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Abstract. We consider the structure RRE obtained from (R, <,+, ·) by ad-
joining the restricted exponential and sine functions. We prove Wilkie’s conjec-

ture for sets definable in this structure: the number of rational points of height

H in the transcendental part of any definable set is bounded by a polynomial
in logH. We also prove two refined conjectures due to Pila concerning the

density of algebraic points from a fixed number field, or with a fixed algebraic

degree, for RRE-definable sets.

1. Introduction

1.1. Statement of the main results. Our main object of study is the structure

RRE = (R, <,+, ·, exp |[0,1], sin |[0,π]). (1)

The superscript RE stands for “restricted elementary”. We consider the natural
language for RRE, where we also include constants for each real number. We will
refer to formulas in this language as RRE-formulas.

For a set A ⊂ Rm we define the algebraic part Aalg of A to be the union of
all connected semialgebraic subsets of A of positive dimension. We define the
transcendental part Atrans of A to be A \Aalg.

Recall that the height of a (reduced) rational number a
b ∈ Q is defined to be

max(|a|, |b|). More generally, for α ∈ Qalg we denote by H(α) its absolute multi-
plicative height as defined in [5]. For a vector α of algebraic numbers we denote by
H(α) the maximum among the heights of the coordinates.

Let F ⊂ C denote a number field which will be fixed throughout this paper. For
a set A ⊂ Cm we denote the set of F-points of A by A(F) := A ∩ Fm and denote

A(F, H) := {x ∈ A(F) : H(x) 6 H}. (2)

The following is our main result.

Theorem 1. Let A ⊂ Rm be RRE-definable. Then there exist integers κ := κ(A)
and N = N(A, [F : Q]) such that

#Atrans(F, H) 6 N · (logH)κ. (3)

Theorem 1 establishes a conjecture of Wilkie [19, Conjecture 1.11] for the case
of the restricted exponential function. It also establishes a refined version due to
Pila [24, Conjecture 1.4], who conjectured that the exponent κ can be chosen to be
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independent of the field F. For a statement of the full conjectures and an outline
of the history of the problem see §1.2.

We also prove an additional conjecture of Pila [24, Conjecture 1.5] (in the case
of the restricted exponential) on counting algebraic points of a fixed degree without
restricting to a fixed number field. For k ∈ N we denote

A(k) := {x ∈ A : [Q(x1) : Q], . . . , [Q(xm) : Q] 6 k}, (4)

A(k,H) := {x ∈ A(k) : H(x) 6 H}. (5)

Then we have the following.

Theorem 2. Let A ⊂ Rm be RRE-definable. Then there exist integers κ := κ(A, k)
and N = N(A, k) such that

#Atrans(k,H) 6 N · (logH)κ. (6)

Note that in Theorem 2 the exponent κ may depend on the degree k.

1.2. Background. In [4], Bombieri and Pila considered the following problem: let
f : [0, 1] → R be an analytic function and X ⊂ R2 its graph. What can be said
about the number of integer points in the homothetic dilation tX? They showed
that if f is transcendental then for every ε > 0 there exists a constant c(f, ε)
such that #(tX ∩ Z2) 6 c(f, ε)tε for all t > 1. The condition of transcendence is
necessary, as can be observed by the simple example f(x) = x2 satisfying #(tX ∩
Z2) ' t1/2. The proof of [4] introduced a new method of counting integer points
using certain interpolation determinants.

In [18] Pila extended the method of [4] to the problem of counting rational points
on X. In particular, he proved that if f is transcendental then for every ε > 0 there
exists a constant c(f, ε) such that #X(Q, H) 6 c(f, ε)Hε for all H ∈ N. In this
generality, the asymptotic O(Hε) is essentially the best possible, as illustrated by
[20, Example 7.5].

Moving beyond the case of curves one encounters a new phenomenon: a set
X may be transcendental while still containing algebraic curves, and in such a
case (as illustrated by the graph of x → x2) one cannot expect the asymptotic
#X(Q, H) = O(Hε). However, in [21, Theorem 1.1] Pila showed that for compact
subanalytic surfaces this is the only obstruction. More precisely, for any compact
subanalytic surface X ⊂ Rn and ε > 0 there exists a constant C(X, ε) such that
#Xtrans(Q, H) 6 C(X, ε)Hε. The same result for arbitrary compact subanalytic
sets was conjectured in [20, Conjecture 1.2]. In [19, Theorem 1.8] Pila and Wilkie
proved this conjecture in a considerably more general setting. Namely, they showed
that if the set X is definable in any O-minimal structure and ε > 0 then there exists
a constant C(X, ε) such that #Xtrans(Q, H) 6 C(X, ε)Hε. This result contains in
particular the case of compact subanalytic sets (and more generally globally sub-
analytic sets), obtained for the O-minimal structure of restricted analytic functions
Ran. It also contains much wider classes of definable sets, for instance those de-
finable in the structure Ran,exp obtained by adjoining the graph of the unrestricted
exponential function to Ran. The Pila-Wilkie theorem in this generality turned out
to have many important diophantine applications (see e.g. [26] for a survey).

As mentioned earlier, the asymptotic O(Hε) is essentially the best possible if
one allows arbitrary subanalytic sets (even analytic curves). However, one may
hope that in more tame geometric contexts much better estimates can be obtained.
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In [19, Conjecture 1.11] Wilkie conjectured that if X is definable in Rexp, i.e. us-
ing the unrestricted exponential but without allowing arbitrary restricted analytic
functions, then there exist constants N(X) and κ(X) such that

#Xtrans(Q, H) 6 N(X) · (logH)κ(X). (7)

In [24, Conjectures 1.4 and 1.5] Pila proposed two generalizations of this conjecture:
namely, that for an arbitrary number field F ⊂ R one has

#Xtrans(F, H) 6 N(X,F) · (logH)κ(X) (8)

where only the constant N(X,F) is allowed to depend on F, and for k ∈ N one has

#Xtrans(k,H) 6 N(X, k) · (logH)κ(X,k) (9)

where both constants are allowed to depend on k.
Some low-dimensional cases of the Wilkie conjecture have been established. In

[22, Theorem 1.3] Pila proved the analog of the Wilkie conjecture for graphs of
Pfaffian functions (see §5 for the definition) or plane curves defined by the vanishing
of a Pfaffian function. In [13, Corollary 5.5] Jones and Thomas have shown that
the analog of the Wilkie conjecture holds for surfaces definable in the structure of
restricted Pfaffian functions. In [24, 6] the Wilkie conjecture is confirmed for some
special surfaces defined using the unrestricted exponential.

1.3. Overview of the proof.

1.3.1. The Pfaffian category. Our approach is based on an interplay between ideas
of complex analytic geometry, and the theory of Pfaffian functions. We briefly
pause to comment on the latter. In [14] Khovanskii introduced the class of Pfaffian
functions, defined as functions satisfying a type of triangular system of polyno-
mial differential equations (see §5 for details). The Pfaffian functions enjoy good
finiteness properties, and have played a fundamental role in Wilkie’s work on the
model-completeness of Rexp [28].

From the Pfaffian functions one can form the class of semi-Pfaffian sets, i.e.
sets defined by a boolean combination of Pfaffian equalities and inequalities, and
sub-Pfaffian sets, i.e. projections of semi-Pfaffian sets. Pfaffian functions have
a natural notion of degree, and by works of Khovanskii [14] and Gabrielov and
Vorobjov [10, 11] the number of connected components of any semi- or sub-Pfaffian
set can be explicitly estimated from above in terms of the degrees of the Pfaffian
functions involved (see Theorem 6). Moreover, for us it is important that these
estimates are polynomial in the degrees.

1.3.2. The holomorphic-Pfaffian category. The theory of Pfaffian functions is an
essentially real theory, based on topological ideas going back to the classical Rolle
theorem. The holomorphic continuation of a real Pfaffian function on Rn is not,
in general, a Pfaffian function on Cn ' R2n. However, since our arguments are
complex-analytic in nature we restrict attention to holomorphic-Pfaffian functions:
holomorphic functions whose graphs (in an appropriate domain) are sub-Pfaffian
sets. It is a small miracle that the graph of the complex exponential ez, and hence
also of sin z, is indeed a Pfaffian set when restricted to a strip. A similar feature is
used in an essential way in the work of van den Dries [27], which we discuss below.
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1.3.3. The inductive scheme for counting rational points. Fix some domain Ω ⊂ Cn.
We begin by explaining our estimate for #X(Q, H) when X ⊂ Cn is a holomorphic-
Pfaffian variety, i.e. a set cut out by holomorphic-Pfaffian equations of Pfaffian
degree β. For simplicity we assume X = Xtrans. Our basic strategy is similar to
the strategy used by Pila and Wilkie [19]: we seek to cover X by smaller pieces Xk,
such that for each piece one can find an algebraic hypersurface Hk with Xk(Q, H) ⊂
Xk ∩Hk.

By way of comparison, in [19] the subdivision is performed in two steps. One
first applies a reparametrization theorem to write X as the union of images of Cr-
smooth maps φj : (0, 1)dimX → X with unit norms: this step is independent of H.
One then subdivides each cube (0, 1)dimX into Hε subcubes, and for each subcube
constructs the hypersurface as above using a generalization of the Bombieri-Pila
method [4]. Crucially for [19], the degrees of these hypersurfaces can be chosen to
depend only on ε but not on H. However, to go beyond the asymptotic O(Hε) it
appears that one must allow the degrees to depend on H.

In our approach X is covered by poly(β) pieces Xk := X ∩ ∆k where ∆k is a
Weierstrass polydisc for X, a notion introduced below (more accurately we take
∆k to be a Weierstrass polydisc shrunk by a factor of two). We then construct a
hypersurface Hk of degree poly(β, logH) containing Xk(Q, H). Consequently we
replace X by X ∩ (∪kHk), which is guaranteed to have strictly smaller dimension
and degree polynomial in β and logH. One can then finish the proof by induction on
dimension, and eventually obtain a zero-dimensional holomorphic-Pfaffian variety
defined by equations of degree poly(logH) and hence having at most poly(logH)
points. We proceed to explain the subdivision step and the construction of the
algebraic hypersurfaces.

1.3.4. Weierstrass polydiscs and holomorphic decompositions. We define a Weier-
strass polydisc ∆ = ∆z × ∆w for X to be a polydisc in some coordinate system,
where dimX = dim ∆z and X ∩ (∆z × ∂∆w) = ∅. It follows from this definition
that the projection from X ∩∆ to ∆z is a finite (ramified) covering map, and all
fibers have the same number of points (counted with multiplicities). We denote
this number by e(X,∆) and call it the multiplicity of ∆. Weierstrass polydiscs are
ubiquitous in complex analytic geometry: they are the basic sets where a complex
analytic variety can be expressed as a finite cover of a polydisc.

By a variant of Weierstrass division we prove the following polynomial inter-
polation result: for any holomorphic function f on a neighborhood of ∆ there is
a function P on ∆, holomorphic in the z-variables and polynomial of degree at
most e(X,∆) in each of the w-variables, such that f ≡ P on X ∩∆ (see Proposi-
tion 7). Moreover, the norm of P can be estimated in terms of the norm of f . The
existence of such a decomposition immediately implies that ∆ is the domain of a
decomposition datum in the sense of [3] (see Definition 8). Then the results of [3],
themselves a complex-analytic analog of the Bombieri-Pila interpolation determi-
nant method [4], imply that (X∩∆)(Q, H) is contained in an algebraic hypersurface
of degree d = poly(e(X,∆), logH) (for a precise statement see Proposition 12). It
will therefore suffice to cover X by poly(β) Weierstrass polydiscs ∆ each satisfying
e(X,∆) = poly(β).

1.3.5. Covering by Weierstrass polydiscs. The multiplicity e(X,∆) is relatively easy
to estimate using Pfaffian methods, being the number of isolated solutions of a
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system of Pfaffian equations and inequalities. The heart of the argument is therefore
the covering by Weierstrass polydiscs. For this purpose we prove the following,
somewhat stronger statement (see Theorem 7): if B ⊂ Ω is a ball of radius r
around a point p ∈ Ω, then there is a Weierstrass polydisc ∆ ⊂ B for X with center
p and polyradius at least r/poly(β). In other words, every point p is the center of
a relatively large Weierstrass polydisc. From this it is easy to deduce that X can
be covered by poly(β) Weierstrass polydiscs.

We briefly comment on the proof of Theorem 7. Suppose first thatX has complex
codimension 1. In this case we show, by a simple geometric argument, that the
theorem can be reduced to finding a ball of radius r/poly(β) disjoint from S1 ·X,
where S1 = {|ζ| = 1} acts by scalar multiplication on Cn. The set S1 ·X is also sub-
Pfaffian, now of real codimension 1. We use an argument involving metric entropy,
specifically Vitushkin’s formula (in the form given by Friedland and Yomdin [8])
to show that S1 · X can be covered by relatively few balls of radius r/poly(β),
and elementary considerations then show that it must be disjoint from one (in
fact, many) such ball. For X of arbitrary codimension we use an induction on
codimension by repeated projections.

1.3.6. From RRE-definable sets to holomorphic-Pfaffian varieties. At this point our
review of the proof for holomorphic-Pfaffian X is essentially complete. We now
briefly discuss the case of a general RRE-definable set A. Let I = [−1, 1], and
assume that A ⊂ Im (the general case is easily reduced to this one). Our approach
for this case is based on a quantifier-elimination result of van den Dries [27] (itself a
variant of the work of Denef and van den Dries [7] on subanalytic sets). In [27] it is
shown, up to some minor variations in formulation, that any A as above is definable
by a quantifier-free formula in a language LDRE which has a natural interpretation
in the structure I. This language has an order relation <, m-ary operation symbols
for certain special functions f : Im → I, and a binary operation D called restricted
division, interpreted in I as

D(x, y) =

{
x/y |x| 6 |y| and y 6= 0

0 otherwise.
(10)

The crucial feature for us is that all functions appearing in the language extend as
holomorphic-Pfaffian functions to a complex neighborhood of Im. Therefore, a set
defined by quantifier-free LRE-formulas, i.e. not involving the restricted division
D, is essentially the real part of a holomorphic-Pfaffian variety (after some work to
handle inequalities).

To handle a formula involving a restricted division D(x, y), we replace it by
three formulas: one for the case |x| > |y| or y = 0 where we replace D(x, y) by
0; one for the case |x| = |y| 6= 0 where we replace D(x, y) by 1; and one for this
case |x| < |y|, where we replace D(x, y) by a new variable z, and add the equation
zy = x (which is equivalent to z = D(x, y) when x < y). Repeating this for every
restricted division in the formula, we reduce the set A to a union of projections
(forgetting the variables z) of sets Bj definable by quantifier-free LRE-formulas.
Moreover, each fiber of the projection π : Bj → A contains at most one point: this
corresponds to the fact that we only add a variable z under the restriction that
|x| < |y| and in particular y 6= 0, and under these conditions the equation yz = x
uniquely defines z. We call this type of projections admissible (see Definition 27).
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It remains to study rational points in sets of the form π(B), where B is defined
by a quantifier-free LRE-formula and π is an admissible projection. Up to some
minor details involving the algebraic part of B, we may replace B by its complex-
analytic germ – which is a holomorphic-Pfaffian variety. The strategy described
above for holomorphic-Pfaffian varieties extends in a straightforward manner to
their admissible projections. The relevant statement is Theorem 8.

1.3.7. From rational points to F-points and points of degree k. The proof can be
carried out for F-points rather than Q-points in exactly the same manner (we follow
the strategy of Pila [24, Theorem 3.2]). The case of algebraic points of degree k
requires some additional work. We essentially follow the proof of [23], with some
minor additional details needed to obtain the necessary degree estimates.

1.4. Contents of this paper. This paper is organized as follows. In §2 we prove
some preliminary results of polynomial interpolation in the complex setting; de-
fine the notion of a Weierstrass polydisc; and establish a result on holomorphic
decompositions of functions over a Weierstrass polydisc. In §3 we give upper and
lower bounds for interpolation determinants over a fixed Weierstrass polydisc, in
analogy with the Bombieri-Pila determinant method. In §4 we recall the notion
of ε-entropy and Vitushkin’s bound and derive some simple consequences that are
needed in the sequel. In §5 we recall the Pfaffian, semi-Pfaffian and sub-Pfaffian
categories; introduce the holomorphic-Pfaffian category; and prove the key tech-
nical result on covering of holomorphic-Pfaffian varieties by Weierstrass polydiscs.
In §6 we prove an analog of the Wilkie conjecture for holomorphic-Pfaffian varieties
and their projections by an induction over dimension. In §7 we generalize the re-
sults of §6 to arbitrary RRE-definable sets and prove the main Theorems 1 and 2.
Finally in §8 we give some concluding remarks related to effectivity and uniformity
of the bounds; and discuss possible generalizations to other structures.

1.5. Acknowledgments. We are grateful to Yosef Yomdin for numerous invalu-
able discussions.

2. Polynomial interpolation, Weierstrass polydiscs and holomorphic
decomposition

We fix some basic notation. All complex domains considered in this paper are
assumed to be relatively compact with piecewise smooth boundary. Let Ω ⊂ Cn
be a domain and Z ⊂ Ω. We denote by O(Z) the ring of germs of holomorphic
functions in a neighborhood of Z. If Z is relatively compact in Ω we denote by
‖·‖Z the maximum norm on O(Z̄).

Let A ⊂ Cn be a ball or a polydisc around a point p ∈ Cn and δ > 0. We let Aδ

denote the δ−1-rescaling of A around p, i.e. Aδ := p+ δ−1(A− p).

2.1. Polynomial interpolation.

2.1.1. Univariate interpolation. Let Ω ⊂ C be a domain and f : Ω→ C a function.
Let a := {a1, . . . ,ak} ⊂ Ω be a multiset of points and denote by ν(aj) the number
of times aj appears in a. We define the interpolation polynomial L[a; f ] to be the
unique polynomial of degree at most k − 1 satisfying

L[a; f ](l)(aj) = f(aj) j = 1, . . . , k, l = 0, . . . , ν(aj)− 1. (11)
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Denote ha(z) :=
∏k
j=1(z − aj). When f is a holomorphic function, the classical

proof of the Weierstrass division theorem (see e.g. [12]) shows that L[a; f ] admits
an integral representation as follows.

Proposition 1. Let Ω ⊂ C be a simply-connected domain and a ⊂ Ω. Let f ∈
O(Ω̄). Then for z ∈ Ω,

L[a; f ](z) =
1

2πi

˛
∂Ω

f(ζ)

h(ζ)

h(ζ)− h(z)

ζ − z
dζ, h := ha. (12)

Proof. The right hand side of (12) is easily seen to be a polynomial of degree k− 1
in z (since this is true for the integrand). Evaluating at z = aj we have h(z) = 0,
and the integral reduces to the Cauchy formula for f(aj). �

Next we give norm estimates for L[a; f ] in terms of the norm of f .

Proposition 2. Let D ⊂ C be a disc, a ⊂ D a multiset and f ∈ O(D̄1/3). Then

‖L[a; f ]‖D 6 3 ‖f‖D1/3 . (13)

Proof. Since the claim is invariant under affine transformations of C we may assume
that D is the unit disc. Then we have for any z ∈ D an estimate |h(z)| 6 2k

and for any ζ ∈ ∂D1/3 an estimate |h(ζ)| > (3 − 1)k = 2k. Using the integral
representation (12),

‖L[a; f ]‖D = max
z∈D

∣∣∣∣ 1

2πi

˛
∂D1/3

f(ζ)

ζ − z

(
1− h(z)

h(ζ)

)
dζ

∣∣∣∣
6 3
‖f‖D1/3

3− 1
(1 + 1) 6 3 ‖f‖D1/3 . (14)

�

2.2. Weierstrass polydiscs. We say that x = (x1, . . . ,xn) is a standard coor-
dinate system on Cn if it is obtained from the standard coordinates by an affine
unitary transformation.

Let Ω ⊂ Cn be a domain and X ⊂ Ω an analytic subset.

Definition 3. We say that a polydisc ∆ = ∆z ×∆w in the x = z×w coordinates
is a pre-Weierstrass polydisc for X if ∆̄ ⊂ Ω and (∆̄z × ∂∆w) ∩X = ∅. We call
∆z the base and ∆w the fiber of ∆.

If X is pure-dimensional, we say that ∆ is a Weierstrass polydisc for X if
dim z = dimX.

When speaking about (pre-)Weierstrass polydiscs we will assume (unless other-
wise stated) that the coordinates are given by x = z ×w. We will also denote by
πz : Cn → Cdim z the projection to the z-coordinates and by πXz its restriction to
∆ ∩X.

We recall some standard facts.

Fact 4. If ∆ is a pre-Weierstrass polydisc for X then πXz is proper and finite-to-
one.

Proof. Let pi ∈ ∆ ∩X be a sequence of points that escapes to the boundary of ∆
and we will show that πXz (pi) escapes to the boundary of ∆z. Assume otherwise.
Passing to a subsequence we may assume that πXz (pi) converges in ∆z, and passing
to a further subsequence we may also assume that pi converges in ∆̄. But then
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it must necessarily converge to a point in (∆z × ∂∆w) ∩X, which is ruled out by
the definition of a pre-Weierstrass polydisc. Thus πXz is proper, hence its fibers are
compact complex submanifolds of ∆w, and must therefore be finite. �

Fact 5. If X has pure dimension and ∆ is a Weierstrass polydisc for X then πXz
is e(X,∆)-to-1 for some number e(X,∆) ∈ N (where points in the fiber are counted
with multiplicities).

Proof. In the Weierstrass case dimX = dim z so dimX = dimπXz (X). Under this
condition it is well known that the map πXz is a finite unramified cover outside
some proper analytic subset B ⊂ ∆z [12, III.B]. Then the map is e(X,∆)-to-1
where e(X,∆) is the cardinality the fiber over any point in ∆z \B. �

Lemma 6. Let X have pure dimension and ∆ be a Weierstrass polydisc for X.
For l = 1, . . . ,dim w there exists a monic polynomial

Pl(z,wl) ∈ O(∆z)[wl], degPl = e(X,∆) (15)

such that for any z ∈ ∆z, the roots of Pl(z,wl) are precisely the wl-coordinates of
the points of (πXz )−1(z).

Proof. In the notations of Fact 5 and its proof, set ν = e(X,∆) and let W1, . . . ,Wν :
∆z \B → X ∩∆ be the (ramified) inverses of πXz . Then

Pl(z,wl) =

ν∏
j=1

(
wl −wl(Wj(z))

)
(16)

has univalued coefficients which are holomorphic outside B, and since W1, . . . ,Wν

are bounded near B it follows from the Riemann removable singularity theorem
that the coefficients extend to holomorphic functions in ∆z. �

Proposition 7. Let X have pure dimension m. Let ∆ be a Weierstrass polydisc

for X and set ν = e(X,∆). Let f ∈ O(∆̄z × ∆̄
1/3
w ). There exists a function

P ∈ O(∆̄z)[w], degwi P 6 ν − 1, i = 1, . . . , n−m (17)

such that P |X∩∆ = f |X∩∆, and

‖P‖∆ 6 3n−m ‖f‖
∆z×∆

1/3
w

. (18)

Proof. Set s := dim w = n−m. Let ∆w =
∏s
i=1Di. For l = 1, . . . , s write

ŵl := (w1, . . . ,wl−1, ωl,wl+1, . . . ,ws), (19)

Ωl = ∆z ×D1 × . . .×Dl−1 ×D1/3
l × . . .×D1/3

s . (20)

Consider the operator

Ll(g) =
1

2πi

˛
∂D

1/3
l

g(z, ŵl)

Pl(z, ωl)

Pl(z, ωl)− Pl(z,wl)

ωl −wl
dωl (21)

where Pl denotes the polynomial from Lemma 6.
We claim that Ll maps O(Ω̄l) to O(Ω̄l+1). Indeed, let g ∈ O(Ω̄l). For every

fixed z ∈ ∆z the roots of Pl(z,wl) lie in Dl and it follows that the integrand is

holomorphic whenever (z, w) ∈ Ω̄l+1 and ωl lies in a neighborhood of ∂D
1/3
l . By

Proposition 2 we have the norm estimate

‖Ll(g)‖Ω̄l+1
6 3 ‖g‖Ω̄l . (22)
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It is easy to see that if g is polynomial of degree at most ν − 1 in wj , j 6= l then
so is Ll(g). Moreover, Proposition 1 shows that Ll(g) is polynomial of degree at
most ν − 1 in wl and agrees with g for any point (z, w) ∈ Ω̄l+1 such that wl(w) is
a root of Pl, and in particular whenever w ∈ (πXz )−1(z).

Finally, setting
P = Ls · · ·L1f ∈ O(Ω̄s+1) = O(∆̄) (23)

we obtain a polynomial of degree ν − 1 in each variable w1, . . . ,ws which agrees
with f whenever w ∈ (πXz )−1(z). The norm estimate (18) follows by repeated
application of (22). �

2.3. Decomposition data. We recall the following definition from [3, Defini-
tion 4]. Given a standard system of coordinates x, we say that (∆,∆′) is a pair of
polydiscs if ∆ ⊂ ∆′ are two polydiscs with the same center in the x coordinates.

We view Nn as a semigroup with respect to coordinate-wise addition. An ideal
is a subset I ⊂ Nn satisfying I + Nn ⊂ I, and a co-ideal is the complement of an
ideal. For a co-ideal M ⊂ Nn and k ∈ N we denote by

M6k := {α ∈M : |α| 6 k} (24)

and by HM(k) := #M6k its Hilbert-Samuel function. The function HM(k) is
eventually a polynomial in k, and we denote its degree by dimM.

Definition 8. Let X ⊂ Cn be a locally analytic subset, x a standard coordinate
system, (∆,∆′) a pair of polydiscs centered at the x-origin and M ⊂ Nn a co-ideal.
We say that X admits decomposition with respect to the decomposition datum

D := (x,∆,∆′,M) (25)

if there exists a constant denoted ‖D‖ such that for every holomorphic function
F ∈ O(∆̄′) there is a decomposition

F =
∑
α∈M

cαxα +Q, Q ∈ O(∆̄) (26)

where Q vanishes identically on X ∩∆ and

‖cαxα‖∆ 6 ‖D‖ · ‖F‖∆′ ∀α ∈M. (27)

We define the dimension of the decomposition datum, denoted dimD to be dimM.

Since HM(k) is eventually a polynomial of degree dimM, the function HM(k)−
HM(k − 1) counting monomials of degree k in M is eventually a polynomial of
degree dimM− 1. If dimD > 1 we denote by e(D) the minimal constant satisfying

HM(k)−HM(k − 1) 6 e(D) · L(dimM, k), ∀k ∈ N. (28)

where L(n, k) :=
(
n+k−1
n−1

)
denotes the dimension of the space of monomials of degree

k in n variables. In the case dimD = 0 the co-ideal M is finite and we denote by
e(D) its size.

The following is the standard Cauchy inequality.

Lemma 9 ([16, p.6]). Let ∆ be a polydisc in the x-coordinates and F ∈ O(∆̄).
Then the Taylor expansion F =

∑
α cαxα satisfies

‖cαxα‖∆ 6 ‖F‖∆ . (29)

As a direct consequence of Proposition 7 and Lemma 9 we obtain the following
theorem.
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Theorem 3. Let X have pure dimension m. Let ∆ be a Weierstrass polydisc for
X and set

ν = e(X,∆) M = Nm × {0, . . . , ν − 1}n−m ∆′ = ∆z ×∆1/3
w (30)

Then (x,∆,∆′,M) is a decomposition datum for X with ‖D‖ 6 3n−m, dimM = m
and e(D) = νn−m.

3. Interpolation determinants

Let Ω ⊂ Cn be a domain and X ⊂ Ω an analytic subset of pure dimension m.
Let x be standard coordinates. Let ∆ be a Weierstrass polydisc for X, and set

∆′ := ∆z ×∆
1/3
w and ν := e(X,∆) as in Theorem 3.

3.1. Interpolation determinants. Let f := (f1, . . . , fµ) be a collection of func-
tions and p := (p1, . . . , pµ) a collection of points. We define the interpolation
determinant

∆(f ,p) := det(fi(pj))16i,j6µ. (31)

Lemma 10. Assume m > 0. Suppose fi ∈ O(∆̄′) with ‖fi‖∆′ 6 M and pi ∈
∆1/δ ∩X for i = 1, . . . , µ and 0 < δ 6 1/2. Then

|∆(f ,p)| 6 (Cµ3M)µ · δE·µ
1+1/m

(32)

where

C = Om(ν
n−m
m ), (33)

E = Ωm(ν−
n−m
m ). (34)

Proof. This follows from [3, Lemma 9] and Theorem 3. �

We note that the proof of [3, Lemma 9] is a direct adaptation of the interpo-
lation determinant method of [4], and the reader familiar with this method may
recognize that essentially the same arguments go through given the definition of
decomposition data.

3.2. Polynomial interpolation determinants. Let d ∈ N and let µ denote
the dimension of the space of polynomials of degree at most d in m + 1 vari-
ables, µ = L(m + 2, d). Let f := (f1, . . . , fm+1) be a collection of functions and
p := (p1, . . . , pµ) a collection of points. We define the polynomial interpolation
determinant of degree d to be

∆d(f ,p) := ∆(g,p), g = (fα : α ∈ Nm+1, |α| 6 d). (35)

Note that ∆d(f ,p) = 0 if and only if there exists a polynomial of degree at most d
in m+ 1 variables vanishing at the points f(p1), . . . , f(pµ).

In [24], the following height function was introduced. For an algebraic number
α ∈ Qalg, let den(α) denotes the denominator of α, i.e. the least positive integer
K such that Kα is an algebraic integer. If {αi} are the conjugates of α we denote

Hsize(α) = max(den(α), |αi|). (36)

If α has degree t and

P ∈ Z[X], P = at(X − α1) · · · (x− αt) (37)
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is its minimal polynomial then [5, 1.6.5,1.6.6]

H(α)t = |at|
t∏

j=1

max(1, |αj |). (38)

In particular it follows that

H(α)t > Hsize(α). (39)

For a set A ⊂ Cm we define Asize(F, H) in analogy with A(F, H) from (2) by
replacing H(·) with Hsize(·). The following lemma is essentially contained in the
proof of [24, Theorem 3.2], and we reproduce the argument for the convenience of
the reader.

Lemma 11. Let H ∈ N and suppose that for every i = 1, . . . ,m + 1 and j =
1, . . . , µ,

fi(pj) ∈ F, Hsize(fi(pj)) 6 H. (40)

Then ∆d(f ,p) either vanishes or satisfies∣∣∆d(f ,p)
∣∣ > (µ!H(m+2)µd)−[F:Q]. (41)

Proof. Denote the matrix defining ∆d(f ,p) by S. Let Qi,j := den fi(pj) for i =
1, . . . ,m + 1 and j = 1, . . . , µ. By assumption Qi,j 6 H. The row corresponding
to pj in ∆d(f ,p) consists of algebraic numbers with common denominator dividing
Qj :=

∏
iQ

d
i,j . Setting K =

∏µ
j=1Qj we see that KS is a matrix of algebraic

integers and |K| 6 H(m+1)µd.
Let G := Gal(F/Q). If detS is non-vanishing then so are its G-conjugates and

then

1 6 |
∏
σ∈G

KSσ| = K [F:Q] · | detS| ·
∏

id 6=σ∈G

|det(Sσ)|. (42)

We estimate |det(Sσ)| from above. By assumption each entry of Sσ has absolute
value bounded by Hd. Expanding the determinant by the Laplace expansion we
have

|det(Sσ)| 6 µ!Hµd ∀σ ∈ G. (43)

Plugging (43) into (42) we have

|detS| > K−[F:Q](µ!Hµd)−[F:Q]+1 > (µ!H(m+2)µd)−[F:Q]. (44)

�

Comparing Lemmas 10 and 11 we obtain the following.

Proposition 12. Let M,H > 2, and suppose fi ∈ O(∆̄′) with ‖fi‖∆′ 6M . Let

Y = f(X ∩∆2) ⊂ Cm+1. (45)

There exist a constant Cn > 0 depending only on n such that if

d > Cnν
n−m ([F : Q] logH + logM)

m
(46)

then Y size(F, H) is contained in an algebraic hypersurface of degree at most d in
Cm+1.
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Proof. We consider first the case m = 0. In this case ν = e(X,∆) is the number of
points in X ∩∆. In particular this bounds the number of points in Y , all the more
in Y size(F, H), and the claim holds with any d > ν.

Now assume m > 0 and suppose toward contradiction that Y size(F, H) is not
contained in an algebraic hypersurface of degree at most d in Cm+1. By standard
linear algebra it follows that there exist p = p1, . . . , pµ ∈ X ∩∆2 such that {f(pj) :
j = 1, . . . , µ} is a subset of Y and does not lie on the zero locus of any non-zero
polynomial of degree d. Then

∣∣∆d(f ,p)
∣∣ 6= 0, and from Lemmas 10 and 11 we have

(µ!H(m+2)µd)−[F:Q] 6
∣∣∆d(f ,p)

∣∣ 6 (Cµ3Md)µ · (1/2)E·µ
1+1/m

. (47)

Taking logs and using µ ∼m dm+1 we have

log 2 · E · d1+1/m . log(Cµ3Md) + [F : Q]
[
(m+ 2)d logH + logµ

]
. (48)

Therefore

d1/m = ν
n−m
m On

(
log ν

d
+ logM + [F : Q] logH

)
. (49)

Finally note that (46) implies, in the case m > 0, that (log ν)/d = On(1). �

4. Metric entropy, Vitushkin’s bound

Let A ⊂ Rn be a relatively compact subset. For every ε > 0 we denote by
M(ε,A) the minimal number of closed balls of radius ε needed to cover A. The
logarithm of M(ε,A) is called the ε-entropy of A.

For r > 0 we denote Qr := [0, r] ⊂ R. In our setting it will be more convenient
to define M(ε,A) in terms of covering by ε-cubes, i.e. translates of the cube Qnε .
For simplicity we will also restrict our considerations to the unit cube Qn1 ⊂ Rn.

Vitushkin’s bound states that

M(ε,A) 6 cn

n∑
i=0

Ṽi(A)/εi, (50)

where Ṽi(A) denote the i-th variation of A, that is the average number of connected
components of the section A∩P over all affine (n− i)-planes P ⊂ Rn with respect
to an appropriate measure.

Let A ⊂ Qn1 and denote by Vi(A) the maximal number of connected components
of the set A ∩ P where P ⊂ Rn is an affine (n − i)-plane (or ∞ if this number is
unbounded). We also denote V (A) := maxi Vi(A). We will use the following result
of Friedland and Yomdin [8].

Theorem 4 ([8, Theorem 1]). Let A ⊂ Qn1 and 0 < ε 6 1. Then

M(ε,A) 6 Vol(A) +

n∑
i=0

2i
(
n

i

)
Vi(∂A)/εi. (51)

We use the following to slightly improve the asymptotics, but it is otherwise
inessential.

Corollary 13. Let A ⊂ Qn1 be subanalytic and suppose dimA 6 m < n. Then

M(ε,A) 6
m∑
i=0

2i
(
n

i

)
Vi(A)/εi. (52)
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Proof. Note first that in this case ∂A = A. In the proof of Theorem 4 for every
fixed ε the quantity Vi(A) is in fact only used to estimate the number of connected
components of the intersection A ∩ P where P varies over a certain finite set of
affine (n − i)-planes P . It is easy to see that the argument remains valid if one
replaces each P by its sufficiently small parallel translate P ′. For i > m we can
choose these translates so that A ∩ P ′ = ∅, and the statement follows. �

Corollary 14. Let r > 0 and A ⊂ Qnr with dimA = m < n. If

rε−1 > n−m
√
CV (A), C := (m+ 1)24n. (53)

then there exists an ε-ball disjoint from A.

Proof. Since the claim is invariant under rescaling we may assume r = 1. Let
S ⊂ Qn1 be a set of at least (4ε)−n points with pairwise `∞ distances at least 4ε:
for instance one can choose a grid with (4ε)−1 equally spaced points on each axis.
Suppose A touches the ε-ball Bs around each point of s ∈ S. Then every ε-cover of
A by cubes must contain a cube that touches each Bs, and since an ε-cube cannot
touch two such balls by the triangle inequality it follows that

(4ε)−n 6M(ε,A) 6
m∑
i=0

2i
(
n

i

)
Vi(A)/εi 6 22n(m+ 1)ε−mV (A) (54)

and the conclusion follows. �

5. The Pfaffian category, Entropy and Weierstrass polydiscs

5.1. Pfaffian functions, semi-Pfaffian and sub-Pfaffian sets. Let U ⊂ Rn be
a domain. We denote the coordinates on Rn by x. The following definition, which
plays a key role in our considerations, was introduced by Khovanskii in [14] (see
also [10]).

Definition 15. A Pfaffian chain of order ` and degree α is a sequence of func-
tions f1, . . . , f` : U → R, real analytic in U and satisfying a triangular system of
differential equations

dfj =

n∑
i=1

Pi,j(x, f1(x), . . . , fj(x)) dxi, j = 1, . . . , ` (55)

where Pij are polynomials of degrees not exceeding α. A function f : U → R of the
form f(x) = P (x, f1(x), . . . , f`(x)) where P is a polynomial of degree not exceeding
β is called a Pfaffian function of order ` and degree (α, β).

The following Pfaffian analog of the Bezout theorem, due to Khovanskii [14], is
the basis for the theory of Pfaffian functions and sets.

Theorem 5. Let f1, . . . , fn : U → R be Pfaffian functions with a common Pfaffian
chain of order ` and deg fi = (α, βi). Then the number of isolated points in {x ∈
U : f1(x) = · · · = fn(x) = 0} does not exceed

2`(`−1)/2β1 · · ·βn(min(n, `)α+ β1 + · · ·+ βn − n+ 1)`. (56)

We now move to the notion of semi-Pfaffian and sub-Pfaffian sets. For this
purpose we restrict our consideration to domains of the form

∏n
j=1 Ij where each

Ij is an open, possibly unbounded interval in R. By a slight abuse of notation we
denote this product by In. We will write Xn := (X1, . . . , Xn) for a set a variables
ranging over In.
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Definition 16.

• A basic Pfaffian relation on In is a relation f(Xn) ∗ 0 where ∗ ∈ {=, >}
and f is a Pfaffian function on In.
• A semi-Pfaffian formula φ(Xn) is a Boolean combination of basic Pfaffian

relations. We say that φ has complexity (n, s, `, α, β) if it involves s basic
Pfaffian relations, where all the Pfaffian functions have degree at most β in
a common Pfaffian chain of order ` and degree α.
• A sub-Pfaffian formula is a formula of the form φ(Xn) := ∃Y r : ψ(Xn, Y r)

where ψ(Xn, Y r) is a semi-Pfaffian formula on In+r. The complexity of φ
is defined to be (n, r, s, `, α, β) where ψ has complexity (n+ r, s, `, α, β).

If a formula is semialgebraic then we omit `, α from the complexity notation (for-
mally ` = α = 0).

We write φ(In) for the set of points in In satisfying φ, and refer to such sets
as semi-Pfaffian (resp. sub-Pfaffian) for φ semi-Pfaffian (resp. sub-Pfaffian). The
categories of semi-Pfaffian and sub-Pfaffian sets thus defined admit effective esti-
mates for various geometric quantities in terms of the complexity of the formulas.
We will require only estimates for the number of connected components, which are
provided by the following theorem.

Theorem 6 ([11, Theorem 6.6]). If φ is semi-Pfaffian of complexity (n, s, `, α, β)
then the number of connected components of φ(In) is bounded by

sn2`(`−1)/2O(nβ + min(n, `)α)n+`. (57)

Similarly if φ is sub-Pfaffian of complexity (n, r, s, `, α, β) then the number of con-
nected components of φ(In) is bounded by

sn+r2`(`−1)/2O((n+ r)β + min(n+ r, `)α)n+r+`. (58)

Proof. The first part is [11, Theorem 6.6]. The second follows from the first since
projection cannot increase the number of connected components. �

Corollary 17. Let φ be sub-Pfaffian of complexity (n, r, s, `, α, β). Then V (φ(In))
is bounded by a polynomial of degree at most n+ r + ` in β.

Proof. To estimate V (φ(In)) we intersect with additional linear equations and count
connected components. The result follows easily from Theorem 6. �

5.2. Sub-Pfaffian sets and RRE. The restricted exponential and sine functions
are Pfaffian. As a consequence we have the following proposition.

Proposition 18. Every RRE-definable subset of Rn is sub-Pfaffian.

Proof. By the main result of [27] every RRE-definable subset of Rn is definable by
a formula of the type

φ(Xn) := ∃Y m : ψ(Xn, Y m) (59)

where ψ is a quantifier-free RRE-formula (in fact one can replace ∃ by “exists a
unique”, although we shall not use this fact). By adding additional variables Y
one can also assume that the function symbols exp, sin only appear in the form
exp(Yj), sin(Yj): by induction on the construction tree of each term we replace
every occurrence of exp(T ) for a term T by exp(Yj) for some new variable Yj , and
add the condition Yj = T to ψ (and similarly for sin). Then it will follow that ψ is
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equivalent to a sub-Pfaffian formula once we show that the graph of the restricted
exponential and sine functions is sub-Pfaffian.

It is known that the function sin(z) is Pfaffian in the interval [0, π]. We claim
that the graph of the restricted sine, X2 = sin |[0,π](X1) in I2 := R2 is sub-Pfaffian.
Note that in defining this graph we may not use the function sin(X1), since sin is
not a Pfaffian function in R. To resolve this minor technicality we define the graph
by a projection from I3 := R2 × [0, π] using the sub-Pfaffian formula

φsin(X1, X2) := [(X1 < 0 ∨X1 > π) ∧X2 = 0]∨
[∃Y ∈ [0, π] : (X1 = Y ∧X2 = sin(Y ))] (60)

where sinY is a Pfaffian function over [0, π]. The restricted exponential function
can be treated similarly (in fact here it is not necessary to add the additional
variable over [0, 1] because exp is Pfaffian in R itself). �

5.3. Pfaffian functions in the complex domain. We return now to the complex
setting. We fix some standard coordinates x on Cn and identify Cn with R2n by
the map

(x1, . . . ,xn)→ (Re x1, Im x1, . . . ,Re xn, Im xn). (61)

Since we work in Cn it will be convenient to allow unitary changes of variables. To
make this consistent with the Pfaffian framework we consider the following setting.
We let U denote some fixed ball around the origin, and we will assume that our
Pfaffian chain is defined over U . We then let I2n denote some product of intervals
and assume A · I2n ⊂ U for any unitary A. Finally we will always work with sub-
Pfaffian sets contained in a ball B ⊂ In and we assume that the formulas explicitly
contain the condition x ∈ B. Under these assumptions we can make a constant
unitary change of variable in a Pfaffian formula without affecting the complexity:
if {fj(x)} is a Pfaffian chain then by the chain rule {fj(A ·x)} is a Pfaffian chain of
the same order ` and degree α. If the coefficients of A are taken to be independent
variables then this transformation increases the degree α by 1.

Our main result in this subsection is a theorem showing that if an analytic set
X in a ball B ⊂ Cn is sub-Pfaffian, then one can choose a Weierstrass polydisc
for X with size depending polynomially on β−1. Since we are mainly concerned
with the asymptotic in β, we allow the asymptotic constants to depend on all other
parameters. In particular when dealing with formulas of complexity (2n, r, s, `, α, β)
we view all parameters except β as O(1).

We will require a slight technical extension of the notion of Weierstrass polydiscs.

Definition 19. Suppose ∆ := ∆z ×∆w is a Weierstrass polydisc for an analytic
set X. If B ⊂ Cn is a Euclidean ball around the origin, we will say that ∆ has gap
B if ∆z × ∂∆w is disjoint from the set B +X.

We begin with a lemma in codimension one.

Lemma 20. Let B ⊂ Cn be a Euclidean ball around the origin. Let X ⊂ B be an
analytic subset of pure dimension m. Suppose X is defined by a sub-Pfaffian formula
φ of complexity (2n, r, s, `, α, β). Then there exists a pre-Weierstrass polydisc ∆ :=
∆z ×∆w centered at the origin for X where dim w = 1 and Bη ⊂ ∆ ⊂ B where

η := O(βν) ν = ν(n,m, r, `) :=
2n+ r + `+ 2

2n− 2m− 1
. (62)

Moreover ∆ can be chosen to have gap Bη.
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Proof. We may assume without loss of generality that B is the unit ball. The group
S1 := {ζ ∈ C : |ζ| = 1} acts on B by multiplication. We consider Z := S1 ·X, the
S1-saturation of X. Then Z can be defined as a sub-Pfaffian set using the formula

ψ(x) := ∃(ζ ∈ C) : (|ζ|2 = 1) ∧ φ(ζ · y). (63)

of complexity (2n, r + 2, O(1), `, O(1), β). By Corollary 17 we have

V (Z) = O(β2n+r+`+2). (64)

Note that Z has real dimension at most 2m + 1. Then according to Corollary 14
applied to Z in the cube Q := [1/4n, 1/2n]2n ⊂ B there exists a ball Bv ⊂ Q with
center v ∈ Q and radius Ω(β−ν) such that Bv∩Z = ∅. Equivalently, (S1 ·Bv)∩X =
∅.

Making a unitary change of coordinates, we may assume that in the x = z×w
coordinates v is given by (0, λ) where |λ| = Ω(1). Let ∆w denote the disc of radius
|λ| around the origin in the w coordinate and ∆z denote a polydisc of polyradius
Ω(β−ν) around the origin in the z coordinates with v + ∆z ⊂ Bv. Since ∆z is
invariant under the S1 action,

∆z × ∂∆w = (S1 · v) + ∆z = S1 · (v + ∆z) ⊂ S1 ·Bv (65)

is disjoint from X, i.e. ∆ := ∆z × ∆w is a Weierstrass polydisc for X. Finally,
since each radius of ∆ is Ω(β−ν) we have Bη ⊂ ∆ for η = O(β−ν) as claimed.

To satisfy the gap condition it is enough to choose Bv to be disjoint from Z +
BO(βν) instead of Z. This is clearly possible for the same reasons: for instance it
is enough to decrease the radius of Bv by a factor of two. �

We now state our main result.

Theorem 7. Let B ⊂ Cn be a Euclidean ball around the origin. Let X ⊂ B be
an analytic subset of pure dimension m. Suppose X is defined by a sub-Pfaffian
formula φ of complexity (2n, r, s, `, α, β). Then there exists a Weierstrass polydisc
∆ := ∆z ×∆w centered at the origin for X where Bη ⊂ ∆ ⊂ B and

η := O(βθ) θ = θ(n,m, r, `) 6 (2n+ r + `+ 2) log(2n− 2m+ 1). (66)

Moreover ∆ can be chosen to have gap Bη.

Proof. We begin with a simple topological remark. Suppose that ∆1 = ∆z×∆w ⊂
B is a pre-Weierstrass polydisc for X. Then πXz is proper so X ′ := πXz (X) ⊂ ∆z

is an analytic subset. Suppose ∆2 := ∆z′ ×∆w′ ⊂ ∆z is a Weierstrass polydisc for
X ′. Then

∆ := ∆2 ×∆w ⊂ ∆1 (67)

is a Weierstrass polydisc for X. Indeed,

• X does not meet ∆z′ × (∆w′ × ∂∆w) since it does not meet ∆z × ∂∆w.
• X does not meet ∆z′ × (∂∆w′ × ∆w) since its z-projection X ′ does not

meet ∆z′ × ∂∆w′ .

We now proceed with the proof, by induction on n − m. The case n − m =
1 is exactly Lemma 20. For n − m > 1, consider the pre-Weierstrass polydisc
∆1 = ∆z × ∆w ⊂ B provided by Lemma 20. Choose some ball B′ ⊂ ∆z. Then
X ′ ∩B′ ⊂ B′ is a sub-Pfaffian set: after a unitary change from the x to the z×w
coordinates it is defined by the formula

ψ(z) = ∃w : (w ∈ ∆w) ∧ (z ∈ B′) ∧ φ(z,w). (68)
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of complexity (2n− 2, r+ 2, O(1), `, O(1), β). Thus, applying the inductive hypoth-
esis we obtain a Weierstrass polydisc ∆2 ⊂ B′ ⊂ ∆z for X ′. Defining ∆ as above
we obtain a Weierstrass polydisc for X.

We have Bη1 ⊂ ∆1 where η1 = O(βν) for ν = ν(n,m, r, `). Then B′ can
be chosen so that BO(η1) ⊂ B′ × ∆w. Also (B′)η2 ⊂ ∆2 where η2 = O(βθ) for
θ = θ(n− 1,m, r + 2, `). Setting

η = O(η1) · η2 = O(βν+θ) (69)

we see that

Bη = (BO(η1))η2 ⊂ (B′ ×∆w)η2 ⊂ (B′)η2 ×∆w ⊂ ∆2 ×∆w = ∆. (70)

Finally computing θ by induction we see

θ(n,m, r, `) =
n−m−1∑
j=0

ν(n− j,m, r + 2j, `) =

n−m−1∑
j=0

2n+ r + `+ 2

2n− 2j − 2m− 1

6 (2n+ r + `+ 2) log(2n− 2m+ 1).

(71)

To verify the gap condition, by Lemma 20 we may choose ∆1 to have gap Bη1

and by induction we may choose ∆2 to have gap (B′)η2 . Then

[∆z′ × (∆w′ × ∂∆w)] ∩ (X +Bη1) ⊂ (∆z × ∂∆w) ∩ (X +Bη1) = ∅ (72)

and

[∆z′ × (∂∆w′ ×∆w)] ∩ (X + (B′ ×∆w)η2)

⊂ π−1
z [(∆z′ × ∂∆w′) ∩ (X ′ + (B′)η2)] = ∅. (73)

Since Bη ⊂ Bη1 and Bη ⊂ (B′ ×∆w)η2 we see that ∆ indeed has gap Bη. �

Theorem 7 contains the key argument that allows us to cover analytic sets by a
polynomial (in β) number of Weierstrass polydiscs. However, in practice the condi-
tion of pure-dimensionality of X is somewhat inconvenient. We use a deformation
argument to obtain a result valid in the case of mixed dimensions. We begin with
a definition.

Definition 21. Let Ω ⊂ Cn be a domain and {gl : Ω → C, l = 1, . . . , S} a col-
lection of holomorphic functions. Suppose that the graphs of gα are sub-Pfaffian
with complexity bounded by (2n+ 2, r, s, `, α, β). Then we say that the analytic set
X ⊂ Ω of common zeros of {gl} is a holomorphic-Pfaffian variety.

If X ⊂ Ω is an analytic subset of a domain Ω ⊂ Cn and k ∈ N, we denote by
X6k the union of the components of X that have dimension k or less. Note that
X6k is also analytic in Ω.

Corollary 22. Let X ⊂ Ω be a holomorphic-Pfaffian variety as in Definition 21
and B ⊂ Ω a relatively compact Euclidean ball. Let 0 6 m < n. There exists an
analytic set Z ⊂ B of pure dimension m satisfying X6m ⊂ Z and a Weierstrass
polydisc ∆ for Z such that:

(1) Bη ⊂ ∆ ⊂ B where η = O(βθ) and

θ = θ(n,m, 2S(r + 1), `) 6 (2n+ 2S(r + 1) + `+ 2) log(2n− 2m+ 1). (74)

(2) e(Z,∆) = O(βn+2S(r+1)+`).
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Proof. The claim is invariant under translation and we may assume without loss
of generality that B is centered at the origin. Let g̃1 denote a generic linear com-
bination of the gl. If not all gl are identically vanishing then the zero locus Z1 of
g̃1 is an analytic subset of B̄ of codimension 1. In particular it has finitely many
irreducible components. We write Z1,b for the union of those components of Z1

which are components of X and Z1,g for the rest.
For every component of Z1,g there is a function gl which is not identically van-

ishing on it. Then we may choose a generic linear combination g̃2 of the gl which is
not identically vanishing on any component of Z1,g. We set Z2 = Z1,g ∩ {g̃2 = 0},
which is an analytic subset of B̄ of codimension 2. We write Z2,b for the union of
those components of Z2 which are components of X and Z2,g for the rest.

Proceeding in the same manner we obtain a set Z := Zn−m with

X ⊂ Z ∪ Zb, Zb := Z1,b ∪ · · · ∪ Zn−m−1,b. (75)

Since the components of the sets Zj,b for j = 1, . . . , n −m − 1 have codimension
j < n−m we have X6m ⊂ Z.

Fix a tuple c1, . . . , cn−m ∈ C. Let ε > 0 and set

Zε := {x ∈ B : g̃1(x) = c1ε, · · · , g̃n−m(x) = cn−mε}. (76)

By a Sard-type argument, for generic cj and sufficiently small ε > 0 we have
dimZε = m. We claim that Z is contained in the Hausdorff limit of Zεj along
any sequence 0 6= εj → 0. Note that Z has pure dimension m while Zb ∩ Z has
dimension strictly smaller than m, so Zg := Z \ Zb is dense in Z and it will suffice
to prove that Zg is contained in the limit of Zε. Let y ∈ Zg and we will show it is
in the limit of Zεj .

The equations g̃1 = · · · = g̃n−m = 0 intersect properly, i.e. at an analytic set of
dimension m, around y. If we choose m additional generic affine-linear functions
L1, . . . , Lm vanishing at y then the intersection

g̃1 = · · · = g̃n−m = L1 = · · · = Lm = 0 (77)

is a proper isolated intersection. By conservation of proper intersection numbers
under deformations we see that the system

g̃1 = c1εj , . . . , g̃n−m = cn−mεj , L1 = · · · = Lm = 0 (78)

must indeed admit at least one solution yj ∈ Zεj converging to y as εj → 0.
For ε > 0 the set Zε is defined by the sub-Pfaffian formula

φ(x) = (x ∈ B) ∧ ∃(y1, . . . , yS) :

S∧
l=1

(yl = gl(x)) ∩
n−m∧
j=1

(g̃j(x) = cjε) (79)

where we write each g̃j as an appropriate linear combination of the yl variables.
The complexity of φ is bounded by (2n, 2S(r+ 1), O(1), `, O(1), β). By Theorem 7,
Zε admits a Weierstrass polydisc ∆(ε) satisfying Bη ⊂ ∆(ε) ⊂ B where

η := O(βθ) θ = θ(n,m, 2S(r + 1), `). (80)

Moreover we may assume that the ∆(ε) have a gap bounded from below uniformly
over ε.

Since the space of Weierstrass polydiscs satisfying the conditions above is com-
pact we may choose a sequence εj → 0 such that ∆(εj) converges (for instance
in the Hausdorff distance) to some polydisc ∆. We claim the ∆ is a Weierstrass
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polydisc for Z. Indeed, suppose Z intersects ∆z × ∂∆w. Since Z is the Hausdorff
limit of Zεj we see that points of Zεj must come arbitrarily close to ∆z×∂∆w. But
this contradicts the fact that ∆(εj) converges to ∆ and Zεj stays at a uniformly
bounded distance from ∆(εj)z × ∂∆(εj)w.

To estimate e(Z,∆) recall that Z \ Zb has dimension strictly smaller than m.
Since the map πZz is finite we see that for a generic choice of a point p ∈ ∆z the
fiber (πZz )−1(p) consists of ν = e(Z,∆) isolated points in Z \Zb. Each such isolated
point is an isolated solution of the system

{(z,w) ∈ ∆ : g̃1(z,w) = · · · = g̃n−m(z,w) = 0, z = z(p)}. (81)

Then the intersection (81) is proper at these isolated points and it follows that for
sufficiently small ε the intersection

{(z,w) ∈ ∆ : g̃1(z,w) = c1ε, . . . = g̃n−m(z,w) = cn−mε, z = z(p)} (82)

contains at least ν points. But this intersection is sub-Pfaffian, being the intersec-
tion of Zε with the equation z = z(p). Hence the upper bound for ν follows from
Theorem 6. �

Remark 23. In Corollary 22, if some of the functions gl are in fact Pfaffian of
degree β rather sub-Pfaffian, then one can take S to be the number of sub-Pfaffian
functions. Indeed, in the formula (79) one does not need to add new variables yl to
express the value of the Pfaffian gl: as Pfaffian functions they can be summed into
the linear combinations g̃j directly.

6. Exploring rational points

We begin with a definition.

Definition 24. Let X ⊂ Cm and W ⊂ Cm be two sets. We define

X(W ) := {w ∈W : Ww ⊂ X} (83)

to be the set of points of W such that X contains the germ of W around w, i.e.
such that w has a neighborhood Uw ⊂ Cm such that W ∩ Uw ⊂ X.

If A ⊂ Cn we denote by AR := A ∩ Rn. We remark that

(A(W ))R ⊂ (AR)(WR). (84)

We will consider Definition 24 in two cases: for X ⊂ Cm locally analytic and
W ⊂ Cm an algebraic variety, and for X ⊂ Rm subanalytic and W ⊂ Rm a semi-
algebraic set.

Our principal motivation for Definition 24 is the following lemma (cf. Theo-
rem 10).

Lemma 25. Let W ⊂ Rm be a connected positive-dimensional semialgebraic set
and A ⊂ Rm. Then A(W ) ⊂ Aalg.

We record some simple consequences of Definition 24.

Lemma 26. Let A,B,W ⊂ Cm. Then

A(W ) ∪B(W ) ⊂ (A ∪B)(W ). (85)

If A ⊂ B is relatively open then

B(W ) ∩A = A(W ). (86)
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6.1. Projections from admissible graphs. Let Ωx ⊂ Cm and Ωy ⊂ Cn be
domains and set Ω := Ωx × Ωy ⊂ Cn+m. We denote by π : Ω→ Ωx the projection
map.

Let U ⊂ Ωx be an open subset and ψ : U → Ωy a function, and denote its graph
by

Γψ ⊂ Ω, Γψ := {(x, ψ(x)) : x ∈ U}. (87)

We denote by ψ̃ : U → Γψ the map x→ (x, ψ(x)).

Definition 27. We say that ψ is admissible if Γ = Γψ is relatively compact in
Ω, and if there exists an analytic subset XΓ of Ω which agrees with Γ over U , i.e.
XΓ ∩ π−1(U) = Γ.

Example 28. Let Ωx ⊂ C2 be a domain such that the unit ball B2 ⊂ C2 is a
relatively compact subset of Ωx and Ωy ⊂ C be a domain such that the unit ball
B1 ⊂ C is a relatively compact subset of Ωy. Let

U := {(x1, x2) ∈ B2 : |x1| < |x2|} (88)

and define ψ : U → Ωy by (x1, x2)→ (x1/x2). Then ψ is an admissible projection,
as its graph over U agrees with the analytic subset XΓ ⊂ Ω given by yx2 = x1. This
example is essentially the only case that we shall require in the sequel.

In Theorem 8 we prove an analog of the Wilkie conjecture for images of holomor-
phic Pfaffian varieties under admissible projections. In §7 we study RRE-definable
sets, and show that (for the purpose of counting rational points) one can reduce any
definable set to the image of such an admissible projection (see Proposition 36).

6.2. Rational points on admissible projections. We fix an admissible map ψ :
U → Ωy and denote Γ := Γψ. In this section we will consider a fixed holomorphic-
Pfaffian variety X, and compute asymptotics for the number of rational points
with respect to the height H. Therefore in our asymptotic notations we allow our
constants to depend on X and Γ, as well as on [F : Q]. We note however that the
estimates do not depend on F itself. The degree of a pure dimensional algebraic
variety W ⊂ Cn denoted degW is the number of intersections between W and a
generic hyperplane of complementary dimension.

The following is our main result in this section.

Theorem 8. Let X ⊂ Ω be a holomorphic-Pfaffian variety defined by S sub-
Pfaffian functions with complexity bounded by (2n + 2m + 2, r, s, `, α, β). Suppose
X ⊂ XΓ and set

Y := π(X ∩ Γ) ⊂ Ωx. (89)

Then for

κ = 3m (m+ n+ 2S(r + 1) + `+ 1)
3m

(90)

and any H ∈ N there exists algebraic varieties V0, . . . , Vm such that Vj has pure
dimension j and degree O((logH)κ), and

Y size(F, H) ⊂ Y (V0) ∪ · · · ∪ Y (Vm). (91)

We will need the following basic lemma. Below SingW deontes the singular part
of the algebraic variety W .

Lemma 29. Let W ⊂ Cm be a pure dimensional algebraic variety of degree d.
Then:
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(1) W is set-theoretically cut out by a set of at most m + 1 polynomials, each
of degree at most d.

(2) The exists a polynomial Q of degree at most d vanishing identically on
SingW but not on W .

Proof. Assume first that W is a hypersurface. Then W = {P = 0} where P is
square-free and degP = d, proving (1). Any derivative of P vanishes on SingW ,
and any derivative which is not identically zero has no common factors with P and
hence does not vanish identically on W , proving (2). We proceed with the case
k := dimW < m− 1.

For any sufficiently generic affine-linear projection L : Cn → Ck+1, the Zariski
closure of L(W ) ⊂ Ck+1 is a hypersurface of degree d (since the pullback of a
generic line in Ck+1 by L is a generic (n − k)-plane). Let PL be the (square-free)
polynomial of degree d defining this hypersurface and set P ′L := PL ◦ L. Since L is
affine linear we also have degP ′L = d. We claim that m + 1 (sufficiently generic)
polynomials thus constructed define W set theoretically, proving (1). Indeed, let
L1 be generic as above, and let W1 = {P ′L1

= 0}. Next, choose L2 sufficiently
generic so that for any component C ⊂ W1 which is not contained in W we have
L2(C) 6⊂ L(W ). Then P ′L2

does not vanish identically on any C as above, and
setting W2 = W1 ∩ {P ′L2

= 0} we see that any component of W2 not contained
in W has codimension at least 2. Continuing in the same manner we construct
W3, . . . ,Wm+1 such that any component C ⊂Wk which is not contained in W has
codimension at least k, and in particular Wm+1 = W .

For the second statement let Tp(W ) ⊂ Cm be the common zeros locus of the
differentials dPp for every polynomial in the ideal of W . By definition we have
SingW = {p : dimTp(W ) > k}. Choose a sufficiently generic L : Cn → Ck+1 such
that dimL(W ) = k, and such that at a generic point p of (each component of)
SingW we have dL(Tp(W )) = Ck+1. We let QL denote one of the non-vanishing
derivatives of the (square-free) PL. Then QL does not vanish identically on L(W )
so Q′L := QL ◦ L does not vanish identically on W . Thus (2) will be proved with
Q = Q′L once we show that Q′L vanishes on (a generic point of) SingW . Let
p ∈ SingW be a generic point such that dL(Tp(W )) = Ck+1. Then

[( dPL)L(p)](Ck+1) = [( dPL)L(p) ◦ ( dL)p](Tp(W )) = [( dP ′L)p](Tp(W )) = {0} (92)

where the last equality follows from the definition of Tp(W ) and the fact that P ′L
vanishes on W . In conclusion, we see that QL, as a derivative of PL, vanishes at
the point L(p) so that Q′L vanishes at p as claimed. �

We begin the proof of Theorem 8 with the following proposition.

Proposition 30. Let X ⊂ Ω be a holomorphic-Pfaffian variety defined by S sub-
Pfaffian function with complexity bounded by (2n + 2m + 2, r, s, `, α, β). Suppose
X ⊂ XΓ and set

Y := π(X ∩ Γ) ⊂ Ωx. (93)

Let W ⊂ Cm be an algebraic variety of pure dimension k and degree d. Then for

λ(k) = λ(n,m, r, S, `, k) := (n+m+ 2S(r + 1) + `)(n+m− k + 1)

+ (n+m)θ(n+m, k − 1, 2S(r + 1), `) + 1 (94)
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and for any H ∈ N there exists an algebraic variety V ⊂W of pure dimension k−1
and degree O(dλ(k)(logH)k−1) such that

(Y ∩W )size(F, H) ⊂ Y (W ) ∪ V. (95)

Proof. Set
Z := (X ∩ (W × Ωy))<k. (96)

Let q ∈ Y ∩ W and suppose that q 6∈ SingW and q 6∈ Y (W ). Then the germ
Wq of W at q is smooth k-dimensional and not contained in Y . Equivalently, its

image ψ̃(Wq) is the germ of a smooth k-dimensional analytic set at ψ̃(q) which

is not contained in X. Since we assume X ⊂ Γ around ψ̃(q) we deduce that the
dimension of

X ∩ (Wq × Ωy) = X ∩ Γ ∩ (Wq × Ωy) = X ∩ ψ̃(Wq) (97)

at ψ̃(q) is strictly smaller than k, i.e. ψ̃(q) ∈ Z. In conclusion,

Y ∩W ⊂ Y (W ) ∪ SingW ∪ π(Z). (98)

By Lemma 29 there exists a hypersurface H0 ⊂ Cm of degree at most d con-
taining SingW and not containing W . Also, the holomorphic-Pfaffian variety
X ∩ (W × Ωy) is cut out by the equations for X and a set of additional poly-
nomials equations (in x) of degrees bounded by d.

Let p ∈ Γ̄. Since Γ ⊂ Ω is relatively compact there exists a Euclidean ball
Bp ⊂ Ω around p of radius Ω(1). Slightly shrinking Bp if necessary we may also

assume B
1/3
p ⊂ Ω. By Corollary 22 there exists an analytic set Z ′ ⊂ Bp of pure

dimension k − 1 satisfying Z ⊂ Z ′, and a Weierstrass polydisc ∆ for Z such that

(1) Bη ⊂ ∆ ⊂ B where η = O(dθ) and θ = θ(n+m, k − 1, 2S(r + 1), `).
(2) e(Z ′,∆) = O(dn+m+2S(r+1)+`).

Note that in the estimate above we use S, the number of sub-Pfaffian holomorphic
equations for X, and do not count the additional equations used to define W . This
is permissible in light of Remark 23 and improves the asymptotics.

Assume first that W is irreducible. Then one can choose a subset of k coordinates
on Cm, say f = (x1, . . . , xk) such that f : W → Ck is dominant and in particular
no non-zero polynomial in f vanishes identically on W . We apply Proposition 12
to Z ′ and f . We conclude that

[π(Z ′ ∩B2η
p )]size(F, H) ⊂ {Pp(f) = 0} (99)

for some non-zero polynomial Pp(f) of degree d̃, where

d̃ = O(e(Z ′,∆)n+m−k+1(logH)k−1)

= O(d(n+m+2S(r+1)+`)(n+m−k+1)(logH)k−1).
(100)

Finally, since the ball B2η
p has radius Ω(η−1), one can choose a covering of Γ̄ by

O(ηn+m) such balls. We let H be the union of the corresponding hyperplanes
{Pp(f) = 0}, and take V ′ = W ∩ H and V = V ′ ∪ (W ∩ H0). Then the degree
estimates follow from the Bezout theorem and the statement follows from (98), (99)
and the choice of H0.

If W is reducible with components Wi then we may repeat the construction
above for each Wi separately, and take V ′ to be the union of the resulting V ′i
and V = V ′ ∪ (W ∩ H0) as before. The degree estimates in this case are only
improved. �
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Proof of Theorem 8. Define κ(m), . . . , κ(0) by

κ(m) = 0 κ(k) = k − 1 + λ(k)κ(k + 1) (101)

Apply Proposition 30 with W = Vm := Cm to obtain an algebraic variety Vm−1 ⊂
Cm of pure dimension m− 1 and degree O((logH)κ(m−1)) such that

Y size(F, H) ⊂ Y (Vm) ∪ Vm−1. (102)

Apply Proposition 30 again with W = Vm−1 to obtain an algebraic variety Vm−2 ⊂
Cm of pure dimension m− 2 and degree O((logH)κ(m−2)) such that

(Y ∩ Vm−1)size(F, H) ⊂ Y (Vm−1) ∪ Vm−2. (103)

Repeating similarly we obtain an algebraic variety Vk ⊂ Cm of pure dimension k
and degree O((logH)κ(k)) such that

(Y ∩ Vk)size(F, H) ⊂ Y (Vk) ∪ Vk−1 (104)

where V−1 = ∅. Finally using Y (V0) = Y ∩ V0 and (104) gives

Y size(F, H) ⊂ Y (V0) ∪ · · · ∪ Y (Vm). (105)

An easy estimate on κ(k) finishes the proof: as κ(k) + 1 6 λ(k) (κ(k + 1) + 1), we
have

κ(0) 6
m−1∏
k=0

λ(k) 6 3m (m+ n+ 2S(r + 1) + `+ 1)
3m

.

�

7. Definable sets in RRE and the language LDRE

Let I = [−1, 1]. For m ∈ N we let RRE{X1, . . . , Xm} denote the ring of power
series f ∈ R[[X1, . . . , Xm]] such that

(1) f converges in a neighborhood of Im.
(2) For every point p ∈ Im there is a polydisc ∆p around p such that f converges

in ∆p to a holomorphic function, whose graph (in ∆p) is definable in RRE.

We remark that [27] requires strong definability in item 2 above, but this is in
fact equivalent to definability by the main result of [27]. By Proposition 18 and
the compactness of Im, for every function f ∈ RRE{X1, . . . , Xm} there exists a
complex neighborhood Ωf of Im such that f is holomorphic and sub-Pfaffian in
Ωf .

We recall the language LDRE of [27]. There is a countable set of variables
{X1, X2, . . .}, a relation symbol < and a binary operation symbol D, and an m-ary
operation symbol f for every f ∈ RRE{X1, . . . , Xm} satisfying f(Im) ⊂ I. We view
I as an LDRE-structure by interpreting < and f in the obvious way and interpreting
D as restricted division, namely

D(x, y) =

{
x/y |x| 6 |y| and y 6= 0

0 otherwise.
(106)

We denote by LRE the language obtained from LDRE by omitting D.
For every LDRE-term t(X1, . . . , Xm) we have an associated map t : Im → I which

we denote x→ t(x).
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Lemma 31. Let t(X1, . . . , Xm) be an LRE term. Then there is a complex neigh-
borhood Ω of Im such that t corresponds to a holomorphic sub-Pfaffian function in
Ω.

Proof. We prove the claim by induction: if t = Xi then the claim is obvious.
Suppose t = f(T1, . . . , Tj) where f ∈ RRE{Y1, . . . , Yj} and the claim is proved
for T1, . . . , Tj . Then there exists a complex neighborhood Ωf of Ij such that f
is holomorphic and sub-Pfaffian in Ωf , and complex neighborhoods Ωi of Im such
that Ti corresponds to a holomorphic sub-Pfaffian function in Ωi. Since Ti(I

n) ⊂ I
we may, shrinking Ωi if necessary, assume that (T1, . . . , Tj) maps Ω := Ω1×· · ·×Ωj
to Ωf . Then t corresponds to a holomorphic function in Ω, and since sub-Pfaffian
functions are closed under composition it is also sub-Pfaffian. �

For an LDRE-formula φ(X1, . . . , Xm) we write φ(Im) for the set of points x ∈ Im
satisfying φ. If A ⊂ Im we write φ(A) := φ(Im)∩A. We will use the following key
result of [27].

Theorem 9. I has elimination of quantifiers in LDRE.

7.1. Admissible formulas. Let U ⊂ I̊m be an open subset. We define the notion
of an LDRE-term being admissible in U by recursion as follows: a variable Xj is
always admissible in U ; a term f(t1, . . . , tm) is admissible in U if and only if the
terms t1, . . . , tm are admissible in U ; and a term D(t1, t2) is admissible in U if t1, t2
are admissible in U and if

|t1(x)| 6 |t2(x)| and t2(x) 6= 0 (107)

for every x ∈ U . An easy induction gives the following.

Lemma 32. If t is admissible in U then the map t : U → I is real analytic.

We will say that an LDRE-formula φ is admissible in U if all terms appearing
in φ are admissible in U . The following proposition shows that when considering
definable subsets of I one can essentially reduce to admissible formulas. The proof
is identical to that of [3, Proposition 20].

Proposition 33. Let U ⊂ I̊m be an open subset and φ(X1, . . . , Xm) a quantifier-
free LDRE-formula. There exist open subsets U1, . . . , Uk ⊂ U and quantifier-free
LDRE-formulas φ1, . . . , φk such that φj is admissible in Uj and

φ(U) =

k⋃
j=1

φj(Uj). (108)

7.2. Basic formulas and equations. We say that φ is a basic D-formula if it
has the form(

∧kj=1 tj(X1, . . . , Xm) = 0
)
∧
(
∧k
′

j=1 sj(X1, . . . , Xm) > 0
)

(109)

where tj , sj are LDRE-terms. It is easy to check the following.

Lemma 34. Every quantifier free LDRE-formula φ is equivalent in the structure I
to a finite disjunction of basic formulas. If φ is U -admissible then so are the basic
formulas in the disjunction.
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We say that φ is a basic D-equation if k′ = 0, i.e. if it involves only equalities. If
φ is a basic D-formula we denote by φ̃ the basic D-equation obtained by removing
all inequalities.

Let φ be a U -admissible basic D-formula for some U ⊂ Im. Then φ̃ is U -
admissible as well. Moreover since all the terms sj evaluate to continuous functions
in U the strict inequalities of φ are open in U and we have the following.

Lemma 35. Suppose φ is U -admissible basic D-formula. Then φ(U) is relatively

open in φ̃(U).

The set defined by an admissible D-equation can be described in terms of ad-
missible projections in the sense of §6.1.

Proposition 36. Let U ⊂ I̊m and φ be a U -admissible D-equation,

φ = (t1 = 0) ∧ · · · ∧ (tk = 0). (110)

In the notations of §6.1, there exist

(1) complex domains Ωx ⊂ Cm and Ωy ⊂ CN with N ∈ N and Im ⊂ Ωx,
(2) an open complex neighborhood U ⊂ UC ⊂ Ωx,
(3) an analytic map ψ : UC → Ωy,
(4) an analytic set X ⊂ Ω,

such that ψ is admissible, the sets X,XΓ ⊂ Ω are sub-Pfaffian, and Y := π(X∩Γψ)
satisfies YR = φ(U).

Proof. The proof is essentially the same as the proof in [3, Proposition 23] for the
language LDan. We note that in [3] this proposition is proved with an extra set of
parameters Λ, and in the current context one can take Λ to be a singleton. To see
that the sets X,XΓ are also sub-Pfaffian use Lemma 31. �

7.3. Estimate for LDRE-definable sets.

Proposition 37. Let A ⊂ I̊m be an LDRE-definable set. There exist integers κ =
κ(A) and N = N(A, [F : Q]) with the following property: for any H ∈ N there exists
a collection of at most β := N(logH)κ smooth connected semialgebraic subsets
Sα ⊂ Rm, each of complexity (m,β, β) such that

A(F, H) ⊂
⋃
α

A(Sα). (111)

Proof. According to (39), for any α ∈ F we have Hsize(α) 6 H(α)t where t := [F :
Q]. Thus

A(F, H) ⊂ Asize(F, Ht). (112)

for every H ∈ N. Therefore up to minor rescaling it will suffice to prove the claim
with H(·) replaced by Hsize(·).

By Theorem 9 we may write A = φ(I̊m) for some quantifier-free LDRE-formula φ.
By Proposition 33 and Lemma 34 we may write

A =

k⋃
j=1

nj⋃
i=1

φji(Uj) (113)

where φji is a Uj-admissible basic D-formula. By the first part of Lemma 26 it is
clear that it will suffice to prove the claim with A replaced by each φij(Uj). We thus
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assume without loss of generality that φ is already a U -admissible basic D-formula
and prove the claim for A = φ(U).

Recall that φ̃ is a U -admissible D-equation. We write B = φ̃(I̊m). Applying

Proposition 36 to φ̃ and using Theorem 8 we construct a locally analytic set Y ⊂
Cm such that YR = B, and algebraic varieties V0, . . . , Vm such that Vj has pure

dimension j and degree O((logH)κ
′
) such that

Y size(F, H) ⊂ Y (V0) ∪ · · · ∪ Y (Vm). (114)

By (84) and YR = B we have

B(F, H)size ⊂ B(V0) ∪ · · · ∪B(Vm), Vj := (Vj)R (115)

Recall that A is relatively open in B by Lemma 35. Then

Asize(F, H) = A ∩ (Bsize(F, H)) ⊂ A ∩
m⋃
j=0

B(Vj) =

m⋃
j=0

(A ∩B(Vj))

=

m⋃
j=0

A(Vj)

(116)

where the last equality is given by the second part of Lemma 26.
If we write each Vj as a union of connected smooth strata Vj = ∪lSj,l then we

have
Asize(F, H) ⊂

⋃
j

A(Vj) ⊂
⋃
j,l

A(Sj,l). (117)

It remains to estimate the number and complexity of the strata. Recall from
Lemma 29 that each Vj is cut out by m + 1 complex equations of degree at most

deg Vj , which is bounded by β1 := O((logH)κ
′
). The real-part Vj is cut out by the

same equations and additional linear equations for the vanishing of all imaginary
parts, and thus has complexity (m, 3m + 2, β1). By [9, Theorem 2] one can de-

compose Vj into a union of β2 := β
(2O(m))
1 smooth (but not necessarily connected)

semialgebraic sets of complexity (m,β2, β2). Finally, by [1, Theorem 16.13] each
such semialgebraic set can be decomposed into its connected components, with the

number of connected components bounded by β3 = β
(m4)
2 and their complexity

bounded by (m,β3, β3) (a better estimate for the number of connected components
follows from Theorem 6). �

7.4. Estimate for RRE-definable sets. Consider the map τ : R → I̊ given by
x → x/

√
1 + x2. This map is a bijection between R and I̊, with the inverse τ−1 :

I̊ → R given by y → y/
√

1− y2. A straightforward verification [27, 4.6] shows that
the τ -images of the basic relations of RRE are LDRE-definable in I, and it follows

that every RRE-definable set A ⊂ Rn has an LDRE-definable τ -image τ(A) ⊂ I̊m.

Lemma 38. Suppose A ⊂ I̊m is RRE-definable. Then A is LDRE-definable.

Proof. Let I ′ := τI = [− 1√
2
, 1√

2
]. By the above τ(A) ⊂ I̊ ′ is LDRE-definable. The

restriction τ−1|I′ : I ′ → [−1, 1] is definable in I by the LDRE-formula

φ(y, x) := ∃z : z > 0, z2 = 1− y2, x = D(y, z). (118)

Then A = τ−1(τA) is LDRE-definable as well. �

The following Theorem is the general form of our main result.
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Theorem 10. Let A ⊂ Rm be an RRE-definable set. There exist integers κ = κ(A)
and N = N(A, [F : Q]) with the following property: for any H ∈ N there exists
a collection of at most β := N(logH)κ smooth connected semialgebraic subsets
Sα ⊂ Rm, each of complexity (m,β, β) such that

A(F, H) ⊂
⋃
α

A(Sα). (119)

Proof. For A ⊂ I̊m the claim follows by Lemma 38 and Proposition 37. For the
general case, note that the definable transformations xi → 1/xi and xi → xi + 1
do not affect the heights of the points of A by more than a constant factor, and
their pullbacks preserve the smoothness of Sα do not affect the degrees of Sα by
more than a constant factor. It is easy to construct a finite set {Tj} where each
Tj : Rm → Rm is a finite composition of the transformations above such that for
any A ⊂ Rm,

A =
⋃
j

T−1
j (Tj(A) ∩ I̊m). (120)

The claim now follows from the case A ⊂ I̊m already considered. �

Remark 39. The reader may note that the strata Sα in Theorem 10 play essentially
the same role as the “basic blocks” introduced in [23]. They will be used in a similar
way for the proof of Theorem 2.

7.5. Proofs of the main theorems. In this section we prove our two main results
Theorem 1 and Theorem 2. We start with Theorem 1 which is essentially an
immediate consequence of Theorem 10.

Proof of Theorem 1. Let H ∈ N. Consider the collection of β smooth connected
semialgebraic sets Sα obtained from Theorem 10, such that

A(F, H) ⊂
⋃
α

A(Sα). (121)

By Lemma 25 we see that Atrans(F, H) is contained in the union of the zero-
dimensional strata Sα. Then #(Atrans)(F, H) is bounded by the number of strata,
which is of the required form by Theorem 10. �

We now pass to the proof of Theorem 2, which is a direct adaptation of the
approach of [23] (with slightly more effort needed to obtain the necessary degree
estimates). We introduce some additional notation for this purpose. Let P6k :=
Rk+1 \ {0} and Pk := {c ∈ P6k : ck 6= 0}. For c ∈ P6k let Pc ∈ R[x] denote the
polynomial

Pc(X) :=

k∑
j=0

cjX
j . (122)

We let Dk ⊂ Pk denote the discriminant, i.e. the set of c ∈ Pk such that Pc has a
(possibly complex) double zero. Then Dk is an algebraic subset and its complement

P̃k := Pk \Dk is an open semialgebraic set. We let Zk ⊂ P̃k × R be the set

Zk := {(c, x) ∈ P̃k × R : Pc(x) = 0}. (123)
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Lemma 40. Let {Uχ} denote the connected components of P̃k. For each χ there
is a tuple of at most k real-analytic algebraic functions φχ,j : Uχ → R such that

Zk =
⋃
χ,j

Γφχ,j (124)

where Γφ denotes the graph of φ.

Proof. Since P̃k is the complement of the discriminant, the number of zeros of Pc for
c ∈ Uχ is some constant nχ 6 k, and since Pc has no double zeros one can uniquely
choose the branch φχ,j for j = 1, . . . , nχ to be the j-th root of Pc in increasing
order. The branches thus constructed are Nash functions, i.e. real analytic and
algebraic, on Uχ. Their graphs cover Zk ∩ (Uχ × R) by construction. �

Following [23] we introduce the following height function. For an algebraic num-
ber α ∈ Qalg we define

Hpoly
k (α) = min{H(c) : c ∈ P6k(Q), Pc(α) = 0} (125)

and Hpoly
k (α) = ∞ if [Q(α) : Q] > k. Then whenever [Q(α) : Q] 6 k we have [23,

5.1]

Hpoly
k (α) 6 2kH(α)k. (126)

For a set A ⊂ Rm we define Apoly(k,H) in analogy with A(k,H) replacing H(·) by

Hpoly
k (·).

Proof of Theorem 2, adapted from [23]. As in the proof of Theorem 1, from (126)
we deduce that up to minor rescaling it will suffice to prove the claim with A(k,H)
replaced by Apoly(k,H). Let k = (k1, . . . , km) ∈ Nm and denote

A(k) := {x ∈ A : [Q(x1) : Q] = k1, . . . , [Q(xm) : Q] = km}, (127)

Apoly(k, H) := {x ∈ A(k) : Hpoly
k (x) 6 H}. (128)

Then

Apoly(k,H) =
⋃

k:16kj6k

Apoly(k, H) (129)

and it will suffice to prove the claim for fixed k in place of k.
Denote P̃k :=

∏m
j=1 P̃

kj and let Zk ⊂ P̃k × Rm be the set

Zk := {(c1, . . . , cm, x1, . . . , xm) ∈ P̃k × Rm :

Pc1(x1) = · · · = Pcm(xm) = 0}. (130)

Let {Uχ} denote the connected components of P̃k. For each χ there is a tuple of
at most km real-analytic algebraic maps φχ,j : Uχ → Rm such that

Zk =
⋃
χ,j

Γφχ,j (131)

where Γφ denotes the graph of φ. Indeed, Uχ are just direct products of the

connected components of P̃kj , and the claim follows by taking the direct products
of the functions constructed in Lemma 40.

For each component Uχ and map φχ,j we define the set

Aχ,j ⊂ P̃k, Aχ,j := {p ∈ P̃k : φχ,j(p) ∈ A}. (132)
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Since φχ,j are semialgebraic, Aχ,j are definable in RRE. Consider the collection
of at most β = N(logH)κ smooth connected semialgebraic strata Sχ,j,α obtained
from Theorem 10, such that

Aχ,j(Q, H) ⊂
⋃
α

Aχ,j(Sχ,j,α). (133)

Let x ∈ Apoly(k, H), and for l = 1, . . . ,m let cl ∈ P6kl be a tuple satisfying
Pcl(xl) = 0 and H(cl) 6 H. Since [Q(xl) : Q] = kl we see that Pcl is (up to a
scalar) the minimal polynomial of xl, so it has degree kl and no multiple roots, i.e.

cl ∈ P̃kl . Write p = (c1, . . . , cm) ∈ P̃k. Then (p, x) ∈ Zk and by (131) we have
x = φχ,j(p) for some pair (χ, j). By (132) we have p ∈ Aχ,j(Q, H). Choose one of
the strata Sχ,j,α such that p ∈ Aχ,j(Sχ,j,α) and denote it by S(p) and its germ at
p by Sp. Then Sp ⊂ Aχ,j , and by (132) we have Yp := φχ,j(Sp) ⊂ A. Note that Yp
is a semialgebraic set containing φχ,j(p) = x.

Suppose x ∈ Atrans. Then φχ,j is constant on Sp, for otherwise Yp would be
a connected positive-dimensional semialgebraic set containing x. Since S(p) is
connected, nonsingular and analytic and φχ,j is real analytic it follows that φχ,j is
constant (with value x) on the whole of S(p).

From the above it follows that there is an injective correspondence p → S(p)
between the points x ∈ (Atrans)poly(k, H) and the strata Sχ,j,α. The number
of these strata for each χ, j is at most β, and since the number of pairs χ, j is
independent of H we obtain a bound of the required form (but note that the
exponent κ now depends on the sets Aχ,j , i.e. on k as well as A). This finishes the
proof. �

8. Concluding remarks

8.1. Effectivity. While we do not compute all explicit constants in this paper
in the interest of space, all of the estimates presented for holomorphic-Pfaffian
varieties and their admissible projections are entirely effective in the complexity of
the holomorphic-Pfaffian varieties involved. We do give an effective estimate for
the exponent κ in Theorem 8 as we believe this may be of some interest in possible
diophantine applications.

As a consequence of the above, our estimates for sets defined by quantifier-free
LDRE-formulas can be made effective in terms of the complexity of the formulas.
We do not study the effectivity of the quantifier-elimination result of [27], and we
therefore cannot make a direct statement about the effectivity of our main results for
general RRE-definable sets. However, we believe that by a combination of Pfaffian
techniques and the proof of [27] it is possible to obtain an effective statement in
this context as well.

8.2. Uniformity with respect to parameters. Our approach is essentially uni-
form over definable families, and the results could be developed in this additional
generality in the same way as this is done in [3] for the subanalytic context. We
avoided this extra generality in this paper in the interest of preserving clarity; and
also since in view of §8.1 we believe a detailed analysis should give estimates depend-
ing only on the complexity of the formulas involved, and hence a-priori uniform
over families.
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8.3. Generalization to other structures. We have focused in this paper on the
structure RRE since it contains the restricted form of Wilkie’s original conjecture.
It is of course natural to make similar conjectures for sets definable in other “tame”
geometric structures. We identify two possible categories for such a generalization:
structures generated by elliptic functions, for instance the Weierstrass ℘-function
(for a fixed lattice/s) and possibly higher-dimensional abelian functions; and struc-
tures generated by modular functions, for instance Klein’s j-invariant and possibly
universal covering maps of more general Shimura curves/varieties. In both cases
one must of course restrict the functions to a suitable fundamental domain to avoid
periodicity and obtain an O-minimal structure [17]. Both categories are closely
related to diophantine problems of unlikely intersections: the former to the circle
of problems around the Manin-Mumford conjecture, and the latter to the circle of
problems around the André-Oort conjecture [25].

The elliptic case appears to be possibly amenable to our approach. Namely, a sur-
prising work of Macintyre [15] shows that the real an imaginary parts of ℘−1 (on an
appropriate domain) are real-Pfaffian functions, thus placing ℘ in the holomorphic-
Pfaffian category (in analogy with the function ez whose real an imaginary parts ex

and sinx, restricted to an appropriate domain, are real-Pfaffian and generate RRE).
From the model-theoretic side, the work of Bianconi [2] establishes a close analog
of the results of [27] for the structures generated by real and imaginary parts of
elliptic (or more generally abelian) functions. It therefore appears likely that the
methods used in this paper could be carried over to the elliptic category (at least
for elliptic functions).

The modular category currently appears to be more challenging: we have no rea-
son to believe that the j-function is Pfaffian (or definable from Pfaffian functions).
However, we note that the j-function (as well as other modular functions) does
satisfy certain natural non-Pfaffian systems of differential equations, and one may
hope that some progress in the analysis of such systems could provide a suitable
replacement for the Pfaffian category.
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