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Abstract. We provide an asymptotically justified derivation of activity measure evolution equa-
tions (AMEE) for a finite size neural network. The approach takes into account the dynamics for
each isolated neuron in the network being modeled by a biophysical model, i.e. Hodgkin-Huxley
equations or their reductions. By representing the interacting network as self and pairwise interac-
tions, we propose a general definition of spatial projections of the network, called activity measures,
that quantify the activity of a network. We show that the evolution equations that govern the dy-
namics of the activity measure shadow the activity measure of the network (i.e. the two quantities
stay close to each other for all times) for general interactions and various asymptotic dynamics. The
AMEE effectively serve as a dimensionality reduction technique for the complex network when spa-
tial synchrony and coherence are present and allow to a priori predict network dynamics that would
not be guessed from individual neuron behavior. To demonstrate an explicit derivation of such a
reduction, we consider the mean measure for a network of interacting FitzHugh-Nagumo neurons.
Computational results comparing the full network dynamics with the mean AMEE model of identical
and nonidentical FitzHugh-Nagumo and FitzHugh-Rinzel neurons validate the shadowing theorems
and expose the various resulting AMEE models that allow to describe the mean of the network.
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1. Introduction. The development of mean-field theories arose naturally as a
consequence of the difficulty of solving many-body systems typically associated with
quantum mechanics. During the development of many-body theories in the 1950s and
1960s, computation was not even an option for exploring the underlying physics given
the enormous computational complexity. Thus mean-field theory essentially provided
a dimensionality reduction technique whereby the complex interaction dynamics of
individual particles or atoms were replaced by a single spatiotemporal field variable (or
a low number of field variables) that was significantly more amenable to analytic study
and computation. In the best case scenario, the dimensionality reduction is justified in
some physically reasonable asymptotic limit [1, 2], including the dilute gas limit where
an accurate description of experimental findings of Bose-Einstein condensates (BEC)
dynamics holds [3]. Although modern computing has revolutionized the approach to
such complex systems, the mean-field approach and its dimensionality reduction still
plays a key role in identifying the underlying mechanisms and parameter regimes that
drive the fundamental dynamics of the complex system that is often obfuscated in
direct, large-scale simulations.

Just as in atomic systems, networks of interacting neurons present an ideal ap-
plication of such dimensionality reduction techniques. The complexity of a large
number of interacting neurons represents a tremendous challenge for resolving the
functionality and overall activity of neural systems as the coupling of neurons com-
pletely alters the dynamics of the underlying neural network, see [4, 5, 6, 7, 8, 9] and
references therein for examples of such networks, resulting complex dynamics and
possible analysis. This has led to a significant effort towards constructing detailed
phenomenological models of specific neural systems [6, 10]. Such qualitative mod-
els highlight key biological mechanisms responsible for producing various dynamical
phenomena observed in neural systems. Further, they are mathematically warranted
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given the large number of neurons (1011 in the human brain) and their connections to
each other (a typical neuron has 104 connections), thus rendering even computational
approaches intractable [11, 12].

Concurrently to the development of particular models, mean-field methods based
on generic, qualitative interaction rules among nodes of the network were introduced.
Specifically, two dominant models have emerged: the coupled-oscillator/phase-field re-
duction model and the neural field model. The first approach treats neural networks
as systems of coupled identical oscillators [13, 14, 15, 16, 17]. The method is based on
the assumption that the individual identical oscillators (neurons) have a normally hy-
perbolic attracting limit cycle, which is guaranteed to persist, by Fenichel’s theorem,
under generic weak interactions, see [7]. Along the attracting limit cycle, the dynam-
ics can be described by a scalar phase variable for each oscillator such that a reduction
of the network equations onto these variables results with a coupled system of PDEs.
Since the perturbed limit cycle is close to the unperturbed one these equations can
be evaluated on the uncoupled limit cycle resulting with a coupled system of ODEs
for the phases. Time averaging applied to this system results with effective equa-
tions for the differences between phases. For networks of conductance based neurons,
whose uncoupled dynamics possess a hyperbolic attracting limit cycle, application of
a nonlinear transformation, if available, will bring the uncoupled network to a simple
oscillator with linear phase evolution and will allow one to analyze such networks
using the phase-reduction method. An alternative reduction approach makes use of a
statistical physics viewpoint of the neural activity of a population [18, 19, 20]. In this
formulation, the dynamics of a single neuron are cast in terms of neural activity (e.g.
membrane potential, refractoriness or firing rate). Under the assumption of close spa-
tial proximity and random connections, a continuum limit of the network (N → ∞)
is derived. The neural activity density of the whole population is then described by
a scalar field variable u(x, t) at position x and time t denoted as the neural field
[21, 22, 19]. The dynamics of neural fields are usually modeled by a nonlocal linear
PDE in which the linear term corresponds to the self neural activity (local population)
and the nonlocal term corresponds to the interactions between the neural activities of
the populations. Studies of these models reveal key spatio-temporal pattern formation
in a large population given various interactions including localization [23, 24], spiral
waves [25], various geometrical shapes [26], and traveling waves [27]. In addition to
the deterministic approach, mean-field methods were developed for noisy populations
of neurons, where each individual neuron in the population is approximately modeled
as an independent Poisson process. Various methods allow to describe the dynamics
on the macro-scale level, deriving equations for the probability distribution of the
neural activity [28] or moments of the distribution [29, 20].

While the above described approaches result with qualitative mean-field mod-
els that demonstrate the general dynamical phenomenology, their relation to specific
finite size networks of neurons is not immediate. Indeed, the phase-field approach as-
sumes the neurons produce oscillatory behavior as opposed to the ubiquitous spiking
behavior. Likewise, the neural field approach casts the entire dynamics in terms of a
proxy (firing rates) and no longer retains information on the dynamics of the neuron
itself. In general, two quantities characterize the dimensionally reduced mean-field:
the individual neuron dynamics described by a nonlinear conductance based model
(i.e. Hodgin-Huxley, FitzHugh-Nagumo, etc.) and their interactions (i.e. synaptic,
gap, ephaptic, etc.). In a neural network architecture, the dynamics and bifurcation
structure of the mean-field results in complex, nontrivial and potentially unexpected
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dynamics. As an illustrative example, Fig. 1 considers three standard reductions of
the Hodgkin-Huxley equations, all of which have nearly identical individual neuron
response. Under identical interactions, their mean-fields produce markedly different
behavior, including chaotic bursting, relaxation oscillations and sub-threshold oscilla-
tions. The simple example considered here clearly demonstrates that an intuitive guess
based upon the individual neuron dynamics is insufficient to describe the observed
behavior. The aim of this manuscript is to a priori derive the mean-field equations
by combining the individual neuron dynamics and their interactions, thus providing
a theoretical framework for understanding the diversity of behavior illustrated, for
example, in Fig. 1.

The method developed here follows the philosophical principle of N -body quan-
tum mechanics which dictates that individual atoms behave according to the first
principle Schrödinger equation [1, 2, 3]. The approach can be viewed as a microscale
to macroscale, i.e. a bottom-up approach, in which the individual neuron dynamics
and their couplings are explicitly accounted for in the description of the dynamics of
a spatial projection of the network denoted as the activity measure. An underlying
assumption in the derivation is that there exists an underlying attractor for each neu-
ron when it is a part of the network consortium and leads to the mean-filed equations
termed as Activity Measure Evolution Equations (AMEE). For specific measures and
attractors we show that these equations shadow, as defined in [30], the activity mea-
sure of the network. The AMEE equations are adjoint to the network and describe
the dynamics of the activity measure. A reduction of the AMEE is achieved when
spatial synchrony or coherence in the attractor dynamics is present such that the re-
duced equations serve as a low dimensional model for the dynamics on the attractor.
Although the method is constructed for a network in which each node is a neuron,
the method developed herein can be applied to any network of interacting nodes with
prescribed dynamics.

In summary, to derive the bottom-up mean-field equations we accomplish the
following steps: (i) Present the AMEE as an evolution equation for an empirical
measure of an attracting orbit in a given nonlinear dynamical system. (ii) Assume
that the dynamical system has an attracting set (attractor) and consider perturbations
around orbits that belong to the attracting set. (iii) Present and prove “shadowing”
results about how the AMEE is applicable in a neighborhood of the attractor. (iv)
Discuss the applicability of dimension reduction to specific attractors. (v) Derive the
AMEE for nonlinear dynamical systems that model networks of neurons. (vi) Do
computations in specific cases that apply to these networks.

2. Construction of a network of interacting neurons. We formulate the
network of interacting neurons by defining the self- and pairwise-interactions of the
neurons. These assumptions are similar to the assumptions in the various models
introduced for neural networks as described in [6, 7] and references therein. The
self dynamics of an i-th neuron are described by an autonomous ordinary differential
equation

V̇i = fi(Vi) (2.1)

where Vi ∈ Rn is a vector valued function of t, and fi : U → Rn, is a smooth
function for U ⊆ Rn. This definition includes various descriptive models for neuron
dynamics: the Hodgkin-Huxley (HH) model and reductions of the HH model, such as
Morris-Lecar (ML) and FitzHugh-Nagumo (FHN) (for additional models see [11, 15]).
Indeed, it implies that there are two indices involved: index i that enumerates the
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Fig. 1. Individual dynamics vs. population dynamics. A: Three different models, FitzHugh-
Rinzel (green), Morris-Lecar (red) and FitzHugh-Nagumo (blue) are fitted to produce a similar, once
spiking trajectory for a given initial condition. B, top: Colored raster plots of the three different
models placed into an all-to-all network with linear connections in the voltage variable. The initial
condition for the network is chosen to be random perturbations around the fitted initial condition of
A. B, bottom: The dynamics of the mean of each network; should be compared with A. See §2 for
the definition of the individual models and §5 and §6 for analytic and computational description of
synchronous network behavior.

neurons (i = 1, . . . , N ) and index k that enumerates the dynamical variables that
model each neuron (k = 1, . . . , n). Using this notation Eq. (2.1) can be written as

v̇ik = fi,k(vi1, vi2, . . . , vin).

In this notation the variables vik are represented as elements of a matrix N × n.
Rows of the matrix are copies of neurons and the columns are dynamical variables.
The vectorfield fi,k is also a matrix N × n and defines the interactions between ele-
ments within each row. We distinguish between the variables and the elements of the
vectorfield by using comma separating the indices of the vectorfield.

For the HH model n = 4, and the quadruple of (vi1, vi2, vi3, vi4) = (vi, ni,mi, hi)
are the gating variables that correspond to voltage, activation of potassium, activa-
tion and inactivation of sodium currents respectively. The FHN model will be of a
special interest in this paper. For Vi = (vi, wi)T it is expressed by the following two
dimensional nonlinear ODEs with parameters a, b, c

V̇i = fFHN (Vi; a, b, c) =

(
0 −1
−c b

)

Vi +

(
f1(vi, a)

0

)

, f1(vi, a) = vi(vi − a)(1 − vi).

(2.2)

where the first term in the right hand side of the equation is linear and the second
one is cubic. The variable vi(t) corresponds to the voltage of the neuron and the
variable wi(t) is the recovery variable. The equation for vi mimics the HH conductance
equation. Unlike the HH equations, in which the conductance equation is coupled
to three additional auxiliary variables, the FHN is a simplification such that it is
coupled linearly to only one auxiliary variable wi. The FHN model is of particular
interest since it reproduces several important features of the HH equations, such as
creation of action-potentials once the initial condition (initial stimulus) have passed a
threshold, bi-stability and periodic solutions. Since this is a planar model, the phase
plane study provides analytic parameters regimes at which each of these behavior
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occurs, see [31, 11]. Furthermore, f1(v) is a cubic polynomial and it agrees with the
assumption that f(Vi) is smooth. Another plausible planar model for self interactions
is the ML model [15, 32]

V̇i =fML(vi, wi; p)=

(
v̇i

ẇi

)

=

(
−gL(vi−vL)−gCam∞(vi)(vi−vCa)−gKwi(vi−vK)
1
τ (w∞(vi) − wi)

)

(2.3)

where m∞(v) =
1

1 + e(vm−v)/κm
, w∞(v) =

1
1 + e(vw−v)/κw

where p denotes the vector of the parameters in the system. In this model the two
components of the vectorfield are nonlinear and non-polynomial as expressed by the
functions m∞(v) and w∞(v). Although qualitatively the phase planes of the ML and
the FHN models are similar, their codimension 1 bifurcation structure is different
with the DC input as a free parameter. For further details see [11, 15]. The ML
and FHN models are used in Fig. 1 to demonstrate the importance of the choice of
the individual neuron model and the effects of different bifurcation structure on the
network dynamics.

When additional variables that model the slow currents are introduced, they
extend the planar dynamics to three dimensional phase space or higher. For example,
adding the xi variable to the FHN model extends it such that it is able to produce
elliptic bursting solutions. This model extension is commonly known as the FitzHugh-
Rinzel model (FHR) [33]

V̇i = fFHR(vi, wi; p) =




v̇i

ẇi

ẋi



 =




vi(vi − a)(1 − vi) − wi + xi

−cvi + bwi

ε(−vi + d − xi)



 . (2.4)

Self interaction of the neurons can be also modeled by the integrate and fire models
of different types. In such a case, the dynamics of f as given by (2.1) incorporates a
threshold rule. The derivation of the AMEE for such a model of a neuron should be
similar to the derivation presented here, when the threshold for such AMEE model
should be adjusted by other methods/techniques or specified a priori [34, 35, 36, 37].

The interactions between the neurons in a network will be modeled by additional
pairwise terms in the vectorfield, such that if we would like to model all interactions
of the neuron Vi with all other neurons, it will be the sum of the neurons connected
to Vi

V̇i =
N∑

j=1,j 6=i

ei,j(Vi, Vj , t). (2.5)

The assumption that the interactions are pairwise is in general not necessary. The
adjoint evolution equations (AMEE) can be still derived for fairly general expression
of the interactions. However, for the purpose of the analysis it is convenient to assume
pairwise interaction terms that simplify both the structure of the network, and allow
for simple expansion in terms of power series. Having formulated both the neuron’s self
and pairwise interactions, the general evolution equation for the network of interacting
neurons can be constructed. Let V(t) ∈ (RN )n be the vector of all variables that
describe the states of all the neurons at a time t, i.e. V(t) = (V1(t), V2(t), . . . , VN (t))T .
Then the full system of equations for the network is

V̇ = G(V, t), V(0) = V0 (2.6)

5



where G : U → (RN )n , is a smooth function for U ⊆ (RN )n that consists of self and
pairwise interaction terms, such that for each component vik of V, its dynamics are
described by

v̇ik = gi,k = fi,k(vi1, vi2, . . . , vin) +
N∑

j=1,j 6=i

ei,j,k(vi1, vi2, . . . , vin, vj1, vj2, . . . , vjn, t).

(2.7)

The corresponding flow operator of the full system is defined as V(t) = ϕt(V0), see [30]
for a definition. The full system of ODEs is assumed to have local existence and
uniqueness of solutions, such that G is locally Lipshitz continuous. Such assumption
includes piecewise continuous models for fi,k as well. Further, assuming that self
and pairwise interactions, fi,k and ei,j,k, are analytic and autonomous and that self
interaction can be expressed only by pairwise interactions it is possible to approximate
Eq. (2.7) as a finite sum of pairwise monomial terms which can be unified into one
nested sum on the right hand side

v̇ik =
p1∑

p′=1

p2∑

p′′=1

n∑

l=1

n∑

m=1

N∑

j=1

a
(p′,p′′)
ilmj (vil)

p′

(vjm)p′′

, (2.8)

where a denotes the coefficient of the pairwise monomials for self interactions, pairwise
interactions and combined (both self and pairwise) interactions. Such a notation will
not include the HH model since it has a triple interaction term (vm3h), however it
will include various two dimensional and three dimensional approximations to HH.
The notation can be similarly extended to include the triple interactions terms.

3. Evolution of the measurable activity. Instead of solving for the entire
network and resolving the activity of each neuron, one can consider a model of the
activity of a population of neurons that is being measured, i.e. the measurable activity.
This is effectively a spatial projection of the network dynamics. Such a model is
constructed to approximate the dynamics of the activity of the whole network or part
of the network. Being able to overcome the complexity of large networks and providing
a succinct system of ODEs that describes the evolution of the measurable activity
can simplify the analytic and numerical study of the dynamical properties of the
functionality of the network. As a result, such a model will serve as a dimensionality
reduction for the complex network. In many theoretical and experimental neural
networks, the measured quantity is the averaged activity and hence the spatial mean is
a natural choice for characterizing the measurable activity. Therefore we will consider
the mean as a particular case of the measurable activity.

To construct the evolution equations for the measurable activity we make the
following assumptions on the network structure and dynamics. First, the flow operator
of the interacting network described by the system in Eq. (2.6) has a closed invariant,
indecomposable set X ∈ (RN )n and there exists a neighborhood U of positive Lebesgue
measure such that u ∈ U implies that the ω-limit set of u (the asymptotic flow of u,
ϕt(u), when t → ∞) is contained in X and the forward orbit, ϕt(u) from u is contained
in U . This assumption implies that there exists an attractor , defined similarly to
the definition in [30, §5.4], denoted by the set X, in the network whose dynamics are
described by Eq. (2.6). Further, the basin of attraction of the attractor, the set U, is of
non zero measure. The attractor is not necessarily global and there may exist several
local attractors with distinct basins of attractions. We parameterize the flow on the
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attractor with the time t, such that ϕt(X(0)) is the flow defined by G from a point
X(0) to another point X(t). The invariance of X ensures that for any t, ϕt(X(0)) ∈ X.
The attractor can be chaotic if it contains transversal homoclinic orbits.

To be more precise, the activity measure of the asymptotic dynamics is a mapping
M t : X→ Rn that associates a number with N copies of each variable xk, i.e.

M t(X) = (m1(x1(t)), . . . ,mn(xn(t)))T
, mk(xk(t)) =

N∑

i=1

pik(xik(t)). (3.1)

The superscript t of M denotes that the activity measure implicitly depends on the
parameterization t through X(t). The above definition arises from various statistical
spatial measures that can be applied to the network to study its dynamics. The real
valued smooth function pik(xik) intuitively represents the weight of each xik in the
summation and can be nonlinear in xik. Here we choose a rather general definition to
account for various measures that have unequal weights and functions for the variables
both in k and in i. Usually in applications much simpler measures are chosen. For
example, in many applications one of the frequently measured quantities is the mean
activity or weighted mean activity where the weights wik are drawn from a probability
distribution ~wk ∈ RN . Then the function p(xik) takes the form

p(xik) = xik(t) wik.

One can similarly define the measure to be the r-th central moment p(xik) = xr
ik(t)wik,

or other nonlinear function of xik. Notice that due to the finite number of neurons in
the network, the measure is discrete in i. Indeed the activity measure is the projection
of the dynamics on the attractor from (RN )n to Rn, formulating the same dynamics
but in a dual space of the measure, where usually in neural networks N � n. A
successful choice of a measure is such that it captures the low-dimensional structure
of the network. Similarly, an infinite version, when N → ∞, can be formulated
replacing a sum with an integral. Since we consider here networks of finite size we
will use the finite version of the definition. Notice that in contrast to other methods
where the limit of N → ∞ is required, here N is left as a free parameter and therefore
the effects of the individual neuron dynamics will play a significant role. In general,
mk is not restricted to be nonnegative due to the possibility of different signs of
the measured variables xik or the weights wik, and thus the activity measure is a
signed measure, i.e. has the additivity property. Indeed, in many neural systems the
weights are taken to be signed such that positive weights correspond to excitatory
neurons and negative for inhibitory neurons [29, 38]. The additivity property allows
one to decompose the activity measure into the excitatory and inhibitory parts while
the overall activity measure reflects the balance of the two populations; see §4.2 for
a general decomposition of the activity measure. For particular activity measures
such as even central moments with positive weights wik, the activity measure is a
measure and possesses additional properties that result from non-negativity such as
monotonicity.

Equipped with the definition of the measure of the attractor, we proceed to de-
rive the adjoint evolution equations for the activity measure - the AMEE model.
Specifically, the evolution of the activity measure is described by

dM

dt
=

(
N∑

i=1

gi,1
dpi1

dxi1
, . . . ,

N∑

i=1

gi,k
dpik

dxik
, . . . ,

N∑

l=1

gi,n
dpin

dxin

)T

, M(0) = M0(X(0)).

(3.2)
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where gi,k is the (i, k)-th component of the vectorfield G. This can be shown by
considering the activity measure vector M(t) and taking derivative with respect to t
from both sides and using the chain rule. Note that for analytic gi,k, approximated
by Eq. (2.8), the adjoint equation has the form of

dmk

dt
=

p1∑

p′=1

p2∑

p′′=1

n∑

l=1

n∑

m=1

N∑

j=1

N∑

i=1

dpik

dxik
a
(p′,p′′)
ilmj (xil)

p′

(xjm)p′′

.

When additionally pik is analytic, the approximate adjoint evolution equation can be
expressed solely as a sum of pairwise monomials.

Similarly we can define the activity measure for trajectories that are approaching
an attractor. When a trajectory is ε-close to the attractor for all t > t∗, in all variables,
i.e. we can find a trajectory on the attractor xA

ik(t) such that vik(t) = xA
ik(t) + εξik(t)

with ξik(t) ∼ O(1). Such a perturbed trajectory vik(t) is said to ε-shadow the
trajectory xA

ik(t). The AMEE can be defined by expanding in ε (up to second order)

dmk

dt
=

N∑

i=1

dpik

dxik
(xA

ik)gi,k(xA
qr)+

ε

N∑

i=1

(
dpik

dxik
(xA

ik)
N∑

j=1

n∑

l=1

ξjl
dgi,k

dxjl
(xA

qr) + ξik
d2pik

d2xik
(xA

ik)gi,k(xA
qr)

)

. (3.3)

The zero order right hand side (first row of Eq. (3.3)) corresponds to choosing for
Eq. (3.2) an initial condition as a point on the attractor xA

qr(t
∗) closest in terms of

an Euclidian distance to vqr(t∗). Note that we use different indices for the arguments
of gi,k and pik and their derivatives to distinguish the domains of the two functions.
The vectorfield gi,k acts on all the coordinates (denoted by indices q and r) while the
projection pik acts on a specific coordinate (denoted by i and k). See Appendix A for
a detailed derivation.

We can summarize the closeness of the perturbed and the unperturbed solutions
of the adjoint equations in the following theorem. The theorem is the primary ana-
lytic underpinning of the current work. Its proof is included in Appendix B. Notice
that the same derivation as above will be correct if the solution xik will be replaced
by vik, a transient solution which is not a part of the attractor. However, in such a
case we will not be able to assure that the perturbed adjoint evolution equations is
close to the unperturbed one. As a result it will not be expected to be generic for
nearby initial conditions or perturbations.

Theorem 1 (Shadowing). Consider a perturbed trajectory vik(t) = xA
ik(t) +

εξik(t) for t ≥ t∗ with ξik(t) ∼ O(1), ε � 1 and xA
ik(t) is a trajectory on the attractor

X.
(a): If the measure p(xik) is a linear measure, p(xik) = wikxik, with normalized
weights

∑N
i |wik| = 1, then m(vik) ε-shadows m(xA

ik).
(b): If the measure p(xik) is (nonlinear) analytic and the attractor X is compact,
then m(vik) − m(xA

ik) is bounded (m(vik) shadows m(xA
ik)). If additionally the con-

vergence rate is fast enough such that for all t > t∗, |ξik(t)| < 1/

(

Np
(1)
ik (xA

ik(t))

)

and

|ξik(t)|r < r!/

(

Nεr−2p
(r)
ik (xA

ik(t))

)

then m(vik) ε-shadows m(xA
ik) and the derivation
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of Eq. (3.3) holds.

We conclude that the evolution equations in Eq. (3.3) can be treated as the adjoint
equation for the trajectory on the attractor and denote the asymptotic dynamics of
the activity measure, a spatial projection of the network. It retains its structure both
from the full network and the expression of the measure. Being the adjoint equation
means that to solve the equation (find the solution mk(t) at time t), the trajectory on
the attractor from X(0) to X(t) (or close by trajectory) should be given. Therefore,
Eqs. (3.2) or (3.3) as-is, do not simplify the characterization of the network dynamics,
since first we still need to solve Eq. (2.6) and for the purpose of finding M(t) at each
time t we could use Eq. (3.1).

4. Dimension reduction of the AMEE. In particular cases of the measure
M and the vectorfield G, it is possible to formulate the adjoint equations (or parts
of it) as independent equations of the attractor trajectory, only in terms of m, hence
providing the effective equation for the dynamics of the evolution. For example, if G
is linear and all pik are linear (which corresponds to the mean) the AMEE can be
formulated as an independent equations of variables m1, . . . ,mn. Such an equation
is sometimes referred to as a linear mean-field model. When pik is nonlinear and a
monomial in xik, only the terms in gi,k that are linear in xik can be formulated in terms
of mk. A knowledge of the dynamics of some of the variables on the attractor can
help in designing a measure that will result with an independent equation. However,
it again requires us to resolve some part of the dynamics in order to find a suitable
measure. This is, in general, a difficult task, however some generic approaches for
dimension reduction are possible as we describe next.

4.1. Synchronous attractor. Formulating a genuine low dimensional adjoint
equations is possible for the case when the dynamics of a subset of variables is similar,
such that they can be related via simple scaling relation. Thus after rescaling, the
solutions are identical up to small fluctuations. We formulate this case as the “syn-
chronous” state assumption. Such type of behavior has been observed in networks of
general oscillators and defined as the sync state [39, 40]. Existence of a synchronous
attractor was shown to exist in general network architectures with sufficiently strong
connections. Examples include a network of oscillators with linear connections [41],
neural piecewise linear models connected by gap junctions [42, 43] and in general
models with gap junctions interactions that obey the semi-diffusivity property [44].
Here, Fig. 1 serves as an example for various synchronous behavior.

In particular, for fixed k, a subset {vik} of Ñ variables, where Ñ ≤ N , is called
synchronous if each of them can be expressed as

vik(t) = νix̄k(t) + εξik(t) (4.1)

where x̄k(t) ∈ R is the synchronized solution and ε is a small parameter such that
ε � νi and x̄k and ξik are of O(1). For a completely synchronous network, such that
for all k the synchronized subset is the set of all N variables, Ñ = N , and x̄k belongs
to the attractor, the AMEE up to second order in ε is given by

dmk

dt
=

N∑

i=1

dpik

dxik
(x̄)gi,k(x̄)+ε

N∑

i=1

(
dpik

dxik
(x̄)

N∑

j=1

n∑

l=1

ξjl
dgi,k

dxjl
(x̄) + ξik

d2pik

d2xik
(x̄)gi,k(x̄)

)

.

(4.2)
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where x̄ = (x̄1, x̄2, . . . , x̄n). In this special case, the adjoint evolution equation for
a linear measure (the weighted mean mk(xk) =

∑N
i=1 νixik) results in a simplified

equation for the leading order and its correction

dmk(x̄)
dt

=
N∑

i=1

νi gi,k(x̄) (4.3)

dmk(ξk)
dt

=
N∑

i=1

N∑

j=1

n∑

l=1

νiξjl
dgi,k

dxjl
(x̄) (4.4)

This result indicates that for a network of identical neurons that has a synchronized
solution x̄k, the evolution of the mean measure is inherited from the structure of the
network gi,k. The mean of the fluctuations around the solution will inherit its struc-
ture from the Jacobian of gi,k. The structure of Eqs. (4.2), i.e. the nonlinear terms
of the effective vectorfield and the resulting symmetries carried from the topology of
the interactions in the network, provide a classification of the possible dynamics of
the synchronous attractor without solving the network. When parameters are being
varied the classification will result with particular bifurcation sequences. See §5 and
§6 for an example of a study for the FHN and FHR networks of identical neurons. For
more complex symmetries of the vectorfield the structural study in Refs. [45, 46, 47]
can reveal the possible bifurcations in the resulting AMEE model, despite the AMEE
itself not being derived.

4.2. Synchronous subregions. Several neuronal networks possess the struc-
ture of distinct levels / subregions of neurons interacting with each other. Each
subregion is responsible for a specific functionality. Within each subregion there are
similar neurons connected densely to each other. The interaction between neurons
that belong to different subregions can be modeled by connecting only a subset of
neurons (output neurons) or dense connections but with weaker strength than the
connections within a subregion. The connections are usually directed and model
inhibitory/excitatory interactions between the regions. Examples of such networks
include interactions of the amacrine and the ganglion cells in the retina [48, 49], hy-
percolumns in the visual cortex [50, 51] and glomeruli interactions in the olfactory
bulb [52, 53].

For such networks, existence of a complete synchronous attractor is usually re-
placed by the existence of (spatial) multiple attractors associated with each distinct
neural subregion. Resolving the functionality of each subregion, i.e. the dynamics of
an activity measure for each attractor, can reveal how signals propagate through dif-
ferent subregions [54], mechanisms of formation of waves [48, 55], delays and advances
in neural activity, see §7.2 and [29]. On the global level, resolution of the total activity
measure can provide information on the presence and absence of balance between the
regions.

Existence of multiple synchronous attractors results with an extension of the
dimension reduction for a complete synchronous attractor in §4.1. For each region
j = 1, ...,K , where K is the number of subregions, the total activity measure is the
sum of activity measures mj

k taken over each subregion, where Ñj is the number of
nodes in subregion j

mk = m1
k + . . . + mK

k =
Ñ1∑

i=1

pik(xik(t)) + . . . +
ÑK∑

i=1

pik(xik(t)).
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Assuming that for each subregion there is a corresponding attractor vj
ik = x̄j

k + εξj
ik

the evolution equations for mj
k, that are an extension to an AMEE in Eq. (4.2) are

derived

dmj
k

dt
=

Ñj∑

i=1

dpik

dxik
(x̄j)gi,k(x̄1, . . . , x̄K).

These equations are the O(1) terms and similarly AMEE in Eq. (4.2) are extended for
O(ε) terms. The construction of the network in §2 imposes that each node dynamics
are governed by a sum of vectorfields of individual terms and pairwise interaction
terms and thus allows to write the gi,k term in the above equation as a sum of terms

dmj
k

dt
=

Ñj∑

i=1

dpik

dxik
(x̄j)

(

gj
i,k(x̄j) + ei,k(x̄j , x̄1) + . . . + ei,k(x̄j , x̄K)

)

.

The first term in the parentheses corresponds to individual terms and interactions
within the j-th subregion. The remaining terms correspond to effective interactions
between the distinct regions. In summary, in the presence of multiple spatial attractor
the AMEE can be reduced to nK coupled equations whose solution will shadow the
attractor in the full network. In practice, dynamics of a network composed of sev-
eral regions may exhibit complex spatio-temporal behavior, while the reduced AMEE
equations will reveal the mechanism (coupling terms and coefficients) that is respon-
sible for such an attractor and the variety of attractors that may exist in such a
network. Furthermore, resolution of mj

k(t)’s implies the resolution of the overall ac-
tivity measure mk(t). Here again the properties of the coupled AMEE equations such
as symmetries between the mj

k(t)’s will result with restricted overall activity measure
such as balanced or unbalanced activity and can be determined from the structural
properties of the resulting equations [45]. In §7.2 we show an example of FHN network
with two distinct populations where one population exhibits relaxation oscillations in
delay to another one.

4.3. Coherent structures. When the dynamics of the network do not result
with a synchronous attractor but with coherent structures, and the network is not
clustered into subregions, an alternative approach for dimension reduction is to assume
that the attractor is composed of K ≤ N coherent structures, or orthogonal modes,
see [56, 57, 58]. In the network formalism as defined in §2, the trajectory of the
k-th variable on the attractor ~xA

k (t) = (xA
1k, ..., xA

Nk), in a vector notation, can be
decomposed into

~xA
k (t) =

K∑

j=1

rj
k(t)~yj

k, such that < ~yj
k, ~yj

k >= 1, and < ~yj
k, ~yl

k >= 0 (4.5)

where < ∙, ∙ > is the dot product of two vectors. Then the AMEE are written as

dmk

dt
=

N∑

i=1

dpik

dxik

K∑

j=1

ṙj
k(t)~yj

k (4.6)

and effectively represent the equations for the activity measure of the coefficients of
the orthogonal modes. The equations for the coefficients are obtained by substitu-
tion of the expansion ~xA

k (t) =
∑K

j=1 rj
k(t)~yj

k into the vectorfield G such that its k-th
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component is expressed as

~̇xk = ~gk(xqr, t) = ~gk(rj
l ~y

j
l , t), l = 1, ..., n, j = 1, ...,K.

Taking the dot product with each ~yj
k and using the orthogonality in Eq. (4.5), dy-

namical equations for the coefficients are received

ṙj
k =< ~gk(rj

l ~y
j
l , t), ~y

j
k > .

If g is analytic, the right hand side can be expanded in power series and will take
the form of polynomials multiplication of the variables rj

l . The coefficients of these
polynomials will be the inner product of the same polynomial multiplication of the
orthogonal modes associated with the variables rj

l and ~yj
k. For an example of three

coherent patterns dynamics in a network with gap junctions interaction, see §8.1.

5. AMEE for a synchronous attractor in a network of identical FHN
neurons. Using the formulation of §3, we derive the AMEE for the mean measure,
for an explicit example network. This network is described by the FHN model with
pairwise interactions

V̇i = fFHN (Vi; ai, bi, ci) +
N∑

j=1,j 6=i

p1∑

m=1

p2∑

n=1

aijmnvm
i vn

j . (5.1)

The uncoupled system of ODEs, representing only self interactions, consists of iden-
tical neurons

fFHN (Vi; α) =

{
a3v

3
i + a2v

2
i + a1vi − wi + Ii,ext(t),

bwi − cvi.

where α = {a1, a2, a3, b, c} is a set of fixed parameters independent of i. The inter-
action between the neurons will be pairwise, such that it indeed can be formulated
as in Eq. (2.5). To simplify the interaction terms, the interaction will be assumed
to be only via the voltage variable, i.e. the first components of ~Vi = (vi, wi) and
~Vj = (vj , wj), as in Eq. (5.1). To proceed and simplify the above system of equations
we assume that all the neurons eventually will have similar common dynamics, i.e.
we assume that there is a synchronous attractor in the full network, as discussed in
§4.1:

The interacting network is locked into a common state (“synchronous” attractor)
such that the dynamics of each neuron can be approximated by the attractor solu-

tion and fluctuations around it Vi(t) =

[
v̄(t)
w̄(t)

]

+ ε

[
ξiv(t)
ξiw(t)

]

where V̄ (t) ∈ Rn is the

synchronized solution and ε is a small parameter. To derive the AMEE model we use
Eq. (4.3) with the uniform mean,

mv(v) =
1
N

N∑

i=1

vi, mw(w) =
1
N

N∑

i=1

wi, mv(ξv) =
1
N

N∑

i=1

ξiv, mw(ξw) =
1
N

N∑

i=1

ξiw

(5.2)

which results in the following evolution system for the mean over the attractor and
average fluctuations.
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The averaged model for a network of the type of FHN interacting neurons that
satisfy the above assumptions is given by

O(1) : ˙̄v(t) = −w̄ +
1
N

p1∑

m=0

p2∑

n=0

[

A

]

mn

v̄m+n, ˙̄w(t) = −cv̄ + bw̄ (5.3)

O(ε) : ˙̄ξv(t)=−ξ̄w +
1
N

p1∑

m=0

p2∑

n=0

(
m
[
A~ξv

∣
∣
∣
mn

+n
∣
∣
∣A~ξv

]

mn

)
v̄m+n−1, ˙̄ξw(t) =−cξ̄v+bξ̄w

(5.4)

where [A] ∈ R is the sum of all elements in a matrix {aij} such that

[

A

]

mn

=
N∑

i=1

N∑

j=1

aijmn = ~1Amn
~1T , where ~1 = (1, 1, ..., 1),

and [A~z| ∈ R and |A~z] ∈ R are

[

A~z

∣
∣
∣
∣
mn

=
N∑

i=1

N∑

j=1

aijmnzi and

∣
∣
∣
∣A~z

]

mn

=
N∑

i=1

N∑

j=1

aijmnzj where ~z = (z1, z2, . . . , zN ).

The derivation of this averaged model is provided in Appendix C. Note that the
resulting model in Eq. (5.3) is similar to the model that describes the self dynamics of
each neuron with additional effective terms due to pairwise interactions, as expected
from Eq. (3.3). These terms are in general nonlinear, for p1 + p2 > 1, expressed by
monomials of v̄. The 1

N scaling of the effective terms implies that for consistency with
respect to uniform mean measure, for all m and n, the coefficients [A]mn should be of
O(N). The condition restricts the choice of interactions to be either sparse or weak in
magnitude. If the condition does not hold and N is large, then for [A]mn ∼ O(1) some
of these terms can be neglected or considered as a perturbation of the self-dynamics
as analyzed in [7]. When the terms are very large, i.e. [A]mn � O(N) then these are
expected to dominate the dynamics. As a consequence, the following corollaries are
noteworthy:

When interactions are modeled by polynomials of vi and vj up to third order (i.e.
m + n ≤ 3) the system in Eq. (5.3) is of the form

˙̄v = −w̄ + 1
N ([A10] + [A01])v̄ + 1

N ([A11] + [A02] + [A20])v̄2

+ 1
N ([A21] + [A12] + [A30] + [A03])v̄3

∣
∣
∣
∣
∣
∣

˙̄w = bv̄ − cw̄
(5.5)

and for the averaged synchronized correction, Eq. (5.7) becomes

˙̄ξv = −ξ̄w + 1
N ([A10] + [A01])ξ̄v + 2

N ([A11] + [A02] + [A20])v̄ξ̄v

+ 3
N ([A21] + [A12] + [A30] + [A03])v̄2ξ̄v

∣
∣
∣
∣
∣
∣

˙̄ξw = bξ̄w − cξ̄v.

(5.6)

Assuming that the fluctuations are synchronized such that for ξvi(t) = ξ̄(t) + O(ε),
Eq. (5.4) becomes

O(ε) : ˙̄ξ =
1
N

p1∑

m=0

p2∑

n=0

(m + n) [A]mn v̄m+n−1ξ̄ (5.7)
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Fig. 2. (Color online) Left, top: The phase plane and the action potential trajectory of
the identical i-th FHN neuron. The (blue) dashed line corresponds to the ẇi = 0 nullcline and
the (gray) dashed cubic curve corresponds to the v̇i = 0 nullcline. The (black) thick trajec-
tory is an action potential trajectory initiated by an initial condition (vi(0), wi(0)) = (0.2, 0),
denoted by a circle. Left, bottom: The trajectory of the voltage vi and the refractory vari-
able wi in (blue) and (green) respectively. Middle: Synchronization in a network of identical
FHN neurons, with parameters α = (a1, a2, a3, b, c) = (−0.1, 1.1,−1, 10−2, 10−2) and initial data
(v(0), w(0)) = (0.05+U(−1, 1), U(−0.05, 0.05)) coupled linearly at t = 30 via excitatory connections.
Raster plot of the voltage of the network v(i, t) and its spatial average mv(t) below. Right, top: five
snapshots of the network activity: A,B: no-interactions in the network, C: interactions introduced,
D,E: network dynamics settle to a synchronous attractor. Right, bottom: the spatial average mv(t)
of the network with dots correspond to the times at which time snapshots were taken.

6. Computational study of a network of identical FHN neurons. For
linear, bi-linear and synaptic interactions we show numerically for several examples
that there are various attractors in the full network of similar FHN neurons. These
attractors can be determined using a phase-plane analysis of the AMEE model and
it will not necessarily be the attractor that is expected for each individual neuron.
This again demonstrates the effectiveness of the AMEE in predicting a priori network
dynamics that would not be guessed from individual neuron behavior. We show that
indeed trajectories of the AMEE model in Eq. (5.3) shadow the trajectory of the
full network. Notice that initial conditions of the network and the AMEE should be
chosen close to each other, within O(ε), such that they will be comparable for the
transient behavior as well.

To simulate the activity of the network we implemented a network of identical
FHN neurons with parameters as α = (−0.1, 1.1,−1, 10−2, 10−2) for most of the cases.
For these parameters the phase plane of each neuron is depicted in Fig. 2 where spiking
behavior is supported. Such a phase plane contains a single fixed point at the origin
(intersection of the nullclines v̇i = 0 and ẇi = 0). The interaction matrices Amn

are chosen as full interaction matrices, thus implementing all-to-all connections with
the same coupling coefficient. In Fig. 2 we demonstrate an activity of a network
with N = 100 vertices. From t = 0 to t = 30 the nodes evolve from random initial
conditions. At t = 30, linear, uniform all-to-all connections such that A01 in Eq. (5.5)
is nonzero, are turned on. To graphically plot the activity of the network we use
a color ‘raster plot’ of the vi(t) variables (voltage of all neurons in the network vs.
time), left column of Fig. 2. We also compute the average voltage activity of the
network mv, defined in Eq. (5.2), and display it below the raster plot with the same
color code as the raster plot and additionally as a curve in the bottom of the right
column of Fig. 2. To further demonstrate the synchronization, on the top of the right
column of Fig. 2 we show snapshots of vi at five different times.

Since the initial state of the network is highly variable as shown in the snapshot of
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t = 0, it can be observed that there is no synchronization from t = 0 to t = 30, however
when interactions are turned on the network rapidly synchronizes into a common state
that exhibits relaxation-oscillation dynamics. Recall that each individual neuron left
to its own produces spiking behavior. From snapshots at times t = 37.5 and t = 101.6
it is seen that indeed the activity of all nodes in the network is of the same value
up to small variations and exhibits relaxation oscillations in contrast to individual
isolated neuron single spiking behavior. Indeed, these simulations suggest that for the
parameters chosen in Fig. 2, the relaxation-oscillation solution has a large basin of
attraction and the mean AMEE model developed here is expected to shadow the mean
solution shown in Fig. 2, as proved in Theorem 1. Therefore, in the following parts of
this section we study different network setups, parameter regimes and interactions, to
demonstrate various solutions of the mean AMEE model and the averaged activity.

6.1. Linear interaction. Linear form of interactions can correspond to a cur-
rent injected into the membrane of the i-th neuron whose strength is proportional to
the voltage of the j-th neuron - electrical interaction [10]. The equations for the i-th
neuron can be written as

V̇i = fFHN (Vi; α) +
N∑

j=1,j 6=i

aint

N − 1
vj (6.1)

and the nonzero coefficients in the corresponding first order mean AMEE model are
[A10] = Na1, [A01] = Naint, [A20] = Na2, [A30] = Na3, implying that, in effect, the
linear term has been modified to a1 + aint. Linearization around the fixed point at
the origin yields the Jacobian J with eigenvalues λ1,2

J =

(
a1 + aint b

−1 c

)

, λ1,2 =
1
2

[
c − (a1 + aint) ±

√
(c + a1 + aint)2 − 4b

]
.

See [11, 31] for the analysis of the FHN phase plane and the dynamics.
In our numerical simulations, an individual non-interacting neuron (aint = 0) pro-

duces spiking behavior as demonstrated in Fig. 2. When interactions are introduced,
fixing α and varying aint, the mean AMEE model indicates that we can change the
behavior of the network as a synchronized collection of neurons from its single base
behavior which is a single action potential. These variations in behavior correspond
to changes in the characteristics of the nullclines and stability of fixed points. To
study the effect of the interaction we demonstrate the network activity with three
plots: a projection of the average onto the phase plane, the average profile of the
voltage/refractory and three randomly selected voltage/refractory profiles. These
correspond to left, middle and right plots in Fig. 3. In the phase plane plot, the null-
clines of a single neuron are depicted by dashed lines and the nullclines of the AMEE
model (effective nullclines) are depicted by solid lines. The solution of the AMEE
model (v̄(t) and w̄(t)) is depicted on top of these nullclines with a solid curve. The
average of the voltage and the refractory variable, of the interacting network, is sam-
pled and depicted using the asterisks symbol. The average voltage/refractory profile
plot, includes the single neuron voltage and refractory variable trajectory depicted by
dashed blue and green color respectively. The v̄(t) and w̄(t) solutions of the AMEE
is depicted by a solid blue and green color respectively. The sampled averages are
depicted using the asterisk symbol. In the right plot, that shows randomly selected
voltage and refractory profiles for three neurons, the blue solid line corresponds to
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Fig. 3. (Color online) FHN network with linear interactions. See the text of §6.1 for the
explanation of the plots.

the voltage and the green solid line corresponds to refractory variable of a particular
neuron.

In Fig. 3A, by setting the pairwise interaction between each pair of neurons to
be approximately 10−3, the average behavior of the network exhibits an action po-
tential for identical initial conditions (vi(0), wi(0)) = (0.2, 0). Such interaction is very
small, almost negligible in terms of voltage values that the scaled neuron can pro-
duce (vmin

i ≈ −0.1 and vmax
i ≈ 1.1), however since these are all-to-all interactions

it creates a significant effective change in the dynamics; the equations that describe
the dynamics of the average activity will be modified by aint = 0.089. From the
voltage/refractory plot (middle), one can observe that the average behavior of the
network has deformed from the single neuron behavior. The action potential is more
elongated and has decaying subthreshold oscillations around the resting state. Notic-
ing that the projected average solution and the solution of the AMEE model are very
close to each other demonstrates that the AMEE solution shadows the average activ-
ity of the network. Indeed, the plots of random samples of activity (right) strengthen
that conclusion, since it is observed that the network seem to reach rapidly a syn-
chronized state solution. Hence, the deformed behavior can be easily understood by
studying the phase plane of the AMEE model (left). The cubic nullcline of the AMEE
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model (solid) is deformed from the single neuron cubic nullcline such that its maxi-
mum point is located higher and its intersection with the horizontal axis, w = 0, is at
higher value of v. Indeed, the effect of the maxima point being elevated is that the
trajectory will follow the slow cubic nullcline for a longer time and that the action
potential will reach a higher peak value in the voltage. Furthermore, the stability
calculation indicates that the resting fixed point becomes a sink while for the single
neuron it was a stable node, explaining the subthreshold oscillations after the recovery
from the action potential.

In Fig. 3B the same interaction is chosen as in 3A, but the initial conditions are
nonidentical and drawn from a uniform distribution. For a wide distribution of the
initial conditions as chosen in this example, for a transient time from initiation the
error between the solution of the AMEE model and the average activity is observed.
As expected, the trajectories do not seem to be close to each other. However beyond
the transient time, the error decreases and eventually the average and the AMEE
trajectories become close to each other.

To further investigate the closeness of the average and the AMEE model we choose
the interaction such that the phase plane of the AMEE model will bifurcate and the
network is then expected to exhibit a completely different dynamics that corresponds
to that modified phase plane. From geometrical arguments, we can conclude that
decreasing aint such that aint < − 1

4 (a−1)2, the v̇i = 0 nullcline will become monotone
decreasing. For the parameters chosen here, this threshold corresponds to inhibitory
interactions of ainh

int ≈ −0.2025. In this situation, no action potential is possible which
means that choosing the interaction lower than ainh

int will result with a completely
inhibited network. On the other hand, increasing aint by choosing aint > 1

4 (a− 1)2 −
b
c , the two nullclines have multiple points of intersection, resulting in the creation
of a second stable fixed point. The threshold for this condition, with our chosen
parameters, is abi

int ≈ 0.7975. In that case, the interacting network is expected to
exhibit bi-stability, such that some initial conditions will lead to the polarized network
and some to the rest state. Indeed numerical simulations indicate that the network
exhibits such solutions.

Further increasing aint, by moving aint outside of the range |aint| < b−a1c
c causes

the fixed point at the origin to become unstable. For our choice of parameters as
described above, that means au

int = 0.9. For such interaction and small enough values
of b, c the network can exhibit relaxation-oscillation dynamics. These solutions are
shown in Fig. 3C and 2. For initial conditions near the unstable resting fixed point,
the network almost instantly is locked into large oscillations that are the solutions of
the AMEE model with similar initial condition.

Linear stability analysis of the resting fixed point indicates that the fixed point
undergoes Andronov-Hopf bifurcation when trJ = a1 + aint + c = 0. The bifurcation
is of a supercritical type such that when trJ > 0 an attracting limit cycle is created.
Therefore, a network with interactions aint > aAH

int = a1 + c and initial conditions
close to the resting fixed point is expected by the AMEE model prediction to possess
indefinite non-decaying “low amplitude” subthreshold oscillations of the size of the
limit cycle. Our numerical simulations, shown in Fig. 3D validate this prediction.

Aside from internal interactions, many networks have external input to the neu-
rons. Such an external input is supposed to excite or inhibit the network and models
the external stimulus applied to the network to receive a specific functionality. To
study the mean AMEE approach to a network subject to such an input we have added
a periodic time-dependant term to Eq. (6.1), Ii,ext = 0.1 sin (t). Such an input to the
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single neuron is not expected to change its qualitative behavior since the amplitude of
the input is below the spiking threshold for the chosen single neuron. For initial con-
ditions (vi(0), wi(0)) = (0.2, 0) the neuron is expected to exhibit one action potential
(with low amplitude oscillations on top of the voltage profile) and then settle onto
a limit cycle near the rest voltage, created by the periodic input, as demonstrated
in Fig. 3E. On the population level, however, when interactions are introduced, the
network repeatedly exhibits action potentials. Indeed, from Fig. 3E it can be observed
that choosing the interaction in the regime of a single elongated action potential and
then low amplitude oscillations, aint = 0.12, the external input causes the network
to produce periodic elongated action potentials. The AMEE model for such a non-
autonomous network is similar to the AMEE of an autonomous network - it is the
autonomous mean AMEE model with the additional term 0.1 sin (t) in the equation
for ˙̄v in Eq. (5.5). The phase plane analysis of the autonomous AMEE model explains
the source of the periodic firing - for aint = 0.12 the rest fixed point becomes unsta-
ble and the Andronov-Hopf bifurcation occurs. Periodic perturbation from the limit
cycle, created by the bifurcation, causes the trajectory to cross the threshold for the
action potential and to fire repeatedly.

6.2. Bi-linear interaction. Since the mean AMEE reduction approach can
be applied to any analytical pairwise interaction, in this subsection we simulate a
network of bi-linear all-to-all interactions. Such an interaction can be expressed with
the following equations for the i-th neuron

V̇i = fFHN (Vi; α) +
N∑

j=1,j 6=i

aint

N − 1
vivj (6.2)

Although we choose such an interaction mainly for the purpose of simulating the
network with the simplest nonlinear interaction, it has some biological inspiration. It
can be suitable for a simple modeling of neural connections that depend both on the
voltage of the i-th neuron and the voltage of the interacting j-th neuron. Intuitively,
the voltage level of the i-th neuron determines its excitability. For example, if the i-th
neuron near the rest state at some t then the interacting j-th neurons should have
much larger voltage levels in order to excite it. However, when the voltage of the i-th
neuron is near the threshold for an action potential, even small interactions can excite
it. Bi-linear interaction term can be also considered as a simplest approximation of
fast, almost instantaneous, chemical (synaptic) interactions. When these interactions
are modeled by a sigmoid function of the presynaptic voltage vj multiplying the
postsynaptic voltage vi [59, 60, 61], then linearization of the sigmoid term results in
the interaction term being bi-linear: vivj .

The mean AMEE model for the bi-linear interaction results with the following
nonzero coefficients [A10] = Na1, [A11] = Naint, [A20] = Na2, [A30] = Na3. Effec-
tively the interaction term modifies the coefficient of v̄2 from a2 to a2 + aint. Such an
interaction does not modify the stability of the rest fixed point (due to the form of
J at (0, 0)) however it can modify the cubic nullcline of the single neuron such that
multiple fixed points exist and the network is expected to exhibit bi-stability. The
analysis of the phase plane determines that this value is abi

int = 0.9976. Notice that
this value, as expected, is greater than the bi-stability criterion for linear interaction.
In practice, choosing interaction coefficient above abi

int, there exist initial conditions
for which the network will saturate. Similarly, the critical value of the interaction co-
efficients for which the cubic nullcline is monotonically decreasing can be calculated.
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Fig. 4. (Color online) Chaotic bursting attractor. Two realizations of the synchronous chaotic
attractor in the FHR model. In each realization, Left: Raster plot of the interacting network and
the spatial average below. Right: Solution of the AMEE initiated with random i.c. around the
(v(0), w(0), x(0)). See text of §6.3 for an explanation.

This value is ainh
int = −0.7166, such that choosing aint below that value will result

with an “inhibited” network, in which for all initial conditions the network rapidly
return back to the rest fixed point without exhibiting an increase in voltage and then
a decrease (action potential like behavior).

6.3. Chaotic synchronous attractor. For a network of FHN neurons, the
resulting AMEE are planar, thus restricting the attractor to be non-chaotic (a fixed
point or a limit cycle). However, simplicity of the dynamics on the attractor is not
required. By increasing the dimension of the governing model of each neuron it
is indeed possible that the synchronous attractor will be chaotic. To explore such
attractors, we consider the FHR model, Eq. (2.4), with parameters (a, b, c, d, ε) =
(0.19, 10−2, 10−2, 0.138, 10−4) that for initial condition (v(0, w(0), x(0))=(0.2, 0, 0.047)
exhibits a similar once spiking voltage profile as in Fig. 2. Connecting identical FHR
neurons with linear interactions of strength aint = 0.099 brings the AMEE to a regime
of elliptic bursting shown to be chaotic (a slow passage of subcritical Andronov-Hopf
bifurcation and a fold of a limit cycle) [33].

In Fig. 4 we show two realizations of the FHR network initiated from random
initial conditions near the initial condition (v(0), w(0), x(0)). It can be observed that
for most parts of the evolution the synchronous solution dominates. Furthermore,
two different realizations of the network indicate that the synchronous attractor is
chaotic, i.e. it is sensitive to initial conditions and exhibits irregular intermittency
of relaxations and subthreshold oscillations. In Fig. 4 to the right of the raster plots
we show the respective trajectories of the AMEE. The qualitative properties of the
trajectories of the averaged activity (colored plots below the raster plots) and the
solutions of AMEE are similar, however they cannot be compared quantitatively.
This demonstrates that indeed for chaotic synchronous attractors we can assure the
closeness of AMEE and activity measure only in terms of shadowing as proved in
Theorem 1. Notice that this example also demonstrates the significance of the choice
of self-dynamics. While the network of FHN was not capable of producing time chaotic
synchronous solutions, the network of FHR could produce synchronous solutions with
more complex evolution.

6.4. Synaptic interaction. Time scales of chemical interactions (synaptic) can
typically be longer than the time scales of the neural spiking. Such interactions can
be modeled by specifying an auxiliary variable that represents the synaptic activity
of the pre-synaptic neuron [59, 62, 15]. The variable is activated when the neuron
produces an action potential and after activation, synaptic activity decays to zero
with a decay rate characteristic to the specific synaptic connection. As an example
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for such interactions, we model a network of FHN neurons coupled via a single channel
continuous synaptic conductance-based model [15]. The connections are expressed as
the sum of the auxiliary variables of the pre-synaptic neurons sj multiplied by the
voltage of the post-synaptic neuron vi

V̇i =fFHN (Vi; α) +
N∑

j=1,j 6=i

aint

N − 1
visj , Ṽi = (vi, wi, si) (6.3)

ṡi =arφ(vi; κ, vth)(1 − si) − adsi.

The parameters ar and ad correspond to the rise and decay times of the synaptic
activity and are usually chosen such that ar � ad. The function φ is the activation
of the synaptic activity and typically chosen as a sigmoid function φ(vi; κ, vth) =
1/(1+exp (−κ(vi − vth))), where the parameters κ and vth are responsible for tuning
the maximal amplitude of the synaptic variable and the voltage level above which the
synaptic variable is activated [15].

Here we set the parameters to (κ, vth, ar, ad) = (50, 0.95, 20, 0.1) that correspond
to synaptic interactions with long decay times such that the synaptic variable cannot
be approximated by a voltage function and it is a part of the AMEE model. Indeed,
for identical neurons, synaptic interaction can lead to synchronous attractors with dy-
namical features different than the isolated individual neurons. For such synchronous
solutions, the resulting AMEE model of O(1) for uniform mean is similar to Eq. (5.3),
with the monomial effective terms being replaced by coupling to the effective synaptic
variable producing a system of three equations.

For individual neurons as in Fig. 2, we demonstrate in Fig. 5 that slow decay rate
interactions cause the network to exhibit subthreshold oscillations or periodic firing
depending on the amplitude of the interactions or decay time. The green curve in the
middle plot depicts the synaptic variable approximation by the AMEE model (solid)
and the sampled average of the synaptic variable (asterisk). The projections onto
the plane of (v̄, w̄) remain useful for understanding the network dynamics, however
the prediction of the effective nullclines/stable and unstable manifolds in the three
dimensional system is not straightforward. Geometrical methods such as singular
perturbation theory [63] can provide such a prediction for all-to-all connections or
for specific symmetries in the connection matrix. In general, for complex interaction
topologies and possibly for nonlinear activity measures, the resulting AMEE is an
extremely nontrivial system to analyze.

In contrast to limitations of the analytic study, computational methods such as
numerical continuation can be applied efficiently by exploiting the low dimensionality
of the reduced AMEE model. Such studies allow one to explain and predict dynamics
of neural activity when a few control parameters are being varied. As an illustrative
example we study the firing rate of the synchronous periodic solution of the FHN
network (as in Fig. 5B) connected with inhibitory or excitatory synaptic connections.
We fix (b, c) = (10−3, 10−3) parameters in the FHN neurons and vary a. In the range
of a ∈ (−0.5, 0) the model exhibits periodic firing of relaxation-oscillations type (for
negative values outside this range linear nullcline intersects the cubic nullcline such
that stable fixed point is created at and for positive values outside this range the rest
fixed point is stable). The firing rate (FR) curve is depicted in Fig. 6 (left). Connect-
ing the neurons via synaptic connections can deform and reposition significantly the
FR as shown in Fig. 6 (middle,right). For small values of a, the excitatory synaptic
connections with low amplitude position the effective FR curve of the synchronous
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Fig. 5. (Color online) Synaptic interactions. A: A network of identical neurons interacting
synaptically exhibiting subthreshold oscillations induced by the interaction. The interaction coeffi-
cient is aint = 0.1 and synaptic rise and decay parameters are (ad, ar) = (20, 0.1) and the initial
condition is (vi(0), wi(0)) = (0.2, 0). B: Larger amplitude interactions, aint = 0.25, resulting with
periodic spiking for initial conditions and rise and decay parameters as in the top row.

solution (marked by a green asterisk curve) above the FR curve of the isolated neuron.
As a is increased, the FR curve it crosses the isolated neuron’s curve resulting with
slower FR than the isolated neuron (although being excitatory connections). Increas-
ing the amplitude of the synaptic connection places the effective FR curve (marked
by green triangles) above the isolated neuron’s curve for the whole range of a. Keep-
ing the large amplitude, but decreasing the decay time of the synaptic variable, the
effective FR curve is positioned below the isolated neuron’s FR curve for the whole
range of a (marked by a dashed green curve), significantly delaying the firing rate (cf.
Fig. 6 middle). Similarly, inhibitory interactions result with nontrivial, unexpected
firing rates. Low amplitude fast interactions position the effective FR curve above
the isolated neuron’s curve, while high amplitude fast and slow interactions increase
the firing rate and position the effective curve above the isolated neuron’s curve (cf.
Fig. 6 right).

-0.5 -0.4 -0.3 -0.2 -0.1 0
0.9

1

1.1

x 10
-3

FR

a
-0.5 -0.4 -0.3 -0.2 -0.1 0

0.8

0.9

1

1.1

x 10
-3

FR

a
-0.4 -0.3 -0.2 -0.1 0

0.9

1

1.1

1.2

1.3

x 10
-3

FR

a

Fig. 6. (Color online) Firing rates as a function of the parameter a with excitatory and
inhibitory synaptic interactions. Left: Firing rates for isolated identical neurons α = (a, a −
1, 1, 10−3, 10−3). Middle: Excitatory fast and slow synaptic interactions with parameters be-
ing varied (ad, aint) = (0.1, 0.05) (starred green) and (ad, aint) = (0.1, 0.1) (triangles green)
for fast interactions. Parameters (ad, aint) = (0.001, 0.1) (dashed green) chosen for slow in-
teractions. Right: Inhibitory fast and slow synaptic interactions with parameters being varied
(ad, aint) = (0.1,−0.05) (starred red) and (ad, aint) = (0.1,−0.1) (triangles red) for fast inter-
actions. Parameters (ad, aint) = (0.001,−0.1) (dashed red) for slow interactions.
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Fig. 7. (Color online) A network of near-identical neurons. A: Non-interacting neurons
for initial conditions (vi(0), wi(0)) = (0.15, 0). B: Interacting neurons, aint = 0.025, for initial
conditions as in the top row. C: Non-interacting neurons for initial conditions (vi(0), wi(0)) =
(0.01, 0) + U(−0.05, 0.05). D: Synaptic interaction induces synchronization, aint = 0.3, for initial
conditions as in the third row and synaptic timescale parameters (ar, ad) = (20, 0.2).

7. Network of non-identical neurons. In previous numerical simulations we
have chosen identical neurons and tested the validity of the synchronous attractor
assumption. Figures 2-4 illustrate that for identical linearly interacting FHN neu-
rons there exist a synchronized attractor and hence for large parameter range the
synchronous attractor assumption is valid.

7.1. Almost identical neurons. Here we simulate an interacting network of
almost identical FHN neurons. The parameters were drawn from uniform distri-
bution with zero expectation around the parameters for the identical neuron such
that (a1, a2, a3) = (−0.1, 1.1,−1) + U(−0.05, 0.05), (b, c) = (10−2, 10−2) + 5 ×
U(−10−3, 10−3). Since the uniform distribution has zero expectation, the average
parameters are the parameters of the single neuron as chosen in Fig. 2. However the
variation especially in the a1 parameter, that determines the stability of the fixed
point and the threshold value, changes significantly the dynamics of each individual
neuron. Therefore, we expect the collection of non-interacting single neurons to have
various behavior for initial conditions (vi(0), wi(0)) = (0.15, 0) chosen close to the
threshold value of the single average neuron, as demonstrated in the raster plot in
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Fig. 7A, where only a small fraction of neurons pass the threshold and produce and
action potential. In such a case the AMEE model is not guaranteed to follow the
asynchronous solution which is also clearly observed from the numerical simulation.

However, when interaction is introduced, numerical simulations show that even
very small interaction (aint = 0.025) that does not cause a bifurcation in the phase
plane structure of the average single neuron, the network exhibits a synchronized
solution in the form of a single action potential, as demonstrated in Fig. 7B. The
AMEE model constructed for the identical (average) neurons case, can still be a good
approximation for the average dynamics. The projection to a phase plane in Fig. 7
illustrates the closeness of the two solutions and the raster plot indicates that there
is synchronization. These numerical simulations lead to a conjecture of the existence
of an underlying attractor for nearly identical neurons as well and implies that the
mean AMEE model is a valid approximation for the average dynamics even for almost
identical network of linearly interacting FHN neurons.

Note that existence of a synchronous solution implies that for networks with gen-
eral random neurons, not necessarily almost identical, and individual dynamics mod-
eled by a polynomial vectorfield, the mean AMEE model will shadow the dynamics of
the spatial average on the synchronous attractor. To demonstrate how a synchronous
solution is formed and how the AMEE models the synchronized solution, we simulate
a non-identical network with a = −0.3 + U(−0.05, 0.05) of periodic FHN neurons.
The uncoupled network exhibits an asynchronous solution where each neuron is firing
periodically with a different firing rate, as shown in Fig. 7C. When synaptic interac-
tion is introduced, the network gradually approaches a synchronous solution. Indeed,
the dynamics of the synchronous solution are predicted by the AMEE model as shown
in Fig. 7D.

7.2. Two interacting populations of neurons. As described in §4.2 it is of-
ten the case that the network of neurons can be modeled as being composed of several
distinct subpopulations, where within each subpopulation the nodes are identical or
almost identical. Here we study the case of two subpopulations of FHN neurons. The
first subpopulation is chosen with parameters α(1) = (−0.03, 1.03,−1, 10−2, 10−2)
such that for initial condition (0.1, 0) the voltage spikes once and settles to subthresh-
old oscillations (a stable limit cycle). The second population is chosen with parameters
α(2) = (0.01, 0.99,−1, 10−2, 10−2) such that for the same initial condition it does not
cross the threshold for action potential and settles to the stable resting fixed point.
Interactions within each subpopulation (positive linear, all-to-all, aint = 0.02) cause
the first population to exhibit relaxations oscillations and the second to spike and
settle to a stable resting fixed point, as depicted in Fig. 8A.

The choice of such parameters represents two subpopulations where subpopulation
(1) is more sensitive than the other (2). Connecting these populations can create an
attractor solution that is different than the attractor solution of each subpopulation
connected within. In the particular example here, with the same linear connections, we
expect that for positive excitatory connections the more sensitive subpopulation will
drive the less sensitive subpopulation. As demonstrated in Fig. 8B this is indeed the
case. Both populations exhibit relaxation oscillations, where the second population
is delayed after the first one. Following §4.2 by extending Eqs. (5.5) we derive the
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Fig. 8. (Color online) Dynamics of a network of FHN neurons composed of two distinct
populations. A: a schematic chart of the network. The plots indicate the average voltage of the
network for non-interacting (top) and interactions within each population (bottom). B: Left to
right: Dynamics of the average voltage of each population for t = [0, 300] and t = [550, 850], overall
spatial average, dark (blue) curve, along with the reconstructed overall average from the solution of
the AMEE, bright (green) curve for t = [0, 300] and t = [550, 850].

reduced first order mean AMEE as four coupled odes

˙̄v1 = −w̄1 + (a(1)
1 + aint)v̄1 + a

(1)
2 v̄2

1 + a
(1)
3 v̄3

1 +
Ñ1

Ñ2

aintv̄2, ˙̄w1 = bv̄1 − cw̄1, (7.1)

˙̄v2 = −w̄2 + (a(2)
1 + aint)v̄2 + a

(2)
2 v̄2

2 + a
(2)
3 v̄3

2 +
Ñ2

Ñ1

aintv̄1, ˙̄w2 = bv̄2 − cw̄2.

To demonstrate the closeness of the AMEE solution and the mean, in Fig. 8B we
compare for two time intervals of identical duration, the initial time interval (left)
and a later interval (right), the mean over each population (top row), the voltage
components v̄1, v̄2 of the AMEE model (middle row) and the total mean along with
v̄1+v̄2 (bottom row). As these plots demonstrate, after a transient time the solution of
AMEE reproduces the observed dynamics and captures accurately the delay between
the oscillations of the two subpopulations. As a result, the nontrivial profile of the
total mean is being recovered accurately.

8. Coherent structures. Non existence of a completely synchronous attractor,
especially for random initial conditions, does not imply a spatial decoherence of the
attractor. In fact, typical dynamics on such attractors exhibit partial synchronization
expressed by interaction of spatially coherent structures. The form of the coherent
patterns depends on the symmetries in the network and is especially expected in
networks in which there is a synchronous attractor for some parameter regime or
initial conditions. As shown in §4.3, coherence can be used to reduce the AMEE and
resolve the dynamics of the interactions of the coherent structures and to construct the
activity measure for the partially synchronous network. Here we show a construction
of AMEE for gap junctions interactions where the random initial condition is not in
the basin of attraction of the completely synchronous attractor. Instead, this initial
condition is attracted to a periodic coherent pattern.

8.1. Gap junctions. As an example of AMEE for partially synchronous attrac-
tors we consider a FHN network interacting by all-to-all symmetric gap junctions

v̇i = fFHN (Vi; α) +
aint

N − 1

N∑

j=1,j 6=i

(vi − vj). (8.1)

with the parameters α for the individual neurons chosen as in Fig. 2 and aint = 0.2.
Such an interaction imposes the dynamics on the complete synchronous attractor to
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Fig. 9. (Color online) Non-synchronous coherent regime for gap junctions interactions. Top:
Simulation of the full network. Bottom: Simulation of the projected system onto POD modes. Left:
Raster plot. Middle: The overall spatial average of the network and the reconstructed network.
Right: Projection of the dynamics onto two modes demonstrating a limit cycle.

be the same as the dynamics of the individual neuron - a single action potential.
For identical initial conditions, as in Fig. 2, the network exhibits such dynamics.
However, randomly perturbed initial data does not belong to the basin of attraction
of the synchronous solution, see [43] for a stability study. Instead, coherent structures
in the form of displaced relaxations oscillations appear as demonstrated in Fig. 9.
Such dynamics can be explained by decomposing the interaction in Eq. (8.1) into
the self-interaction term (vi) and non self-interaction term (vj) resulting in aintvi −
aint

N−1

∑N
j=1,j 6=i vj . Including only the self-interaction term will result in a FHN model

in the regime of an unstable resting state fixed point and a stable limit cycle such that
an initial condition as in Fig. 2 results with relaxation oscillations dynamics. The non
self-interaction term, when neurons are perfectly synchronized, is supposed to balance
the self-interaction term and bring the resting state to stability. For random initial
data, the balance is imperfect which in turn creates a delay between the relaxation
oscillations of the neurons.

To derive the AMEE model that will resolve the activity measures of this so-
lution we perform a singular value decomposition on the network matrix v(i, t) =
UvSvY T

v , w(i, t) = UwSwY T
w . Then the column vectors of Y T , ~ym

v and ~ym
w , are the

proper orthogonal modes such that the dynamics on the attractor can be approx-
imately represented as a finite decomposition of these vectors multiplied by time
varying coefficients, rm

v (t) and rm
w (t). The resulting decomposition of the attractor is

then ~xA
v (t) =

∑K
m=1 rm

v (t)~ym
v and ~xA

w(t) =
∑K

m=1 rm
w (t)~ym

w . Following §4.3, to derive
the equations for rm

k (t) we project Eqs. (8.1) onto three modes using the Galerkin
projection. Using Newton’s monomial formula the self terms in Eqs. (8.1) result with

ṙm
v (t) = −

3∑

s=1

< ~ys
w, ~yj

v > rs
w + (a1 + aint)r

m
v +

∑

p1+p2+p3=l

al

3∏

q=1

dl,m
p1p2p3

(rq
v)pq , (8.2)

ṙm
w (t) = b

3∑

s=1

< ~ys
v, ~yj

w > rs
v − crm

w

where the coefficients dl,m
p1p2p3

are the inner product of monomials of ~yq
v with ~ym

v and
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multiplied by the appropriate monomial coefficient such that l = p1 + p2 + p3 and
p1, p2, p3 ∈ Z+

dl,j
p1p2p3

=

(
l

p1, p2, p3

)

< (~y1
v)p1(~y2

v)p2(~y3
v)p3 , ~ym

v > .

The non-self interaction term is projected by substituting into vj the orthogonal
decomposition resulting with circular shifts of the vectors ~yq

v by h = 1, ..., N − 1
denoted by ~yq,h

v

ṙm
v =

aint

N − 1

3∑

q=1

N−1∑

h=1

< ~yq,h, ~ym
v > rq

v. (8.3)

The combination of Eqs. (8.2) and (8.3) is the projected model onto three orthogonal
modes, resulting with a system of six coupled odes with the coefficients rm

v , rm
w being

the variables in these equations. In a similar manner the model can be extended to a
projection onto K modes.

Fig. 9 demonstrates the full network dynamics (top) and the reduced model (bot-
tom). Indeed, the raster plot (left) and the projection onto the first two modes (right)
show similar patterns and that their dynamics are periodic both in the full network
and in the projected POD model. The spatial mean of the network (middle, top)
and the mean activity computed according to Eq. (4.6) (middle,bottom) indicate
that the overall average is fluctuating around the zero with discrete jumps at times
corresponding to switching between patterns. The reduced model is able to capture
these transitions and leads to a qualitative reconstruction of such overall activity. As
in previous examples, the reduced AMEE model provides a model for such dynam-
ics. A detailed study of its structure, symmetries and bifurcations, should reveal the
conditions for balance/unbalance of such a network [45, 46, 64].

9. Discussion. In this paper we introduced a new theoretical framework for
modeling neural activity of a network of interacting neurons based upon the first prin-
ciple dynamics of individual neurons. Our bottom-up approach gives a self-consistent,
analytically constructive, and asymptotically justified “mean-field” reduction (AMEE
model) for quantitatively describing collective neural activity. The analysis character-
izes network dynamics as a function of the individual neuron dynamics and their
connection type and strength, often producing collective dynamics that cannot be
guessed from individual neuron behavior. Our analysis should be contrasted with
previous top-down mean-field descriptions where the mean-field is specified with some
generic, qualitative interaction rules among nodes of the network. The derived AMEE
model provides a dimensionality reduction of the phase space of the complete network,
especially when the asymptotic dynamics of the network exhibit synchrony and the
measure is simple. For such networks, the solution of the reduced set of equations
shadows the activity measure of the network and hence provides a good approxima-
tion for the dynamics of the complete network. Applicability of additional reduction
methods to the AMEE model was shown as well. These methods allow for a reduced
model even for partial synchrony.

For the mean measure of the neural field, such an approach gives rise to models
that retain the structure of the underlying individual neuron whose dynamics are well
known. Prescribed neuron-to-neuron interactions introduce additional “mean-field”
effects that have a profound effect on the overall network dynamics. The explicit
construction of the AMEE model for identical interacting FHN neurons carried out in
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Section 5 demonstrates that the resulting evolution equations for the mean measure
can be studied by analytic phase-plane analysis. Such a study accurately predicts the
mean functionality of the network for a wide range of parameters and initial condi-
tions of the neurons. Indeed, the derived AMEE description is validated for linear
and simple nonlinear (bi-linear) network interactions as well as synaptic interactions.
Unlike for the mean measure, the theory shows that the dynamics of nonlinear mea-
sures results in a mean-field description where the structure of the individual neuron
is modified together with the interaction terms. Moreover, it is able to produce a
completely modified description at the mean-field level detached from the original
single neuron model despite being based on the single neuron structure.

The AMEE also brings a new perspective to a common intuition associated with
neuron dynamics. Specifically, it is typically understood that neurons operate near
bifurcation points so that small perturbations can alter the neuron behavior substan-
tially [11, 7], i.e. small voltage perturbations can cause the neuron to spike and fire.
This concept is the basis for computationally efficient phenomenological models of
single neuron responses [65, 66, 11, 67]. In the analysis presented here of the AMEE,
it is not the individual neuron that matters. Indeed, dynamically speaking, individual
neurons may be far from any bifurcation behavior. However, when coupled together in
a network, even very weakly, the coupling can significantly shift the parameter space
of the effective neuron dynamics as given by the AMEE. In particular, the coupling
can shift the AMEE so that the network is near a bifurcation point. Ultimately, it is
the network of neurons that should be near the bifurcation point so that the network
can react to perturbations to the neural system. Thus when connected in a network,
dynamically uninteresting individual neurons are capable of exhibiting key dynamical
behaviors associated with network functionality. Although we do not consider noise
driven dynamics, which are certainly relevant to networks of neurons, the AMEE
identifies the deterministic parameter regimes that are potentially sensitive to such
stochastic fluctuations.

For illustrative purposes, in many of the examples we have chosen a simple in-
teraction between the neurons, via the voltage variable, in order to derive a succinct
mean-field model. The success of this first step in modeling the bottom-up dynam-
ics can lead to host of further considerations. To faithfully model common neural
interactions one should take into account the synaptic variables that model the slow
and fast synaptic receptors. We extend and explain the derivation of the AMEE to
single channel synaptic interaction and demonstrate a possible resulting bifurcation
study using such a model. Similarly, a detailed model consisting of neural coupling
via several synaptic variables with HH model for individual dynamics may introduce
further nontrivial evolution equations that exhibit effective complicated dynamics and
are analytically intractable. Numerical studies of such a model can reveal the param-
eters and the mechanisms that lead to such behaviors of the network. Further, other
hybrid models, stochastic systems and spatial dynamics may be potentially imple-
mented within this mean-field approach. Such extensions to the current model are
currently under consideration.

To contrast our approach with previous mean-field descriptions, we emphasize
that the constructive assumption here is that the interacting network asymptotically
converges to an attractor with no restriction on the topology of the attractor in phase
space. In the phase reduction methodology, however, it is assumed that the individual
neurons possess a limit cycle attractor and interactions are weak. The generality of
our assumption results with being able to guarantee shadowing of the activity measure
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dynamics by the solution of AMEE in contrast to an exact bound on the closeness
between them in terms of the small parameter that multiplies the interaction terms.
Furthermore, in the derivation of the AMEE, the size of the network is left as a
free parameter such that both small and large networks can be considered. The
small parameter that is used to guarantee shadowing is the size of the fluctuations
around the underlying attractor which together with spatial coherence provides a low
dimensional AMEE model even for a very large system. In the neural fields approach
the small parameter is 1/N , and the passage to the continuum limit provides the
reduced model in terms of PDEs.

As a final comment, fundamental studies of neural network dynamics noted that
the performance of circuits in the brain can change dramatically when the neurons
in these circuits synchronize and thus it is important to understand the mechanisms
that lead to synchronization [4, 38, 29]. These studies and following works investigate
under what conditions populations of interacting neurons, evolve to a state in which
there is an appreciable amount of synchrony. The theory developed here provides a
potential methodology to address such issues in biophysically relevant settings.
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Appendix A. Expansion of the AMEE. Expanding the right hand side of
Eq. (3.1) with vik(t) = xA

ik(t) + εξik(t) results in

dmk(vik)
dt

=
N∑

i=1

d

dt

(

pik(xA
ik) + εξik

dpik

dxik
(xA

ik) + O(ε2)

)

=
N∑

i=1

(
dpik

dxik
(xA

ik)
dxA

ik

dt
+ ε

dξik

dt

dpik

dxik
(xA

ik) + εξik
d2pik

d2xik
(xA

ik)
dxA

ik

dt
+ O(ε2)

)

.

Perturbation around xA
ik yields the following ODE system

dxA
ik

dt
+ ε

dξik

dt
= gi,k(xA

qr) + ε

N∑

j=1

n∑

l=1

ξjl
dgi,k

dxjl
(xA

qr) + O(ε2)

so that

dmk

dt
=

N∑

i=1

(
dpik

dxik
(xA

ik)gi,k(xA
qr) + ε

dpik

dxik
(xA

ik)
N∑

j=1

n∑

l=1

ξjl
dgi,k

dxjl
(xA

qr)

+ εξik
d2pik

d2xik
(xA

ik)gi,k(xA
qr) + O(ε2)

)

.

Appendix B. Proof of Theorem 1. (a): Let ηk(t) = mk(vik(t))−mk(xA
ik(t)).

Expansion of mk(vik) results in

mk(vik(t)) = m(xA
ik(t) + εξik(t)) =

N∑

i=1

[

pik(xA
ik(t)) + εξik(t)

dpik

dxik
(xA

ik(t))

]

+ h.o.t

28



since pik is linear, dpj
ik/djxik = 0 for j ≥ 2 and the h.o.t vanish. The remaining terms

are

mk(vik(t)) =
N∑

i=1

[

pik(xA
ik(t)) + εξik(t)wik

]

= m(xA
ik(t)) +

N∑

i=1

εξik(t)wik.

Then ηk(t) is of the form ηk(t) = ε
∑N

i=1 ξik(t)wik. Since the weights are normalized
and ξik(t) ∼ O(1), then ηk(t) is guaranteed to be bounded by ε and we have proved
that mk(vik(t)) ε-shadows mk(xA

ik(t)).
(b): Similarly to the proof in part (a), mk(vik) can be expanded using Taylor series
such that

ηk(t) =
∞∑

r=1

N∑

i=1

εrξik(t)r

r!
drpik

dxr
ik

(xA
ik(t))

The terms ξik(t)r are bounded by O(1). Analyticity of pik and compactness of X
ensure that the series on the right hand side will be convergent and hence can be
bounded by a constant Ck. Therefore, m(vik(t)) is said to shadow m(xA

ik(t)).
To prove ε-shadowing and the validity of the expansion in Eq. (3.3) we need to

estimate the constant Ck to ensure that the distance between the two orbits is always
bounded by ε and higher order terms. From the expansion, we conclude that if the
convergence toward the attracting orbit xA

ik(t) is fast enough, in particular ξik(t)r

decays faster than the growth of the derivatives of pik ensuring that the sum over
N for r = 1 is bounded by O(ε) and for r ≥ 1 is bounded by O(ε2), then for all
t > t∗, m(vik(t)) ε-shadows m(xA

ik(t)). Thus we decompose the expansion of ηk(t)
into a term expected to be of O(ε) and higher order terms in ε :

ηk(t) = ε

N∑

i=1

ξik(t) p
(1)
ik

(
xA

ik(t)
)

+
∞∑

r=2

εr

r!

N∑

i=1

ξik(t)rp
(r)
ik

(
xA

ik(t)
)

where p
(r)
ik

(
xA

ik(t)
)

= drpik

dxr
ik

(
xA

ik(t)
)
. For the validity of Eq. (3.3), the first term has

to be bounded by ε: ε
∑N

i=1 ξik(t) p
(1)
ik

(
xA

ik(t)
)
∼ O(ε) resulting in the condition on

ξik(t)

∣
∣ξik(t)

∣
∣ <

1

N
∣
∣p(1)

ik

(
xA

ik(t)
)∣∣

.

that has to be satisfied for all t. In addition, we would like the remaining terms to be
bounded by ε2:

∑∞
r=2

εr

r!

∑N
i=1 ξik(t)rp

(r)
ik

(
xA

ik(t)
)
∼ O(ε2) that will be satisfied with

the additional conditions on ξik(t)

∣
∣ξik(t)

∣
∣r <

r!

Nεr−2
∣
∣p(r)

ik

(
xA

ik(t)
)∣∣

.

Appendix C. AMEE for a synchronous attractor for FHN network with
identical neurons. From Eq. (4.3), the mean measure with equal weights νi = 1/N
and gi,k as in Eq. (5.1) the following equations are received for the first order

dmv(v̄)
dt

= −w̄ +
1
N

N∑

i=1

N∑

j=1

p1∑

m=0

p2∑

n=0

aijmnvm
i vn

j ,
dmw(w̄)

dt
= ˙̄w(t) = −cv̄ + bw̄.
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Assumption of a synchronous attractor implies that for all i, j the variables vi and vj

can be replaced by v̄ and hence the resulting averaged model becomes

dmv(v̄)
dt

= −w̄ +
1
N

N∑

i=1

N∑

j=1

p1∑

m=0

p2∑

n=0

aijmnv̄m+n,
dmw(w̄)

dt
= −cv̄ + bw̄.

Denoting [A]mn as
∑N

i=1

∑N
j=1 aijmn brings the above equations to the form of Eqs.

(5.3). For the second order, Eq. (4.4) results with the following set of equations

dmv(ξv)
dt

= −ξ̄w +
1
N

N∑

i=1

N∑

j=1

N∑

l=1

ξlv
d

dvl

( p1∑

m=0

p2∑

n=0

aijmnvm
i vn

j

)

,

dmw(ξw)
dt

= ˙̄ξw(t) = −cξ̄v + bξ̄w

such that the the sum over l consists of two terms, l = i and l = j

dmv(ξv)
dt

= −ξ̄w +
1
N

N∑

i=1

N∑

j=1

p1∑

m=0

p2∑

n=0

aijmn(mvm−1
i vn

j ξiv + nvm
i vn−1

j ξjv),

dmw(ξw)
dt

= −cξ̄v + bξ̄w

replacing vj and vi by v̄ results with

dmv(ξv)
dt

= −ξ̄w +
1
N

N∑

i=1

N∑

j=1

p1∑

m=0

p2∑

n=0

aijmn(mξiv + nξjv)v̄m+n−1,

dmw(ξw)
dt

= −cξ̄v + bξ̄w.

Denoting [A~ξv|mn =
∑N

i=1

∑N
j=1 aijmnξiv and |A~ξv]mn =

∑N
i=1

∑N
j=1 aijmnξjv brings

the above equations to the form of Eqs. (5.4).
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