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Abstract
In 1987, Yomdin proved a lemma on smooth parametrizations of semialgebraic sets
as part of his solution of Shub’s entropy conjecture for C∞ maps. The statement was
further refined by Gromov, producing what is now known as the Yomdin–Gromov
algebraic lemma. Several complete proofs based on Gromov’s sketch have appeared
in the literature, but these have been considerably more complicated than Gromov’s
original presentation due to some technical issues. In this note, we give a proof that
closely follows Gromov’s original presentation. We prove a somewhat stronger state-
ment, where the parametrizing maps are guaranteed to be cellular. It turns out that
this additional restriction, along with some elementary lemmas on differentiable func-
tions in o-minimal structures, allows the induction to be carried out without technical
difficulties.
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The Yomdin–Gromov Lemma
For a Cr -smooth function f : U → R

n on a domain U ⊂ R
m we denote by ‖ f ‖

the maximum norm on U and

‖ f ‖r := max|α|≤r

‖Dα f ‖
α! . (1)
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420 G. Binyamini, D. Novikov

In his work on Shub’s entropy conjecture, Yomdin [9,10] proved a lemma on Cr -
smooth parametrizations of semialgebraic sets. This was further refined by Gromov in
[5], see also [2], with the following formulation now known as the Yomdin–Gromov
algebraic lemma.

Theorem 1 (Yomdin–Gromov algebraic lemma). Let X ⊂ [0, 1]n be a semialgebraic
set of dimension μ defined by conditions p j (x) = 0 or p j (x) < 0, where p j are
polynomials and

∑
deg p j = β. Let r ∈ N. There exists a constant C = C(n, μ, r , β)

and semialgebraic maps φ1, . . . , φC : (0, 1)μ → X such that their images cover X
and ‖φ j‖r ≤ 1 for j = 1, . . . ,C.

Pila and Wilkie later realized that this theorem has remarkable applications in the
seemingly unrelated area of Diophantine approximation. For the generality required
by these applications, they stated and proved an analog of the algebraic lemma for
general o-minimal structures [8, Theorem 2.3] (see [4] for general background on
o-minimal geometry).

Theorem (Pila–Wilkie’s version of Yomdin–Gromov). Let X = {X p ⊂ [0, 1]n} be
a definable family of sets in an o-minimal structure, with dim X p ≤ μ. There exists
a constant C = C(X , r) such that for any p there exist definable maps φ1, . . . , φC :
(0, 1)μ → X p such that their images cover X p and ‖φ j‖r ≤ 1 for j = 1, . . . ,C.

In addition to Pila–Wilkie’s proof, Burguet [2] has also given a proof in the semial-
gebraic setting around the same time. Both of these proofs roughly follow Gromov’s
presentation, but the technical details are significantly more involved. This is due
to an issue with potentially unbounded derivatives that was not explicitly treated in
Gromov’s text, see the first paragraph of [8, Sect. 4]. In both Pila–Wilkie’s and Bur-
guet’s papers, the problem is resolved by an additional approximation argument on
Cr -smooth maps. We also remark that Kocel–Cynk, Pawłucki and Vallete have given
a proof based on a somewhat different approach in the general o-minimal setting [6].

In this paper, we give a formal treatment of Gromov’s original proof. In particular,
we introduce a slightly stronger notion of cellular parametrizations in Definition 7,
and prove the algebraic lemma with the additional requirement that the parametrizing
maps are cellular. This, in combination with some elementary lemmas on differen-
tiable functions in o-minimal structures (see Sect. 2.4), allows us to recover Gromov’s
original inductive argument without any technical complications.

Remark 1 (On the asymptotic constants). The constants C(X , r) and C(n, μ, r , β)

in these statements are purely existential, and one could ask about their dependence
on r and on the complexity β in semialgebraic case or, more generally, whenever
this complexity can be defined (e.g. Pfaffian sets). A good understanding of these
constants plays a crucial role in some potential applications of the algebraic lemma,
both in dynamics and in Diophantine approximation. We refer the reader to [1, Sect.
1] for a discussion of these applications.

We briefly summarize the current state of the art. Gromov’s presentation [5] gives
the polynomial dependence on β in the semialgebraic case (but no explicit dependence
on r ). Cluckers, Pila and Wilkie [3] give polynomial dependence on r for globally
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The Yomdin–Gromov Algebraic Lemma Revisited 421

subanalytic (and slightly more general) sets, with no explicit dependence on β. In [1]
we give a result with polynomial dependence on both r andβ in the semialgebraic case:
this is the statement which is most useful in the potential applications. We also give
polynomial dependence on r in the globally subanalytic case. In a work in progress of
the first author and Jones, Schmidt and Thomas, a bound polynomial in β (but not in
r ) is established for sets definable using restricted-Pfaffian functions. This is based on
a suitable adaptation of the approach presented in the present paper to the restricted
Pfaffian structure.

0.1 Statement of theMain Result

We prove a refined version of the Yomdin–Gromov algebraic lemma for general o-
minimal structures using the notion of cellular parametrizations introduced below. To
simplify the terminology for readers not familiar with o-minimal structures, we will
assume everywhere below that we are working with an o-minimal structure over the
reals R. However, all the proofs carry over to the general case without change.

We denote I := (0, 1). For a vector x1..� ∈ R
�, we denote by x1...i the vector

consisting of its first i coordinates.

Definition 2 Let X , Y be sets and F : X → 2Y be a map taking points of X to subsets
of Y . Then we denote

X � F := {(x; y) : x ∈ X; y ∈ F(x)} ⊂ X × Y .

Definition 3 A cell C of length zero is the point R0.
A cell C ⊂ R

�+1 of length � + 1 is defined as C = C1...� � F , where

(1) the base C1...� ⊂ R
� is a cell of length �,

(2) the map F : C1...� → 2R is defined as either F(x1...�) = {a(x1...�)} or F(x1...�) =
(a1(x1...�), a2(x1...�)) and

(3) the map F is continuous. Equivalently, the function a(x1...�) (the functions
a1(x1...�), a2(x1...�), respectively) are continuous functions onC1...�,witha1(x1...�) <

a2(x1...�) for every x1...� ∈ C1...� in the latter case.
The set F(x) is called the fiber of C, i.e. of the natural projection C → C1...�.
Definition 4 A cell of length zero is a basic cell. A basic cell C ⊂ R

� of length � is a
cell with a basic cell of length �− 1 as a base and either the interval I or the singleton
{0} as the (constant over the base) fiber.
Remark 5 A classical definition allows infinite intervals as fibers, i.e. the functions
ai (x1...�) are allowed to take infinite values. We consider the bounded sets only, so we
do not need this generality (and avoid it to simplify notations).

Definition 6 A continuous map f = ( f1, . . . , f�) : C → R
�, where C is a cell of

length �, is called cellular if for every i = 1, . . . , �

• fi (x1...�) = fi (x1...i ), i.e. fi depends only on the first i coordinates of x, and
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422 G. Binyamini, D. Novikov

• fi (x1...i−1, ·) is strictly increasing for every x1···i−1 ∈ C1·i−1 (where the cellC1...i−1
is the coordinate projection of C to Ri−1 = {xi = · · · = x� = 0} ⊂ R

�).

Note in particular that cellular maps preserve dimension and the composition of
cellular maps is cellular.

Definition 7 A cellular r -parametrization of a definable set X ⊂ R
� is a collection

� = {φα : Cα → X} of definable cellular Cr -smooth maps φα defined on basic cells
Cα with ‖φα‖r ≤ 1 such that X = ∪αφα(Cα).

A cellular r -parametrization of a definable map F : X → Y is a cellular r -
parametrization � of X satisfying ‖φ∗

αF‖r ≤ 1 for every φα ∈ �.

Remark 8 Let X ⊂ R
�, Y ⊂ R

q and F : X → Y a definable map. Then {φα : Cα →
X} is a cellular r -parametrization of a F if andonly if {(φα, F◦φα) : Cα×{0}n → gr F}
is a cellular r -parametrization of the graph gr F .

We will prove the Yomdin–Gromov lemma in the following form.

Theorem 2 Let �, r ∈ N. Then

S� Every definable set X ⊂ I � admits a cellular r-parametrization.
F� Every definable function F : X → Y with X ⊂ I � and Y ⊂ I q (for any q)

admits a cellular r-parametrization.

We remark that the cellular formulation of the Yomdin–Gromov lemma makes it
automatically uniform over parameters: a cellular parametrization of a family with the
parameters placed as the initial variables gives a cellular parametrization of each fiber
by restriction. This uniformity is essential in the applications.

Remark 9 This exposition appeared first as a part of the course “Tame geometry and
applications” given by authors at the Weizmann Institute of Science, Fall 2018.

1 Why Cr-Smooth?

Before going into the proof of the Yomdin–Gromov lemma we will address a natural
question. Semialgebraic sets are analytic objects. Why would one, starting with such
tame objects, venture into the far less rigid smooth category? It would certainly seem
natural to expect a far more rigid parametrization, say by holomorphic maps with
respect to some suitable norm. It turns out that there are deep obstructions hiding in
the background.

Ideally, one would like to replace finite smoothness order r ∈ N by a bound for all
derivatives,

‖ f ‖∞ := sup
α

‖Dα f ‖
α! . (2)

If U ⊂ R
m and f : U → R

n has ‖ f ‖∞ < ∞ then f continues holomorphically to a
1-neighborhood N1(U ) ⊂ C

m of U . Moreover, in N1/2U , we have

max
N1/2(U )

| f | ≤ const ‖ f ‖∞. (3)
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The Yomdin–Gromov Algebraic Lemma Revisited 423

So, instead of this ∞-norm we might as well use the norm given by the maximum of
the analytic continuation of f to a neighborhood of some fixed radius. Below we will
write

‖ f ‖ω := max
N1(U )

| f |. (4)

One would ideally like to prove the Yomdin–Gromov lemma with the maps φi extend-
able to 1-neighborhood of (0, 1)k and with this stronger norm. Unfortunately this is
impossible already for the simple family of semialgebraic sets (originally considered
in this context by Yomdin in [11]),

Xε = [(−1, 1) × (−1, 1)] ∩ {xy = ε}. (5)

We will show that an ω-parametrization of Xε will require at least log | log ε| maps so
cannot be uniform over the family {Xε}. To explain this we take a brief detour to the
geometry of hyperbolic Riemann surfaces.

1.1 Hyperbolic Geometry

Recall that the upper half-plane H admits a unique hyperbolic metric of constant
curvature −4 given by | dz|/2y. A Riemann surface U is called hyperbolic if its
universal cover is the upper half-plane H. In this case, U inherits from H a unique
metric of constant curvature −4 which we denote by dist(·, ·;U ) (we sometimes omit
U from this notation if it is clear from the context). By the uniformization theorem,
a domain U ⊂ C is hyperbolic if and only if its complement contains at least two
points.

The following is a straightforward consequence of the classical Schwarz lemma
obtained by lifting the map to universal covers.

Lemma 10 (Schwarz–Pick [7, Theorem 2.11]). If f : S → S′ is a holomorphic map
between hyperbolic domains S, S′ then

dist( f (p), f (q); S′) ≤ dist(p, q; S) ∀p, q ∈ S. (6)

1.2 The Obstruction

Suppose f : (0, 1) → Xε is a map with ‖ f ‖ω ≤ 2. Then f extends analytically to
the 1-neighborhood of (0, 1) in C and is bounded by 2 there in absolute value. By
analytic continuation, f continues to satisfy xy = ε in N1(0, 1), so

f : N1(0, 1) → {xy = ε} ∩ {|x |, |y| < 2}. (7)

Consider the projection π(x, y) = x . Then the composition gives a map

π ◦ f : N1(0, 1) → {ε/2 < |x | < 2} = A(ε/2, 2). (8)
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424 G. Binyamini, D. Novikov

The domain and the range are hyperbolic domains. So by Schwarz–Pick Lemma 10,
we have

diam([π ◦ f ](0, 1); A(ε/2, 2)) ≤ diam((0, 1); N1(0, 1)) = const . (9)

We see that the set of x-s covered by f has bounded hyperbolic diameter in A(ε/2, 2).
We would eventually like to cover every x ∈ π(Xe) = (ε, 1). A simple computation
gives

diam((ε, 1); A(ε/2, 2)) ∼ log | log ε| (10)

so indeed at least log | log ε| maps will be needed to cover Xε.

Remark 11 One can show that the bound above is asymptotically sharp, i.e. Xε can
indeed be covered by O(log | log ε|) maps of unit ω-norm. Indeed, it suffices to find
such a collection of such maps from (0, 1) to Xε which extend analytically to the
complex disc D(2), with both coordinates bounded by 2 on this disc. Equivalently by
considering only the x-coordinate, we may look for a collection of maps from (0, 1)
into (ε, 1) which extend to maps D(2) → A(ε/2, 2). Passing to the logarithmic chart,
we seek maps from D(2) to the strip

Sε/2 = {log ε − 1 < Re t < 1} (11)

such that the images of (0, 1) cover (log ε, 0). This is easily achieved using affine
maps, where the radius of the image is taken to be proportional to the distance from
the boundary of Sε/2, and we leave it for the reader to verify that in this manner one
does obtain a covering using O(log | log ε|) maps.

2 Proof of Theorem 2

Westartwith a trivial transitivity remark.Assume that� = {φα : Cα → X} is a cellular
r -parametrization of X and �α = {φα,β : Cα,β → Cα} is a cellular r -parametrization
of Cα . Then the collection {φα ◦ φα,β} is “almost” a cellular r -parametrization of X :
by the chain rule ‖φα ◦ φα,β‖r = O�,r (1) and a linear subdivision reduces the norms
to 1. We will use this reduction freely.

A similar remark holds for � = {φα : Cα → X} a cellular r -parametrization
of F : X → Y and �α = {φα,β : Cα,β → Cα} a cellular r -parametrization of
f ∗
α F : Cα → Y .
We record the following simple lemma.

Lemma 12 Let n ∈ N and assume that every definable map F : X → I with dim X =
n admits a cellular r-parametrization. Then the same is true for every definable map
F : X → Y with Y ⊂ Im.

Proof Let � be a cellular r -parametrization of F1. It will be enough to find a cellular
r -parametrization for F ◦ φ1 for each φ1 ∈ �. In other words, we may reduce to the
case ‖F1‖r = Or (1). We now do the same for F2, noting that after the composition
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we still have ‖F1 ◦ φ2‖r = Or (1) by the chain rule, and now also ‖F2‖r = Or (1).
Repeating this for each coordinate, we finally get ‖Fi‖r = Om,r (1) for every Fi and
an additional linear subdivision finishes the proof. ��

The proof of the Yomdin–Gromov lemma is by induction on �. Statement S1 is
trivial. We establish F1 as a base case, and then show S≤� + F≤� �⇒ S�+1 and
F<� + S≤� �⇒ F�.

2.1 Proof of F1

We will start with a simple lemma due to Gromov about dampening derivatives of
univariate functions.

Lemma 13 Let r ≥ 2. Suppose that f : I → I is a definable function with ‖ f ‖r−1 ≤
1. Then f has a cellular r-parametrization.

Proof By o-minimality we may divide I into finitely many subintervals where f (r) is
monotone and has constant sign. Thus, we assume without loss of generality that f (r)

is positive and monotone decreasing on I . For any x ∈ I

2(r − 1)!
x

≥ f (r−1)(x) − f (r−1)(0)

x
= f (r)(cx ) ≥ f (r)(x), (12)

where cx ∈ (0, x) is chosen by the mean-value theorem. Let f̃ (x) = f (x2). When
computing the f̃ (r) we get a bunch of bounded terms plus a term Or (xr f (r)(x2)),
which is bounded by Or (xr−2). Since r ≥ 2 we get ‖ f̃ ‖r = Or (1) and a linear
subdivision of I finishes the proof. ��

We use this to obtain the following.

Lemma 14 Let X ⊂ I 2 be a definable set of dimension 1. For every r ∈ N there exists
a collection of maps {φα : I → X} such that: i) ∪αφα(I ) = X\
 for some finite set

; ii) ‖φα‖r ≤ 1 for every φα; iii) every coordinate of every φα is monotone.

Proof By cell decomposition we decompose X into finitely many points, intervals
{x0} × (a, b) and graphs of definable functions f : (a, b) → I . We denote by 
 the
set of points, and easily parametrize the vertical intervals as required. It remains to
parametrize the graphs, and we treat each of them separately.

By o-minimality we may assume that f is either constant (the parametrization is
then trivial) or monotone, continuously differentiable, and one of

f ′ ≤ −1 −1 ≤ f ′ < 0 0 < f ′ ≤ 1 1 ≤ f ′ (13)

holds uniformly. Changing the orientation of (a, b) and exchanging the roles of x and
y if needed we may assume 0 < f ′ ≤ 1 in (a, b). We are now in position to apply
Lemma 13 repeatedly r − 1 times to obtain an r -parametrization {φ̃α : I → I } of f .
Setting φα = (φ̃α, f ◦ φ̃α) then gives the required parametrization of the graph of f
(but note the x and y coordinates may have been exchanged). Condition (iii) follows
from the monotonicity of φ̃α and of f . ��
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426 G. Binyamini, D. Novikov

We are now ready to deduce F1. For the case q = 1, apply Lemma 14 to the graph
of F and let {φα = (φx

α, φ
y
α)} denote the resulting collection. Then � = {φx

α} (plus
the finitely many points x-coordinates of 
, covered by zero-dimensional basic cells)
is a cellular r -parametrization of F . Indeed, it is cellular by condition (iii), it covers
the domain of F since φα covers the graph by condition (i), and

‖F ◦ φx
α‖r = ‖φy

α‖r ≤ 1 (14)

by condition (ii).
The case of general q now follows by Lemma 12. Note that we could not have

obtained this directly from Lemma 13 because the assumption r ≥ 2 is crucial there,
and the reduction in Lemma 14 involves changing the order of the variables and is not
cellular.

2.2 The Step S≤� + F≤� �⇒ S�+1

By cell decomposition it is enough to prove the claim for every cell C ⊂ I �+1. We
assume that C = C1..� � (a, b), with the fiber (a, b) ⊂ I (the case C = C1..� � {a} is
similar but easier). By F≤� we may assume that the map (a, b) : C1...� → I 2 already
admits a cellular r -parametrization by maps fα : Cα → C1..�. Let f : C → C1..� be
one of these maps. Then ‖ f ∗a‖r , ‖ f ∗b‖r ≤ 1 and setting

C′ := C × I , f ′(x1..�+1) = ( f , x�+1 f
∗b + (1 − x�+1) f

∗a) (15)

we have ‖ f ′‖r ≤ O�(1). Taking a linear subdivision of C′ finishes the proof.

2.3 The Step F<� + S≤� �⇒ F�

2.3.1 A Family Version of F�

We will need a “family version” of F� as follows.
F� f or f amilies Let {Fλ : X → Y }λ∈I be a definable family. Then there exists (i)

a disjoint partition I = ∪I j into finitely many points and intervals; (ii) for every I j
a collection of basic cells Cα and cellular maps { fα,λ : Cα → X}λ∈I j such that (1)
‖ fα,λ‖r ≤ 1 and ‖ f ∗

α,λFλ‖r ≤ 1 for every fixed λ ∈ Iα; and (2) for every λ ∈ I j we
have X = ∪α fα,λ(Cα).

It is not difficult to obtain such a family version by adding parameter to all of
the statements in Sect. 2. However, to simplify the presentation we take a shortcut
introduced in the Pila–Wilkie paper: we show in Sect. 2.5 that the family version of
F� follows from the regular version by general o-minimality considerations.

2.3.2 Reduction to ‖F(x1, ·)‖r ≤ 1 for Every x1 ∈ I

By the family version of F�−1 we may, thinking x1 as a parameter, find a cellular
r -parametrization � = {φx1

β } of F with respect to the x2..μ variables (we consider
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each interval I j separately and rescale back to I ). Fix one φx1 = φ
x1
β and set F̂ =

(id, φx1 , F ◦ (id, φx1)). Then ‖F̂(x1, ·)‖r ≤ O�,r (1) for every fixed x1 ∈ I . By o-
minimality F̂ is Cr -smooth outside a positive-codimension set V ⊂ I �.

We first use S� to find a cellular r -parametrization { fV ,α : CV ,α → V }. Each CV ,α

must have dimension strictly smaller than �, i.e. it has a {0}-coordinate, so we can find
a cellular r -parametrization for each f ∗

V ,α F̂ using F<� as above. By projection, this r -

parametrization will produce a cellular r -parametrization of the image Im
(
f ∗
V ,α F̂

)
=

gr F̂ , which is what is required, see Remark 8.
We now use S� to find a cellular r -parametrization { fα : Cα → I �\V }. Fixing

one such C, f we note that f ∗ F̂ is Cr -smooth on C, and crucially we still have
‖ f ∗ F̂(x1, ·)‖r = O�,r (1) for every fixed x1 ∈ I because ‖ f ‖r ≤ 1 and f1 does not
depend on x2..�. As before we may assume that C = I � and use linear subdivision to
get ‖ f ∗ F̂(x1, ·)‖r ≤ 1. As above, it will suffice to find a cellular r -parametrization of
f ∗ F̂ .

2.3.3 Induction over the First Unbounded Derivative˛

We return to our original notation replacing F by f ∗ F̂ . We may now assume that
F : I � → I � × Y ⊂ I �+q is Cr -smooth and ‖F(x1, ·)‖r ≤ 1 for every x1 ∈ I . Let
α ∈ N

� be the first index, in lexicographic order, such that |α| ≤ r and ‖F (α)‖ > 1.
If no such α exists we are done. We will reparametrize F by cellular r -maps such that
the pullback has strictly larger α and then finish the argument by induction on α.

2.3.4 Reparametrization of the x1 Variable

By assumption α1 > 0. Using Lemma 16 and treating the finitely many exceptional
x1 values by induction on �, we may assume without loss of generality that F (α)(x1, ·)
is bounded for every x1 ∈ I . Define

S :=
{

x1..μ ∈ I � : ‖F (α)(x1..μ)‖ ≥ 1
2 sup
I �−1

‖F (α)(x1, ·)‖
}

(16)

Choose a definable curve γ : I → S such that γ1(x1) = x1. Using F1 we find a
cellular r -parametrization � of (γ, F (α−11) ◦ γ ). Fix φ ∈ � and set F̃ := F ◦ (φ, id).

2.3.5 Finishing-Up: A Bound on All Derivatives up to˛

Recall that all derivatives of (φ, id) up to order r and all derivatives F (β) with β < α

are bounded by 1. It follows easily using the chain rule that F̃ (β) = O�,r (1) for β < α.
Computing F̃ (α) weget terms that add up to O�,r (1), and the term (φ′)α1 ·F (α)◦(φ, id).
Now

‖(φ′)α1 · F (α) ◦ (φ, id)‖ ≤ ‖(φ′)α1 · 2F (α) ◦ γ ◦ φ‖ ≤ 2‖φ′ · F (α) ◦ γ ◦ φ‖ (17)
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428 G. Binyamini, D. Novikov

since |φ′| ≤ 1 and α1 ≥ 1. To bound the right-hand side, we compute

(F (α−11) ◦ γ ◦ φ)′ = φ′ ·
⎛

⎝F (α) ◦ γ +
μ∑

j=2

γ ′
j · F (α−11+1 j ) ◦ γ

⎞

⎠ ◦ φ (18)

and note that the left hand side, |φ′ · γ ′
j ◦ φ| are O�,r (1) by the choice of φ and, as

α − 11 + 1 j ≺ α, ‖F (α−11+1 j )‖ are O�,r (1) by induction on lexicographic order
assumption. Therefore ‖φ′ · F (α) ◦ γ ◦ φ‖ is also O�,r (1), and a further subdivision
and linear reparametrization finishes our induction on α.

2.4 Boundedness of Derivatives

In this section, we prove a simple lemma on boundedness of derivatives used in Sect.
2.3.4. We let μ denote the Lebesgue measure (or just sum of lengths of intervals).

Lemma 15 Let { fε(t) : I → I } be a definable family of functions depending on a
parameter ε. Then for every ε,

μ
({t ∈ I : | f ′

ε(t)| > M}) <
C

M
, (19)

where C is a constant independent of ε.

Proof The set where f ′
ε(t) > M (resp. f ′(t) < −M) is a union of intervals, with

their number uniformly bounded by o-minimality, and each of length at most 1/M :
otherwise fε would leave I along such an interval. ��
Lemma 16 Let f : I � → I q be definable, and suppose that ‖ ∂ f

∂x j
‖ ≤ 1 for j =

2, . . . , �. Then the function ∂ f
∂x1

(x1, ·) is bounded for almost every fixed x1 ∈ I .

Proof Without loss of generality we can assume that q = 1. Assume the contrary.
Then, by o-minimality, the set

{

x1 ∈ I :
∣
∣
∣
∣
∂ f

∂x1
(x1, ·)

∣
∣
∣
∣ is unbounded

}

(20)

contains an interval, and we might as well assume after restriction and rescaling that
it is I . For each M we can choose a curve γM : I → I �−1 such that

∣
∣
∣
∣
∂ f

∂x1
(t, γM (t))

∣
∣
∣
∣ > M ∀t ∈ I , (21)

and we may further assume the dependence on M is definable. Applying Lemma 15
to the coordinates of γM (t) and to f (t, γM (t)), we see that outside a set of measure
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C̃/M we have ‖γ ′
M (t)‖ ≤ M/(3�) as well as

∣
∣
∣
∣
∣
∣

�∑

j=2

∂ f

∂x j
(t, γM (t))γ ′

M, j (t) + ∂ f

∂x1
(t, γM (t))

∣
∣
∣
∣
∣
∣
= ∣

∣ f (t, γM (t))′
∣
∣ ≤ M/3. (22)

This is impossible as soon as M > C̃ : the summation term in the left hand side is
bounded by M/3, and the second term is at least M . ��

2.5 Automatic Uniformity over Families

In this section, we give a model-theoretic proof that the statement F� for an arbitrary
o-minimal structure (and fixed �, r ∈ N) implies the family version for an arbitrary
o-minimal structure (with the same �, r ). This is the approach employed by Pila and
Wilkie [8], and we repeat it here with some more explicit details for non-experts in
model-theory who are nevertheless interested in understanding the mechanics of this
general reduction. However, a reader unfamiliar with the relevant notions from model
theory can alternatively check that the family version of F� can be proven in the same
manner as the usual statement of F�, essentially verbatim.

LetM be an o-minimal structure, now not necessarily overR, and consider a family
{Fλ : X → Y }λ∈I . Let L be the language of M. Let � := {φα(p, a)} denote the set
of all L-formulas in two sets of variables and N ∈ N. For every φ ∈ �N , we can
write the first-order formula ψφ(λ) stating that “there exists p such that the formulas
φ1(p, ·), . . . ,φN (p, ·) define N cellular maps f1, . . . , fN which form a cellular r -
parametrization of Fλ”. We claim that there are φ1, . . . ,φq be such that ∀λ ∈ I :
∨q

j=1ψφ j (λ) holds inM.
Suppose not. Let c denote a new constant and consider the theory

T := ThL(M) ∪ {c ∈ I } ∪ {¬ψφ(c) : N ∈ N,φ ∈ �N }. (23)

This theory is finitely consistent by our assumption (in fact an interpretation for c
exists in M). It is, therefore, consistent by compactness, and we have an elementary
extensionM ⊂ M̃ which is again an o-minimal structure. But the axioms of T state

that FM̃
c has no cellular r -parametrization, and this contradicts F� for M̃.

Now choose φ1, . . . ,φq as above and set I j := {λ ∈ I : ψφ j (λ)}. By definable
choice there is a definable map λ → p(λ) such that for every λ ∈ I j , the formulas

φ
j
1(p(λ), x), . . . ,φ j

N j
(p(λ), x) (24)

define N j cellularmapswhich form a cellular r -parametrization of Fλ. Finally,∪ j I j =
I , and refining this into a partition by points/intervals using o-minimality proves the
claim.
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