide with |tj |, as the critical points for f and p are the same.

By the main principle of the Morse theory, all sublevel sets Ms = {x ∈ C : f(x) 6
s} for 0 < s < ∞ of the function f remain homeomorphic to each other until s does
not pass through a critical value of f . One can easily verify that the set Ms is simply
connected for all large s (it differs only slightly from the disk {|t| 6 s1/n+1}). Our
assumption on the critical values guarantees that the set M1 = {|p(x)| 6 1} ⊂ C
corresponding to s = 1 is therefore also connected (though its shape can be very
non-circular anymore).

On the other hand, by the famous Cartan lemma [20] for any positive ε one can
delete from C one or several disks with the sum of diameters less than ε so that
on the complement the monic polynomial of degree n + 1 satisfies a lower bound
|p(x)| > (ε/4e)n+1. This lemma implies that the set M1 can be covered by one or
several circular disks with the sum of diameters 6 4e.

But the set M1 (like all sets Ms with positive s) contains all roots of p, so if
there are two roots xi, xj on the distance more than 4e, then the union of disks
covering these two roots simultaneously, cannot be connected (it is sufficient to
project all the disks on the line connecting these roots and reduce the assertion to
one dimension). This contradiction proves the theorem. �

Corollary 7. By a suitable translation p(x) 7→ p(x+a) a monic polynomial p(x) =
xn+1 + · · · whose critical values are normalized by the conditions (4.3), can be
reduced to the form p(x) = xn+1 +

∑n
j=0 pjx

j with
∑

j |pj | = ‖xn+1 − p‖ 6 8n+1.

Proof. By Theorem 6, the roots of p form a point set of diameter d 6 4e in the
x-plane. Any such set can be covered by a regular hexagon with the opposite sides
being at the distance d [3, 10]. Shifting the origin at the center of this hexagon
makes all roots xj satisfying the inequality |xj | 6 d/

√
3.

A monic polynomial of degree n + 1 with all roots inside the disk of radius r > 0
has all its coefficients bounded by the respective coefficients of the polynomial
(x + r)n+1, by the Vieta formulas. For the latter polynomial the sum of (absolute
values of) all coefficients is the value at x = 1 (since all these coefficients are
nonnegative). Putting everything together, we conclude that after shifting the
origin at the center of the hexagon, ‖p(x)‖ 6 (1 + 4e/

√
3)n+1 6 8n+1. �

Remark 7. Simply shifting the origin to one of the roots makes all of them being
in the circle of radius 4e, which finally yields an upper bound ‖p‖ 6 (1 + 4e)n+1 6
12n+1 without referring to the claim on hexagonal cover.

The assertion of Theorem 6 for real polynomials having bounded real critical
values, can be proved in a completely different way. The following proposition
gives an insight as to how accurate the bound established in Theorem 6 is.

Proposition 8. A monic real polynomial of degree n + 1 whose real critical values
are all in the interval [−1, 1], has all its real roots in some interval of the length 4.

Proof. Between any two roots the polynomial satisfies the condition −1 6 p(x) 6 1,
since extrema of p between these points are achieved at real critical points and hence
both are real critical values of p.
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Among monic polynomials of degree n + 1 on the unit interval −1 6 x 6 1 the
smallest uniform upper bound cn = 2−(n+1) is achieved for the Chebyshev polyno-
mial Tn(x) = 2−(n+1) cos(n + 1) arccos x: for any other monic polynomial of this
degree, the C0-norm max−16x61 |p(x)| will be greater or equal to cn. Applying this
assertion to the polynomial 2n+1p(x/2) we conclude that the largest real interval
on which the monic polynomial can satisfy the condition |p| 6 1, is of length 4
(twice the length of [−1, 1]). �

Thus Theorem 6 can be considered as generalizing (in some sense) the extremal
property of the Chebyshev polynomials to the complex domain.

5.6. Demonstration of Theorem 5. The proof of Theorem 5 is an immediate
corollary to the two following lemmas.

Lemma 2. A polynomial regular at infinity and having only one complex critical
value, has a unique critical point.

This lemma is in fact valid for polynomials of any number of variables. The
second claim is dimension-specific.

Lemma 3. A bivariate polynomial regular at infinity and having a unique complex
critical point at the origin, is homogeneous.

Proof of Lemma 2. Let Hε be an analytic one-parameter perturbation of the poly-
nomial H0 = H, such that for all ε 6= 0 the polynomial Hε is Morse.

Consider the monodromy group of the bundle Hε : C2 → C1 for an arbitrary
small ε. It is known [1] that vanishing cycles form the basis of the homology of all
fibers, each being a cyclic vector (i.e., all continuations of any vanishing cycle span
the entire first homology of the typical fiber {Hε = t}.

Suppose that there are at least two critical points a1 6= a2 ∈ C2 for H0. Then
for all sufficiently small ε the polynomial Hε will have two disjoint groups of crit-
ical points with close critical values. Moreover, these groups of critical points are
well apart (say, the distance between them is never smaller than half the distance
between a1 and a2).

But then the vanishing cycles “growing” from critical points not belonging to
the same group, are also disjoint, therefore their intersection index must be zero.

But then the Picard–Lefschetz formulas imply that the subspaces generated by
each group of vanishing cycles, must be both invariant, which contradicts the fact
that each group must consist of cyclic elements for the monodromy. �

Proof of Lemma 3. Consider the one-parameter analytic (polynomial) homotopy
between H and its principal part, Hε(x, y) = εn+1H(ε−1x, ε−1y). Then for ε = 0
H0 coincides with the principal homogeneous part, while H1 = H.

The germ of Hε at the origin x = y = 0 has a multiplicity µε (the Milnor number)
that is equal to n2 for any ε. Indeed, by the Bézout theorem, the total number
of critical points of H counted with multiplicities in the projective plane CP 2, is
n2; the condition of nondegeneracy at infinity implies that all of them are in the
finite (affine) part C2. The uniqueness assumption means that all these n2 points
coincide at the origin.

By the famous theorem due to D. T. Lê and C. P. Ramanujam [19], the topo-
logical type of an analytic germ is constant along the stratum µ = const, therefore
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the germs of H0 and H1 at the origin are topologically equivalent, in particular,
the germs of analytic curves {H0 = 0} and {H1 = 0} in (C2, 0) are homeomorphic.

But by the Zariski theorem [27], the order of a planar analytic curve (i.e., the
order of the lowest order terms which occur in the Taylor expansion of the local
equation defining this curve) is a topological invariant. For the curve H0 = 0 this
order is n + 1, as the polynomial H0 is homogeneous. But this means that the
lowest order of terms that may occur in H1, is also n + 1, that is, H0 = H1 and H
coincides in fact with its principal homogeneous part. �

Remark 8. Consider the gradient vector field ∇H. Its principal homogeneous part,
∇Ĥ, is a homogeneous vector field on the plane that has an isolated singularity of
multiplicity n2 at the origin.

Assertion of Lemma 3 means that adding any nontrivial lower order terms to
H would necessarily create singular points of the gradient vector field outside the
origin, thus changing the multiplicity of what remains at the origin.

However, this assertion about arbitrary (not necessarily gradient) polynomial
vector fields is false, as the following example shows.

Example 1 (Lucy Moser–Jauslin). The nonhomogeneous vector field

(x3 − y3 + x) ∂
∂x + (2x3 − y3 + x) ∂

∂y

has a unique singular point of the maximal multiplicity 9 at the origin, and the
principal homogeneous part has an isolated singularity.

5.7. Existential bounds cannot be uniform. As was already noted, the proof
of Corollary 5 gives no indication on how to compute the bounds α(Ĥ) and β(Ĥ)
for a given homogeneous part Ĥ. However, the folowing example shows that there
cannot be the bound uniform over all principal parts: as some of the linear factors
approach each other, the values of β and α−1 may grow to infinity.

Example 2. The form Ĥa(x, y) = axn+1

n+1 + yn+1

n+1 is normalized for a > 1, as one can
easily see by comparing the operator of division by dĤ = 〈axn, yn〉 on 2n-forms
with that by the ideal 〈xn, yn〉.

The polynomial Ha(x, y) = Ĥa(x, y)− x has critical points at y = 0, x = 1/ n
√

a
(of multiplicity n for every choice of branch of the root). The corresponding critical
values all converge to zero asymptotically as a−1/n as a →∞.

On the other hand, the effective nonhomogeneity of the univariate polynomial
pa(x) = axn+1

n+1 − x (and hence the value κ(Ha)) remain bounded away from zero
as a → ∞. Indeed, if after shifting the polynomial pa by r = r(a) ∈ C the
coefficient before xn goes to zero, then necessarily ar(a) → 0. On the other hand,
the coefficient before the linear term is equal to 1 + ar(a)n and hence is bounded
away from zero.

Thus the bounds established in Corollary 5, cannot be made uniform over all
homogeneous parts. Of course, the reason is that the space of quasimonic principal
parts is not compact (e.g., the polynomials Ĥa have no limit points as a →∞). In
turn, this is related to the fact that some of the linear factors entering Ĥa, tend to
each other (as points on the projective line CP 1).

5.8. Discussion: atypical values and singular perturbations. The phenome-
non occurring in the above example, might be characteristic. When the Hamiltonian
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is not regular at infinity, the Abelian integrals may have ramification points that
are not critical values of H. Such points, called atypical values, must necessarily
be singular for any system of Picard–Fuchs equations, and are studied mostly by
topological means.

On the other hand, the fact that entries of the matrices A,B may grow to infinity
as the principal part of Ĥ degenerates, means that the system (3.7) (written in the
privileged chart to make the assertion equivariant) undergoes a singular perturba-
tion (appearance of a large parameter in the right hand side that is equivalent to
putting a small parameter before some of the higher order derivatives).

Thus we see that “atypical singularities” in the Picard–Fuchs system can appear
as a result of singular perturbation. The analytic approach based on studying
division by dH and arguments involving geometry of critical values, may be a
complementary tool for the study of singularities “coming from infinity”.
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