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Abstract

We study the dynamics of a quadratic integrate-and-fire model of a single compartment
neuron with a slow recovery variable, as input current and parameters describing timescales,
recovery variable, and post-spike reset change. Analysis of a codimension two bifurcation reveals
that the domain of attraction of a stable hyperpolarized rest state interacts subtly with reset
parameters, which reposition the system state after spiking. We obtain explicit approximations
of instantaneous firing rates for fixed values of the recovery variable, and use the averaging
theorem to obtain asymptotic firing rates as a function of current and reset parameters. Along
with the different phase plane geometries, these computations provide explicit tools for the in-
terpretation of different spiking patterns, and to guide parameter selection in modeling different
cortical cell types.
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1 Introduction

A wide variety of differential equations have been proposed to model neurons. These range from
biophysically-based descriptions involving nonlinear dynamics of multiple ion channels as pioneered
by Hodgkin and Huxley (Hodgkin and Huxley, 1952), to linear integrate-and-fire models, in which
only the subthreshold membrane voltage is tracked, and action potentials (spikes) are replaced
by a stereotypical delta functions followed by voltage reset below threshold. While the details
of channel dynamics and timescales of different ionic species are important in determining spike-
generation mechanisms and post-spiking refractory periods, reduced models are widely used in
simulating large networks. Less radical simplifications of ion-channel models have also been derived
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(e.g. (FitzHugh, 1961; Nagumo et al., 1962; Rinzel, 1985)), in which the fastest channels are assumed
to be equilibrated, and only membrane voltage and a slow recovery variable are retained, permitting
phase plane analyses (Guckenheimer and Holmes, 1983). For background, see texts such as (Keener
and Sneyd, 1998; Wilson, 1999; Ermentrout and Terman, 2010).

In this paper we analyze a quadratic integrate-and-fire model, a hybrid dynamical system with
a recovery variable, due to Izhikevich, that combines rich subthreshold dynamics with variable reset
locations in the phase plane (Izhikevich, 2003, 2006). Previous analysis (Touboul, 2008; Touboul and
Brette, 2009) revealed a codimension two Takens-Bogdanov bifurcation (Guckenheimer and Holmes,
1983) which organizes branches of saddle-node, Andronov-Hopf, and homoclinic bifurcations. The
resulting dynamics includes hyperpolarized rest states that may be stable or unstable, a branch
of unstable limit cycles, and a homoclinic loop to a saddle-type threshold state. With suitable
parameter choices, this system can reproduce diverse spiking patterns observed in many types of
cortical neurons; see, e.g., (Izhikevich, 2006, Ch. 8) and (Izhikevich, 2010).

For sufficiently high constant input currents, no fixed points exist, and with appropriate reset
parameters the system exhibits transient behavior that eventually settles to periodic spiking or
bursting. In this paper we characterize the transient dynamics by computing instantaneous firing
rates for a constant input current and fixed recovery variable, based on the first interspike interval
after reset at a particular location. We show that firing rates do not rise from zero at a critical
current, as for scalar integrate-and-fire models, and finite firing rates persist over a wide current
range, resembling those of integrate-and-fire models with additive noise.

Using the instantaneous firing rates and averaging theory for differential equations, we then
compute asymptotic firing rates that are obtained for fixed parameter values, after the hybrid
dynamics settles to a stable periodic orbit. These yield families of firing rate curves as a function
of input current, depending on reset parameters. The instantaneous and asymptotic firing rates
provide accurate and explicit guidelines to determine feasible behaviors, and thus predict which
types of neural responses the model can reproduce. Phase plane geometry also guides parameter
selection: for example, when a stable fixed point is present but post-spike resets fall outside its
domain of attraction, decaying subthreshold oscillations and persistent spiking coexist in a bistable
system. Moreover, input current steps and impulses can evoke varied combinations of transients
and periodic spiking that resemble numerous observed patterns.

We briefly describe scalar integrate-and-fire models in §2 before introducing the quadratic model
with recovery variable and reviewing its dynamics and bifurcations in §3.1. We use these and the
system’s fast-slow dynamics to derive explicit approximations of instantaneous firing rates in §3.2,
and of asymptotic firing rates as fixed points of an averaged differential equation in §3.3. In §4 we
draw on these analyses to explain a variety of responses to constant current and impulsive inputs,
and to select appropriate parameter sets to illustrate them. A discussion follows in §5. Details
of bifurcation calculations and proofs and computations involved in the firing rate and fixed point
analyses are given in the Appendix.

2 The quadratic integrate-and-fire model

The quadratic integrate-and-fire model with a recovery variable (RQIF) generalizes the quadratic
integrate-and-fire model (QIF), which was proposed as an alternative to the simpler leaky integrate-
and-fire model (LIF). We start by briefly reviewing the LIF.
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2.1 The leaky integrate-and-fire model

The leaky integrate-and-fire model may be written as

CV̇ = −gL(V − VL) + I; V (t) ∈ [Vreset, Vthresh], (1)

when V (t) = Vthresh, insert δ(t) and set V = Vreset,

where V denotes the transmembrane potential, C its capacitance, gL a leak conductance, and I
the input current (Stein, 1965; Knight, 1972). In (1) the rapid action potential (AP or spike) is
replaced by a delta function that occurs when the voltage V reaches threshold Vthresh, immediately
after which V is re-initialized at Vreset.

Letting Vss denote the steady state that the system would approach in the absence of Vthresh,
the differential equation of (1) can be rewritten as:

C

gL
V̇ = −V + Vss, where Vss = VL +

I

gL
, (2)

and for constant input current I such that Vss > Vreset, its interspike interval (ISI) can be calculated
as

T =
C

gL

∫ Vthresh

Vreset

dV

Vss − V
=

C

gL
ln

[
Vss − Vreset

Vss − Vthresh

]

. (3)

The firing rate φ(I) is simply the inverse of ISI, specifically:

φ(I) =

{
0 if Vss ≤ Vthresh
1
T if Vss > Vthresh

; (4)

an example is shown in Fig. 1(a). A refractory period τref is sometimes included following reset
before allowing the solution to continue, thus determining a maximum firing rate.

The LIF model is simple and useful, but it does not encode the actual potential V reached during
the AP, and its subthreshold dynamics cause V (t) to decelerate as it approaches VL. This makes
LIF firing rates rise more rapidly from zero for small Vss−Vthresh than is typically observed, due to
the logarithmic singularity in (3) (Fig. 1(a)) (Connor et al., 1977; Rinzel and Ermentrout, 1989).
The QIF model repairs these deficits by using quadratic voltage dependence, which accelerates V (t)
to infinity in finite time, allowing one to define a peak voltage prior to reset and producing a slower
rise in φ(I). In reality, input currents are nonconstant and noisy, which permits the LIF model to
fire for subthreshold mean currents and effectively smooths φ(I) (Wan and Tuckwell, 1982; Amit
and Tsodyks, 1991), but the low noise LIF limit still exhibits a rapid rise.

2.2 The quadratic integrate-and-fire model: definition and firing rates

The quadratic integrate-and-fire (QIF) or “theta-model” was introduced by Ermentrout and Kopell
(Ermentrout and Kopell, 1986). In nondimensional form (indicated by lowercase v) it can be defined
as follows:

v̇ = v2 + I; (5)

if v = vpeak, set v = vreset.
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Figure 1: Firing rate curves for the LIF and QIF models. (a): Firing rate curve for the LIF neuron
(Eqs. (3-4), solid) with parameters Vreset = 0, VL = −0.1, Vthresh = 0.1 and C/gL = 1, and firing
rate with refractory period τref = 0.5 (dashed). (b): Firing rate curve for the QIF neuron (Eq. (7),
solid) with Vreset = −0.1 and Vpeak = 1, and firing rate with refractory period τref = 0.5 (dashed).

Voltage is reset when v reaches vpeak, thus defining the maximum spike voltage.
The theta model of (Ermentrout and Kopell, 1986) can be obtained from (5) by the transfor-

mation v = tan (θ/2):
θ̇ = 1 − cos θ + (1 + cos θ)I, (6)

where θ ∈ [0, 2π) denotes a phase variable. The inverse transformation to v is singular at θ = π so
that v → ∞. Thus, a spike is emitted each time θ(t) passes π and no reset rule is needed, since
the phase space is periodic. As shown in (Ermentrout and Kopell, 1986), Eq. (6) has a saddle-node
bifurcation that occurs on the invariant circle, the normal form of which is Eq. (5). This indicates
that Eq. (5) is generic in the sense that it describes the near-threshold dynamics of any other model
that possess such a codimension one bifurcation (Guckenheimer and Holmes, 1983).

For I > 0 Eq. (5) has no fixed points and exhibits periodic spiking with ISI

T =
∫ vpeak

vreset

dv

v2 + I
=

1
√

I
atan

(
v
√

I

)∣∣
∣
∣

vpeak

vreset

=
1
√

I
atan

[√
I(vpeak − vreset)
I + vpeakvreset

]

: (7)

see Fig. 2 (bottom). An example of the resulting firing rate φ(I) = 1/T appears in Fig. 1(b): note
the slower increase from I = 0, compared to the LIF. The parabola-like QIF curve better fits the
steady state current-voltage I∞(v) characteristics of many types of neurons, as well as that of the
Hodgkin-Huxley equations (Hodgkin and Huxley, 1952).

When I < 0, a pair of fixed points vf = ±
√

|I| appears. The positive one, vthresh =
√

|I|, is
unstable and denotes a threshold value; the negative one, vrest = −

√
|I|, is stable and represents

the resting potential: see Fig. 2 (top). For vreset > vthresh the model still exhibits periodic firing
with ISI

T =
∫ vpeak

vreset

dv

v2 − |I|
=

1

2
√

|I|
ln





(
vpeak −

√
|I|
)(

vreset +
√

|I|
)

(
vpeak +

√
|I|
)(

vreset −
√

|I|
)



 : (8)
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see Fig. 2 (center). For vreset < vthresh, voltage is reset in the basin of attraction of the stable
fixed point: Fig. 2 (top). No periodic solution exists, but the neuron is excitable: superthreshold
perturbations of magnitude exceeding |vthresh − vreset| can cause it to fire and return to the resting
state. Similarly, for vreset > vthresh sufficiently large negative perturbations can terminate firing.
At vreset = vthresh a “hybrid homoclinic bifurcation” occurs, in which the spiking solution departs
from threshold and is reset at threshold.

Figure 2: Vector fields, 1-dimensional phase portraits, and voltage traces for the quadratic integrate-
and-fire neuron for I > 0 and I < 0, showing effects of different reset parameters. Reproduced
from (Izhikevich, 2006), Fig. 3.35.

3 The quadratic integrate-and-fire model with recovery variable

In (Izhikevich, 2003) Izhikevich extended the QIF model by introducing a recovery variable u in
the spirit of FitzHugh’s approximation of the Hodgkin-Huxley equations (FitzHugh, 1961). After
rescaling, this so-called simple model can be written as

v̇ = v2 − u + I,

u̇ = a(bv − u); (9)

if v ≥ vpeak, set v = c, u = u + d.

This two-dimensional system has five independent parameters: a > 0 sets the relative time scale
between voltage and recovery variable, and I and b allow bifurcations between different phase

5



portraits that interact with the reset parameters c and d to create a rich repertoire of spiking and
bursting behaviors. Here we will call Eq. (9) the RQIF model (QIF with a recovery variable).

After reviewing the bifurcations of the RQIF model we compute its firing rates in the case that
a � 1, first under the simplifying condition that post-spike solutions are reset to a specific point
in the phase plane (“instantaneous rates”, §3.2), and then by seeking a fixed point for an averaged
system (“asymptotic rates”, §3.3).

3.1 Bifurcations and phase planes of the RQIF model

Here we briefly review the dynamics of Eq. (9) for v < vpeak. Previous studies of bifurcations and
phase portraits appear in (Izhikevich, 2006, Ch. 8) and (Touboul, 2008; Touboul and Brette, 2009),
and the latter papers generalize the analyses to systems with strictly convex functions F (v) in place
of v2.

As I decreases for a > 0 and b fixed, local saddle-node (SN) and Andronov-Hopf (AH) bifurca-
tions and a global homoclinic (Hom) or saddle-loop bifurcation occur as illustrated in Figs. 3 and
4 (cf. (Guckenheimer and Holmes, 1983; Kuznetsov, 2004)):

a

I
SN

I
AH

I
hom

I

b

Figure 3: Bifurcation diagram in terms of the parameters I and b. Saddle node bifurcations occur
on the solid curve ISN , Eq. (11), Andronov-Hopf bifurcations on the dashed curve IAH , Eq. (12),
and homoclinic bifurcations on the dashed-dotted curve Ihom, Eq. (13). The curves meet with a
common tangent at the Takens-Bogdanov bifurcation point (b = a, I = a2/4).

SN: Two fixed points

v±f =
1
2
(b ±

√
b2 − 4I), u±

f = bv±f , (10)

henceforth denoted vth and vrest, appear in a saddle-node bifurcation on the curve

I = ISN = b2/4; (11)
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vth is a hyperbolic saddle point for all I < ISN , vrest is a sink for b ≤ a and appears below
ISN as a source for b > a.

AH: As I < ISN decreases for b > a, vrest becomes a sink in a subcritical Andronov-Hopf bifurca-
tion on the line

I = IAH =
ab

2
−

a2

4
, b > a, (12)

below which an unstable limit cycle appears, initially bounding the domain of attraction of
the sink, hereafter denoted W s(vrest) and shaded gray in the phase portraits of Fig. 4.

Hom: As I < ISN continues to decrease, the unstable cycle grows and forms a saddle connection to
vth in a homoclinic bifurcation that occurs on a curve approximated by

I = Ihom =
a2

4
+

a(b − a)
2

−
6(b − a)2

25
+ O(|b − a|3); b > a. (13)

Below Ihom there is no limit cycle and the nonwandering set consists of vth and the sink vrest

alone. The curves ISN , IAH and Ihom meet with common tangents at the codimension two
Takens-Bogdanov bifurcation point (b = a, I = a2/4).

In the Appendix we provide details of the underlying ideas and analysis, particularly of the
Takens-Bogdanov and homoclinic bifurcations. The derivation of (Touboul, 2008), which appeals
to results of (Kuznetsov, 2004, §8.4) but omits the blow-up calculation, appears to contain errors in
expressions for the homoclinic bifurcation curve: specifically (Touboul and Brette, 2009, Eq. (2.1))
lacks the second term of Eq. (13), linear in (b − a), which is necessary for the common tangency,
cf. (Guckenheimer and Holmes, 1983, Fig. 7.3.3) and (Kuznetsov, 2004, Fig. 8.8).

3.2 Instantaneous firing rates for the RQIF with a � 1

We first explore the dynamics of a constrained RQIF model (9) with initial conditions reset after

each spike to (v(t+peak) = c ≥ 0, u(t+peak)
def
= u0). Throughout this section we set a � 1, so that the

recovery dynamics are slow enough that |u̇| � |v̇|, except near the v̇ = 0 nullcline, computation of
spike times tpeak for different initializations u0 results in instantaneous firing rates defined as the
inverse of the ISI or time to reach vpeak (cf. Eqs. (3-4), although we do not include a refractory
period, since the recovery variable can represent refractory dynamics). By distinguishing between
the cases I < ISN and I > ISN we focus on the effects of the parameters b and I, which determine
the phase plane structures, separating them into the topologically distinct classes of Fig. 4.

Touboul (Touboul, 2009) has shown that the recovery variable u blows up along with the voltage
v in the quadratic RQIF model, and that this can make solutions sensitive to the choice of vpeak

(the cutoff/reset value). Here we take vpeak = 10: sufficiently small that u(t) does not appreciably
accelerate as t → tpeak and our assumption that u(t) varies slowly is justified.

3.2.1 Case (a): I > ISN

Above ISN no fixed points exist and all solutions reach vpeak in finite time, leading to repetitive
firing whose period depends on the reset condition u = u0. To describe the instantaneous firing
rates we define an effective input current

I ′ = I − u0. (14)
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Figure 4: Phase portraits for decreasing values of I < ISN with a = 0.5, b = 1 fixed, showing
behavior through the sequence of codimension one bifurcations, including domains of attraction
(shaded) of the sink vrest (filled circle) and stable and unstable manifolds W s(vth), W u(vth) of
vth (open circle). (a): IAH < I = 0.2 < ISN . (b): Ihom < I = 0.16 < IAH , the source has
undergone a Hopf bifurcation into a sink and an unstable limit cycle that bounds W s(vrest). (c):
I = Ihom ≈ 0.1485, the limit cycle fuses with W s(vth) ∩ W u(vth), creating a homoclinic orbit. (d):
I = 0.12 < Ihom, W s(vth) and W u(vth) separate to create an unbounded trapping region with a
thin “tongue” extending up the right branch of the v̇ = 0 nullcline. (e): I = 0.11 < Ihom, the
trapping region grows but remains of bounded width. (f): I = 0.1 � Ihom, the trapping region’s
width becomes unbounded as the left hand branch of W s(vth) falls outside the v̇ = 0 nullcline.

Since the extremum of the v̇ = 0 nullcline lies at (v, u) = (0, I), I ′ < 0 (resp. I ′ > 0) corresponds
to initial conditions above (resp. below) this nullcline, prompting our classification of firing rates
into three regimes: above threshold : I ′ > ε, below threshold : I ′ < −ε, and near threshold : |I ′| < ε.
In the first regime, time scale separation is preserved and u(t) remains almost constant (u(t) ≈ u0);
in the second and third regimes, solutions enter an ε-neighborhood of the nullcline and cross it,
timescale separation fails, and we must allow u(t) to evolve; see Fig. 5. The small parameter
ε(a, I) > 0 will be determined below.
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Figure 5: Below, near and above threshold escape regions (left) and corresponding spike trains
(right) for a = 0.05, b = 2, I = 5, c = 0 and ε = 0.2381.

I ′ > ε: In the above-threshold regime v increases rapidly until the solution reaches vpeak, while
u(t) ≈ u0 remains almost constant. The ISI may therefore be estimated as in Eqs. (7-8):

Ta(I
′) =

1
√

I ′
atan

[√
I ′(vpeak − c)
I ′ + cvpeak

]

=






1√
I′

atan
[√

I′(vpeak−c)
I′+cvpeak

]
, I ′ ≥ 0,

1

2
√

|I′|
ln

[(
vpeak−

√
|I′|
)(

c+
√

|I′|
)

(
vpeak+

√
|I′|
)(

c−
√

|I′|
)

]

, −c2 < I ′ < 0.
(15)

As I ′ → −c2 for c 6= 0, the instantaneous firing rate 1/Ta(I ′) is dominated by the term
2c/ ln[4αc2/(c2 + I ′)] with α = (vpeak − c)/(vpeak + c). This produces sharper curvature near
threshold than that for c = 0, for which firing rates scale as

√
I ′ as I ′ → 0: see Figs. 6 and 9, case

FS2, below.

|I ′| < ε: The near-threshold regime occurs when solutions are reset near the v̇ = 0 nullcline,
where separation into slow and fast dynamics fails since |v̇| ≈ |u̇|. For v = c = 0, Eq. (9) decouples
and the time taken to travel from u0 = I − I ′ to u = I − ε can be found by integrating u̇ = −au:

Tth1(I
′) =

1
a

ln

(
I − I ′

I − ε

)

. (16)

Below the nullcline’s minimum v accelerates and at v̇ = −u̇ we can switch to the v̇ dynamics with
u(t) ≈ u0 = I − ε, obtaining the same estimate as (15) with c = 0 and I ′ = I − u0 ≥ 0 replaced by
ε. Adding this and (16) yields the near-threshold ISI:

Tth(I ′) =
1
√

ε

[

atan

(
vpeak√

ε

)]

+
1
a

ln

(
I − I ′

I − ε

)

. (17)
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The parameter ε is estimated by setting v̇ = −u̇ and v = 0 in Eq. (9), giving u = I/(a + 1) at the
turning point, or, in terms of I ′,

I ′ = I − u =
aI

1 + a

def
= ε. (18)

For resets with v = c > 0, the near threshold regime occurs when I ′ = I − u lies in the interval
(−c2, ε − c2]. In this case the ISI is approximated by

Tth(I ′) = Ta(−c2 + ε) +
1
a

ln

(
I − I ′ − bc

I + c2 − ε − bc

)

, (19)

where the second term in Tth(I ′) is obtained by solving the inhomogeneous ODE u̇ + au = abc and
ε is estimated by setting v̇ = −u̇ with v = c in Eq. (9), giving

ε
def
= I + c2 − u =

a(c(c − b) + I)
1 + a

. (20)

I ′ < −ε: In the below-threshold regime the initial condition lies above the parabola, so solutions
start with fast dynamics in v towards the left branch of the v̇ = 0 nullcline until v̇ ≈ u̇, with time of
flight Tb1(I ′). The nullcline is crossed and slow dynamics of duration Tb2(I ′) then ensues along its
left branch. This is followed by near-threshold dynamics at the nullcline’s minimum at v = 0, u = I,
and fast dynamics in v towards vpeak, with time of flight given by Eq. (17) with I ′ = 0.

The initial fast phase is estimated by integrating the v̇ equation

Tb1(I
′) =

∫ vε

c

dv

v2 − |I ′|
=

1

2
√

|I ′|
ln





(√
|I ′| − vε

)(√
|I ′| + c

)

(√
|I ′| + vε

)(√
|I ′| − c

)



 (21)

(cf. Eq. (8)), where vε is found by setting v̇ = u̇ and u = I − I ′ in Eq. (9), giving the quadratic
equation v2 − abv + I ′(1 − a) + aI = 0. Choosing the appropriate root, we find

vε =
ab −

√
a2b2 − 4(I ′(1 − a) + aI))

2
. (22)

During the slow dynamics, solutions remain near the left branch of the nullcline vlb = −
√

u − I,
substitution of which in the slow equation yields u̇ = −a(b

√
u − I +u). Integrating this ODE gives

the estimate

Tb2(I
′) = −

1
a

∫ I

u0

du

b
√

u − I + u
=

1
a

[
2b

K
atan

(
b − 2vlb

K

)

− ln(u − bvlb)

]I

u0

, (23)

where K =
√

4I − b2.

In summary, the ISI in the below-threshold regime is given by

Tb(I
′) = Tb1(I

′) + Tb2(I
′) + Tth(0). (24)
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Figure 6: Instantaneous Firing rate curves for the RQIF model with c = 0, b = 1, I = 5 > ISN

and reset v = 0, u = u0. Left: Analytical estimates of firing rates for a = 0.05 in above-, near- and
below-threshold regions (black, red and green respectively); vertical blue lines at I ′ = ±ε separate
the regions and curves are continued (dashed) outside each region. Middle: Analytical estimates
with a = 0.2, 0.1, 0.05, 0.01 (top to bottom). Right: Firing rates derived from numerical simulation
of Eq. (9) with a = 0.2, 0.1, 0.05, 0.01 (top to bottom).

Firing rate curves Φ(I ′) defined by Eqs. (15), (17-18) and (21-24) are illustrated in Fig. 6 for c = 0
and four values of a, in comparison with the results of direct simulations. Note the close agreement,
even for a = 0.2, and the growth of the near-threshold regime with a (Eq. (18)). While similar
to that of the QIF above threshold (I ′ > ε, cf. Fig. 1), the curvature of Φ(I ′) changes sign near
threshold, and firing rates remain finite below threshold (I ′ < −ε). Here the slow dynamics of the
recovery variable dominates the ISI via the component Tb2(I ′) in Tb(I ′), producing firing rates that
gradually decrease with I ′. This provides a deterministic mechanism for subthreshold firing, in
contrast to stochastic input currents in the LIF and QIF models (Wan and Tuckwell, 1982; Amit
and Tsodyks, 1991). Furthermore, as c increases the above-threshold ISI decreases while the below-
threshold ISI increases, producing a sharp drop in instantaneous firing rates from above (I ′ > −c2)
to below threshold (I ′ < −c2), cf. Fig. 9, case FS2, below. This change in firing rates is responsible
for initial or sustained bursts when d > 0, see §§3.3 and 4.1 and Fig. 11 below for explanation.

3.2.2 Case (b): I < ISN

For I < ISN the two fixed points exist, but if solutions are reset with c = 0 and u0 < I sufficiently
far below the v̇ = 0 nullcline, the initial condition lies below the stable manifold W s(vth) of the
saddle point (cf. Fig. 4). Consequently it cannot be captured by the second fixed point vrest, even
if vrest is stable, and repetitive firing occurs much as in the above-threshold case and the ISI is
approximated by Eq. (15).

When vrest is a stable sink and the left hand branch of W s(vth) lies below the v̇ = 0 nullcline
(e.g. Fig. 4(f)), initial conditions above this nullcline are attracted rapidly to its left branch and
thereafter converge slowly to vrest. The system is excitable, but no periodic firing occurs. However,
this is only one aspect of the rich dynamics implicit in the codimension two, AH and homoclinic
bifurcations analyzed in §§3.1 and the Appendix. In Fig. 7 we show firing rate curves corresponding
to the analogous panels (a-f) of Fig. 4. As already noted, the location of the reset point relative to
W s(vth) is a key factor in determining the fate of solutions and hence firing rates when repetitive
spiking occurs, but the unstable limit cycle and homoclinic loop, when they exist, bound W s(vrest),
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Figure 7: Firing rate curves (solid black) for parameter values corresponding to the
phase planes of Fig. 4 with I < ISN : a = 0.1, c = 0, b = 1 and I =
0.059, 0.03, 0.02438, 0.024377, 0.024376, 0.02435 (a-f). Firing rates (red) and amplitudes (blue)
of subthreshold oscillations are enlarged in insets. See text for details.

leading to different behaviors as I and b range over the parameter space of Fig. 3.
We start with (b, I) in the region of Fig. 3 below ISN and above IAH . Here vrest is a source

whose unstable manifold contains the left hand branch of W s(vth) and all initial conditions except
those in W s(vth) (a set of measure zero) escape to vpeak: Fig. 4(a). Solutions starting outside the
“tongue” bounded by the unstable manifold W u(vth) behave much as in case (a), escaping directly
for u0 below W u(vth) (as for Eq. (15)), and for u0 above W u(vth), traveling leftward, crossing the
left branch of the v̇ = 0 nullcline, turning and then escaping. Solutions starting inside the tongue
sufficiently close to W u(vth) behave similarly, but when the source is a focus, solutions starting
near it can exhibit prolonged growing subthreshold oscillations followed by slow passage near vth

prior to escape. Firing rates for I ′ above and below threshold are therefore similar to those in
case (a), but as I ′ decreases and reset points move upward, Φ(I ′) drops rapidly toward zero before
recovering as u0 enters and leaves a neighborhood of vrest: Fig. 7(a).

Below IAH vrest is a sink, which is surrounded by an unstable limit cycle that tends to a
homoclinic loop as (b, I) approaches Ihom: Figs. 4(b,c). The cycle bounds the sink’s domain of
attraction W s(vrest), so that solutions started inside it exhibit decaying subthreshold oscillations
as they converge on vrest. Solutions reset outside the cycle continue to behave like those for (b, I)
between ISN and IAH and in case (a), but for I ′ such that u0 lies in W s(vrest) the firing rate is
zero: Fig. 7(b). On this and subsequent panels we also indicate the frequency of the subthreshold
oscillations in red, enlarged in the left inset along with their amplitudes in the right inset; frequency
and amplitudes are computed by averaging over first three cycles after reset.
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As (b, I) approaches Ihom the limit cycle grows, thereby enlarging the interval in I ′ for which
Φ(I ′) = 0, and on Ihom the decaying oscillations start with near zero frequency when reset near the
homoclinic loop (W u(vth)∩W s(vth)), and approach the frequency of the system linearized at vrest

as time proceeds, producing the firing rate and amplitude curves of Fig. 7(c).
For (b, I) below Ihom W u(vth) and W s(vth) separate and W s(vth) now bounds W s(vrest), which

resembles a teardrop hanging by a thread along the right branch of the v̇ = 0 nullcline, to which
both branches of W s(vth) asymptote: Figs. 4(d,e). As I decreases the teardrop grows and finally
“breaks” as the left hand branch of W s(vth) passes outside the parabolic nullcline and the domain
of attraction of vrest grows to include all initial conditions above v̇ = 0, as in Fig. 4(f). The interval
over which Φ(I ′) = 0 increases and the frequency of the decaying subthreshold oscillations that
exist in this region settles on that of the system linearized at vrest: see Figs. 7(d), (e) and (f).

For larger values of a, such as that of Fig. 4, the region inside W s(vth) grows, resulting in larger
ranges in which Φ(I ′) = 0.

For 0 < c < vth we expect instantaneous firing rate curves to have similar features as for c = 0,
with the interval in which Φ(I ′) = 0 determined by the intersection of the line v0 = c with W s(vrest).
For c > vth the curve in the above threshold regime is replaced by the second expression of Eq. (15)
up to intersection with the stable manifold W s(vth), at which Φ(I ′) = 0. The near- and below-
threshold regimes are similar to Fig. 7: for Ihom < I < ISN , Φ(I ′) recovers rapidly from dropping
to zero exhibiting below threshold firing rate (as in Fig. 7(a)). For I < Ihom, Φ(I ′) can have a
range of Φ(I ′) = 0 determined by two intersections of the line v0 = c with W s(vth) (Figs. 7(d,e))
and an unbounded range in which Φ(I ′) = 0 when there is only one intersection (Fig. 7(f)).

3.3 Asymptotic firing rates for the RQIF with a � 1

We now allow the recovery variable u(t) to evolve, and predict asymptotic firing rates Φ(I) by
using the ISIs Ta, Tth and Tb estimated in §3.2.1 along with averaging theory (Sanders et al., 2007),
(Guckenheimer and Holmes, 1983, §4.1) to determine the asymptotic dynamics of u(t) as t → ∞.
Stable fixed points of the averaged system provide self-consistent estimates of reset conditions that
can replace u0 in the formulae of §3.2. We start with c = d = 0 before generalizing to d 6= 0 and
vpeak > c > 0.

3.3.1 Case (a): I > ISN

Rewriting Eq. (9) as a regular perturbation problem

ẋ =

(
v̇
u̇

)

=

(
v2 + I − u

0

)

+ a

(
0

bv − u

)
def
= f(x) + ag(x); a � 1, (25)

and following (Sanders et al., 2007, §1.6), we use the exact solution z(ζ, t) for a = 0, where ζ
denotes the initial conditions, to put (25) into standard form for averaging with uniformly small
right hand side:

ζ̇ = a [Dζz(ζ, t)]−1 g(ζ, t). (26)

For I > ISN the unperturbed solution is given by

z(ζ, t) =

(
ζ1 +

√
I − ζ2 tan

(
t
√

I − ζ2

)

ζ2

)

⇒ Dζz(ζ, t) =

[
1 p(ζ2, t)
0 1

]

, (27)
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where p(ζ2, t) = ∂z1(ζ, t)/∂ζ2 will not be needed in evaluating the second row of Eq. (26).

Case of c = 0: Setting ζ1 = v(0) = 0, the second row of Eq. (26) becomes

ζ̇2 = a[b
√

I − ζ2 tan (t
√

I − ζ2) − ζ2] (28)

The relevant solution of Eq. (25) with d = 0 and (v(t+peak) = c = 0, u(t+peak) = ζ2) is periodic with
period

Ta(I − ζ2) =
1

√
I − ζ2

atan

(
vpeak√
I − ζ2

)

(29)

(cf. case I ′ ≥ 0 of Eq. (15)), so we may compute the averaged ODE corresponding to Eq. (28):

˙̄ζ2 =
a

Ta

∫ Ta

0
[b
√

I − ζ2 tan (t
√

I − ζ2) − ζ2] dt
def
= a[h̄2(ζ̄2) − ζ̄2], (30)

where h̄2(ζ̄2) =
b
√

I − ζ̄2 ln
[
1 + v2

peak/(I − ζ̄2)
]

2 atan
[
vpeak/

√
I − ζ̄2

] . (31)

We now appeal to the averaging theorem to assert that solutions of Eq. (28) and of the averaged
ODE (30) remain within O(a) on a timescale of O(1/a). In particular, when Eq. (30) has a stable
hyperbolic fixed point ζ̄fp

2 , orbits of Eq. (26), and hence also of Eq. (25), will approach a periodic
orbit of period Ta(I − ζ̄fp

2 ) that lies within O(a) of u = ζ̄fp
2 . The asymptotic firing rate is therefore

given by Φ(I) = 1/Ta(I − ζ̄fp
2 ), leading to the curve labeled d = 0 in the left panel of Fig. 8.

To prove that there is a unique stable hyperbolic fixed point, it suffices to show that the range
of h̄2(ζ̄2) is [0, k] for some k > 0 and that its derivative is negative, implying that the equation
h̄2(ζ̄2) = ζ̄2 has a unique solution ζ̄fp

2 at which h̄′
2(ζ̄

fp
2 ) − 1 < 0. This is done in the Appendix.

For d 6= 0 the slow evolution of ζ̄2 is followed by a discrete jump. To compute the effective value
of ζ̄2 it seems simplest to approximate the solution of the averaged equation (30) at t = Ta by a
single step of Euler’s method, which, like Eq. (30), is accurate to O(a), and augment by d:

ζ̄2(T
+
a ) = ζ̄2(0) + aq(ζ̄2(0)) + d, where q(ζ̄2(0)) = [h̄2(ζ̄2(0)) − ζ̄2(0)]Ta(I − ζ̄2(0)). (32)

The fixed point, which provides an estimate of the reset point u(t−peak)+ d, satisfies q(ζ̄fp
2 ) = −d/a.

Values of the function q(ζ̄2) with domain (−∞, I] limit on vpeak as ζ̄2 → −∞ and on −∞ as
ζ̄2 → I. Fixed points therefore exist for d > −avpeak; moreover, in the Appendix they are proved
to be unique for all d ≥ 0 and for d < 0 with |d| sufficiently small. Numerical evaluations suggest
uniqueness for all d > −avpeak: see the left panel of Fig. 16 below.

Examples of firing rate curves for d 6= 0 are given in the left panel of Fig. 8, in comparison
with those for the QIF without a refractory period. Note that the curves also depend on a, unlike
in the case d = 0. For d < 0, the RQIF firing rate curves intersect the QIF curve or lie below it
for all I > ISN . For d < −avpeak there is no fixed point, and I − ζ̄2 increases and blows up along
the above-threshold instantaneous firing rate curve. Asymptotic firing rates are not defined for any
choice of I in this regime.

For d ≥ 0, where the fixed point always exists, increasing d brings ζ̄fp
2 closer to I from below

and causes the firing rate curve to become almost linear: a phenomenon observed in experiments
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Figure 8: Estimates of asymptotic firing rates for the RQIF model with I > ISN and a = 0.05, b = 1
for c = 0 (left) and c = 1 (right). Firing rates of the QIF model without refractory period (dashed
red) lie above those of the RQIF model with d = 0 (gray) and d = 0.1, 0.3, 0.5, 0.8 (solid black); for
negative d = −0.05,−0.1 (solid blue) they can exceed those of QIF. As I decreases, near-threshold
firing rates (magenta) for c = 0 and d > 0 transition continuously to below-threshold firing rates
while for c = 1 and d > 0 they transition to bursting, producing a discontinuous jump to a curve
that describes bursting rates. See text for further information.

with adaptation (McCormick et al., 1985) and explained using linear approximation of the aver-
aged equations in (Ermentrout, 1998). As ζ̄fp

2 approaches I, it eventually enters the near-threshold
region; where the flight time changes from Ta to Tth, the asymptotic periodic orbit departs for
vpeak from the near-threshold region, and the curves in Fig. 8 change from black to magenta. The
system therefore settles on periodic firing with resets at v = 0 and u = u(t+peak), which may be esti-
mated by computing the first iterate, ζ̄2(Tth), of the map (32), initiated at the exit point from the
near-threshold regime: ζ̄2(0) = I − ε. Firing rates are then computed from 1/Tth(I − ζ̄2(Tth)) when
ζ̄2(Tth) lies in the near-threshold region and 1/Tb(I − ζ̄2(Tth)) when it lies in the below-threshold
region.

Case of c > 0: For v(0) = c > 0, the first component of the unperturbed solution of Eq. (25)
is

ζ1(t) =
√

I − ζ2 tan

[

t
√

I − ζ2 + atan

(
c

√
I − ζ2

)]

, (33)

which results in an ODE similar to Eq. (28) with an extra term:

ζ̇2 = a

(

b
√

I − ζ2 tan

[

t
√

I − ζ2 + atan

(
c

√
I − ζ2

)]

− ζ2

)

. (34)

Replacing Ta(I − ζ2) in Eq. (29) by the appropriate expression from Eq. (15):

Ta(I − ζ2) =
1

√
I − ζ2

atan

[
(vpeak − c)

√
I − ζ2

cvpeak + I − ζ2

]

, (35)
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the averaged equation for ζ̄2 becomes

˙̄ζ2 = a[h̄2(ζ̄2)c>0 − ζ̄2], where h̄2(ζ̄2)c>0 = −
b

Ta
ln

(

cos

[

t

√
I − ζ̄2 + atan

(
c

√
I − ζ̄2

)]) ∣
∣
∣
∣

Ta

0

=
b
√

I − ζ̄2 ln

[
v2

peak+I−ζ̄2

c2+I−ζ̄2

]

2 atan

[
(vpeak−c)

√
I−ζ̄2

cvpeak+I−ζ̄2

] =
b
√

ζ̄2 − I ln

[
v2

peak+I−ζ̄2

c2+I−ζ̄2

]

2 atanh

[
(vpeak−c)

√
ζ̄2−I

cvpeak+I−ζ̄2

] . (36)

Note that, while both its numerator and denominator pass through 0 and become imaginary as ζ2

increases through I, h̄2(ζ̄2)c>0 is well-defined for all ζ̄2 ∈ (−∞, I + c2). We give real expressions for
ζ̄2 < I and ζ̄2 > I in Eq. (36), both of which reduce to Eq. (30) for c = 0. Like (30), Eq. (36) also
has a unique stable hyperbolic fixed point, as shown in the Appendix.

For d 6= 0 the averaged flow can be approximated by a one-step Euler map, as in Eq. (32):

ζ̄2(T
+
a ) = ζ̄2(0) + a[h2(ζ̄2(0))c>0 − ζ̄2(0)]Ta = −d/a, (37)

resulting in an analogous equation for the fixed point ζ̄fp
2 ,

q(ζ̄fp
2 )c>0 = [h2(ζ̄

fp
2 )c>0 − ζ̄fp

2 ]Ta(I − ζ̄fp
2 ) = −d/a, (38)

as illustrated on the right hand panel of Fig. 16 in the Appendix. Specifically, values of the function
q(ζ̄2)c>0 with domain (−∞, I + c2] limit on vpeak − c as ζ̄2 → −∞ and on −∞ as ζ̄2 → I + c2 and
fixed points exist for d > −a(vpeak − c).

As in the case c = 0, Eq. (37) provides estimates of firing rates in the above-threshold regime.
As I decreases, periodic orbits corresponding to the fixed point of Eq. (38) approach the v̇ nullcline
and enter the near-threshold region. One iterate of the map (37), initialized at ζ̄2(0) = I + c2 − ε,
yields the approximate reset point ζ̄2(Tth). If ζ̄2(Tth) lies below the v̇ nullcline, the asymptotic firing
rate is 1/Tth(I − ζ̄2(Tth)); if it lies above, the orbit moves to the left-hand branch of the nullcline
and exhibits slow (below-threshold) evolution.

Transitions from the near-threshold to the below-threshold regime are signalled by discontinu-
ities of the magenta curves in Fig. 8 (right). The below-threshold orbit terminates at v(t−peak) = vpeak

and u(t−peak) = I − ε and resets to v(t+peak) = c and u(t+peak) = u(t−peak) + d. If u(t+peak) < I + c2,
i.e. d < c2 + ε, they start to the right of the v̇ = 0 nullcline, exhibiting fast flights to vpeak, and,
with each reset, a gradual climb towards the nullcline until u(t+peak) > I + c2 and below-threshold
dynamics are repeated. This produces a burst of above-threshold spikes followed by a refractory
period (cf. Fig. 11 in §4 below). Bursting rates (inverses of interburst times) are estimated from
1/Tb(I − ζ̄2(Tth)) and are depicted in Fig. 8 (right), as the lowest set of magenta curves; For these
low firing rates the curves are indistinguishable.

3.3.2 Case (b): I < ISN

For c = 0 and d > 0 the computations in 3.3.1 indicate that the relevant regimes for asymptotic
behavior are near- and below-threshold, cf. Fig. 8 (left). However, as described in §3.2.2, the
dynamics do not always produce periodic behavior. As I decreases for fixed a and b, the area
of W s(vrest) grows, the asymptotic orbit is eventually trapped, and typical asymptotic firing rate
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curves exhibit drops to zero firing rate (cf. Figs. 4 and 7). For examples and further discussion see
Figs. 12 and 13 and their description in §4 below. Also, for c > 0 or d < 0 the firing curve may
include an above-threshold segment; when the fixed point of the one-step map exists and lies in the
above-threshold region.

4 Modeling neural dynamics with the RQIF

Intracellular recordings reveal that cortical neurons can be classified into distinct functional types
depending on their spiking and bursting patterns (Connors and Gutnick, 1990; Gray and Mc-
Cormick, 1996). With sufficiently large tonic current injection, excitatory neurons exhibit Regular
Spiking (RS), Intrinsic Bursting (IB) and Chattering (CH); while inhibitory neurons can be classi-
fied as Fast Spiking (FS) and Low Threshold Spiking (LTS). In (Izhikevich, 2003) and (Izhikevich,
2006, Ch. 8) it was shown that, given suitable parameter choices, and possibly a more general
quadratic function, the RQIF model can reproduce many such patterns, as well as responses of res-
onator (RZ) neurons and thalamo-cortical neurons subject to hyperpolarized (negative) and brief
DC-current injection.

Here we classify each cell type by setting the current I and parameters a and b to give an
appropriate phase plane, and choosing reset parameters c and d that yield hybrid orbits, and hence
spiking patterns, characteristic of the cell’s function. We explain both the transient and asymptotic
dynamics in terms of the phase plane geometry of Fig. 4, and parameter selection is guided by the
bifurcation analyses of §3.1 and the instantaneous and asymptotic firing rate calculations of §§3.2-
3.3. We divide the material into two subsections corresponding to cases (a) and (b) of §§3.2.1-3.2.2
and §§3.3.1-3.3.2.

4.1 Case (a): I > ISN

Throughout this subsection we assume that I(0) = 0 and that I(t) jumps to a value Iin(t) > ISN

at some time t∗ > 0 (stepped direct current injection):

I(t) =

{
0, if t < t∗,

Iin, if t > t∗.
(39)

As long as I(t) ≡ 0 Eq. (9) has a stable sink at (u, v) = (0, 0) and a saddle at (b, b2), so that, if
sufficient time elapses before t∗, the state will settle near (0, 0), providing an initial condition at
t = t∗ for the system with the phase plane corresponding to I = Iin.

Besides displaying time series of the resulting voltage and the refractory variables along with
projections onto the phase plane, in Figs. 9-11 we also show firing rates 1/tpeak vs. I ′ = I−u(t+peak),

where tpeak is the time from post-spike reset (t+peak,i) to next reset (t−peak,i+1) derived from simula-
tions. These projections, along with the instantaneous firing rate curves from §§3.2-3.3, reveal how
firing rates evolve and relate the classification of neural responses to the classification of dynamics
in §§3.2-3.3.

Fast Spiking (FS) and Low Threshold Spiking (LTS): These responses are typical of
inhibitory cortical neurons with high firing rates. Spike frequency remains almost constant in FS,
but for LTS there is noticeable frequency adaptation as firing rates decrease toward an asymptote
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Figure 9: FS and LTS dynamics showing input current, voltage and recovery variable time series
(top, second and third rows), projections onto the instantaneous firing rate curve (fourth row), and
phase planes after application of Iin (bottom). FS1: Iin = 10, d = −0.1194, c = 0: fast spiking
with no adaptation and reset to v = 0. FS2: Iin = 3, d = −0.1324, c = 2: fast spiking with no
effective adaptation, reset point falls on first spike trajectory. LTS: Iin = 2, d = 0, c = 0: fast
spiking with adaptation. Parameter a = 0.05 throughout, b = 2 for FS1 and FS2, b = 1 for LTS.

that depends on Iin. Recalling §3.2.1, we see that this behavior corresponds to the above-threshold
regime in which firing rates depend sensitively on I ′ = Iin − u0 such that u slowly evolves from its
initial value u0 = 0, to the stable fixed point of the map (32) or (37), depending on the parameters
c and d.

No such evolution occurs in the left and center columns of Fig. 9: in FS1, with c = 0, d < 0 is
chosen to set the fixed point ζ̄fp

2 = u0 at the initial condition by solving the equation q(u0) = −d/a
for d. This choice compensates for the increase in u(t) as the orbit travels to vpeak, so that the
state is reset near v = u = 0 after each spike. In FS2, we fix c > 0 and choose d < 0 by solving
q(u0)c>0 = −d/a. In both cases firing rates remains constant at 1/Ta(I − u0), as depicted by a
single black dot in the fourth row of the left and center columns (we start at the fixed point of
the averaged equation). In contrast, for LTS (right) c = d = 0, the initial data produces tran-
sient dynamics that converge to the fixed point. Reset points climb the u-axis at v0 = 0 until the
change in u(t) during evolution to vpeak balances to zero, while the spike frequency slides down
the instantaneous firing rate curve to its asymptote 1/Ta(I − ζ̄fp

2 ). In all cases the averaged equa-
tion or one-step map has a stable fixed point and orbits remain in the above-threshold regime I ′ > ε.

Regular Spiking (RS): The most common response of excitatory cortical neurons to step
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Figure 10: RS dynamics; same format as Figs. 9. RS1: Iin = 3, d = 2: RS with a short initial burst.
RS2: Iin = 3, d = 1: RS with a longer initial burst due to decreased d. RS3: Iin = 11, d = 2: RS
with a long initial burst due to increased Iin. Parameters a = 0.05, b = 2, c = 0 throughout.

current injection is a brief volley of spikes with short ISIs followed by much slower (adapted)
periodic spiking. Such responses correspond to rapid transitions from above-threshold to the near-
or below-threshold regimes, which can be produced by setting c = 0 and d > 0 and choosing other
parameters to place the fixed point of the averaged equation or one-step map in the near-threshold
regime. The transient dynamics result in positive increments in u after each reset until the near-
threshold regime is reached, see §3.3.1. Subsequently, periodic spiking occurs with each ISI initiated
at the first iterate, ζ̄2(Tth), of the map (30) with initial condition ζ̄2(0) = I − ε. ISIs are computed
from Tth(I − ζ̄2(Tth)) when ζ̄2(Tth) < I + ε and from Tb(I − ζ̄2(Tth)) when ζ̄2(Tth) > I + ε, see
§3.2.1.

Some variants are shown in Fig. 10. Computation of asymptotic firing rates (cf. Fig. 8) again
guides choices of c, d and I that yield the different asymptotic behaviors. For larger values of d,
orbits settle to slow, below-threshold, spiking (left panel, RS1). For smaller d, reset occurs near
threshold (center, RS2), and for larger Iin more resets are required for the orbit to equilibrate in
the near-threshold region (right, RS3). The instantaneous firing rates (Fig. 10, fourth row) show
transitions from above- to near- and below-threshold regimes, the number of transient spikes, and
their instantaneous frequencies.

Note that, although the transition to slower periodic spiking is called adaptation in both FS and
RS, the mechanisms differ: in FS, the solution settles to above-threshold periodic spiking (Fig. 9),
while in RS it settles to periodic spiking in the near- or below-threshold regimes (Fig. 10). Periods
in RS are therefore much longer than in FS and the initial burst and subsequent periodic spiking
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Figure 11: Typical IB and CH responses; same format as Figs. 9-10. IB: d = 3, c = 1: intrinsic
bursting. CH1: d = 1, c = 2.3: chattering with short interburst intervals. CH2: d = 2, c = 4.3:
chattering with more spikes in each burst and longer interburst intervals. Parameters a = 0.05, b =
1, Iin = 11 throughout.

are clearly separated.

Intrinsic Bursting (IB) and Chattering (CH): For c > 0 post-spike resets lie to the
right of the minimum of the v̇ = 0 nullcline, closer to vpeak, and if d > 0 is sufficiently large, the
dynamics settles to periodic below-threshold resets, producing either periodic spiking or bursting,
as described in §3.3.1. In both cases trajectories starting above the v̇ = 0 nullcline exhibit long
refractory periods before passing below its minimum and reaching vpeak. If u(t+peak) > I + c2, each
spike is followed by reset below threshold, producing periodic spiking much as in RS (Fig. 11 left,
IB, cf. Fig. 10), while if u(t+peak) � I +c2, a burst of spikes occurs as resets climb towards the v̇ = 0
nullcline before resetting again below threshold. This corresponds to chattering (Fig. 11 center,
CH1 and right, CH2). Eqs. (32) and (38) provide estimates ζ̄2(Tth) of u(t+peak), and refractory
periods are approximated by the first two terms Tb1(I ′) + Tb2(I ′) of Eq. (24). Interburst intervals
and spike densities can be adjusted via c and d: increasing c produces longer interburst intervals and
shorter ISIs (cf. Eq. (15)), and decreasing d can lengthen bursts and eventually cause a transition
to above-threshold periodic spiking: see §3.3.1 and Fig. 8.

The examples in this section show that the approximations of instantaneous and asymptotic
firing rates developed in §§3.2-3.3 are remarkably accurate, and offer explicit guidelines for fitting
the RQIF model to particular neural responses, by predicting parameters I, a, b, c and d that yield
desired transient and asymptotic behaviors.
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Figure 12: Typical RZ responses showing input current, voltage and recovery variable time series
(top, second and third rows), and phase planes after application of Iin (bottom). RZ1: Iin =
0.012, d = 0: damped oscillations. RZ2: Iin = 0.01986, d = −0.256: single spike preceded
bu growing oscillations and followed by damped oscillations. RZ3: Iin = 0.01986, d = −0.18:
disordered train of oscillations and spikes. RZ4: Iin = 0.01986, d = 0: oscillations followed by slow
periodic spiking. Parameters a = 0.05, b = 1, c = 0 throughout. Gray shading denotes W s(vrest),
as in Fig. 4.

4.2 Case (b): I < ISN

In the previous section input currents Iin were set large enough that no fixed points exist for
t > t∗, and persistent spiking always occurs. For smaller Iin < ISN = b2/4 the fixed points survive,
allowing richer dynamics related to the bifurcation sequences of §§3.1-5. In Fig. 12 we show typical
examples as Iin is gradually increased. In the simplest case Iin � Ihom, vrest is a sink with a
large domain of attraction bounded below by W s(vth) (cf. Fig. 4(f)). When (u, v) = (0, 0) lies
in this domain and vrest is a stable focus, such orbits exhibit damped oscillations (Fig. 12, RZ1),
corresponding to resonator responses (Izhikevich, 2003, 2006).

Responses involving mixtures of oscillations and spikes can be obtained by increasing Iin past
the homoclinic bifurcation into the range Ihom < Iin < IAH , producing an unstable limit cycle
that bounds W s(vrest) (cf. Figs. 4(c,b)). Behavior is governed by the position of the reset point
determined by c and d. In the remaining panels of Fig. 12 we fix Iin along with a, b and c and
increase d through −0.256 (RZ2), −0.18 (RZ3) to 0 (RZ4), so that all three cases have identical
phase planes and differ only in reset points. In RZ2 the initial condition (u, v) = (0, 0) lies near the
limit cycle but outside of it, so that oscillations grow until a spike occurs, followed by reset within
the limit cycle and damped oscillations. In both RZ3 and RZ4 resets following the first spike occur
outside the limit cycle. This produces irregular spiking in RZ3, due to sensitive dependence as reset
points cross the lower branch of W s(vth), while for larger d in RZ4 reset occurs above W u(vth),
yielding slow periodic spiking typical of the below-threshold regime of §3.2.1.

We end this section by discussing responses to hyperpolarization and brief stimuli.
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Figure 13: Responses to hyperpolarized input; same format as Fig. 12. H1: Ia
in = −1.75, Ib

in =
0, d = 0: hyperpolarized TC response, initial burst terminated by damped oscillations. H2:
Ia
in = −1.75, Ib

in = 0.01986, d = −0.12: response combines fast spiking, subthreshold oscillations
and slow periodic spiking. Parameters a = 0.05, b = 1, c = 0 throughout. Gray shading denotes
W s(vrest), as in Fig. 4.

Post hyperpolarization rebound: Here the cell is subjected to a negative input current
Ia
in � ISN for sufficiently long that its state converges to (v(t∗), u(t∗)), near vrest, at which time

the current jumps to Ib
in ∈ [0, ISN ]:

Ihyp(t) =

{
Ia
in < 0, if t < t∗,

Ib
in ≥ 0, if t > t∗.

(40)

In this case, at t = t∗ the fixed points “jump” to new positions, and in particular for Ib
in = 0, vrest

jumps to (v, u) = (0, 0). The system state is therefore initialized in the above-threshold regime and,
for d ≥ 0, emits a burst of spikes with increasing ISIs until it reaches the near- or below-threshold
regime and is reset above the v̇ = 0 nullcline. If Ib

in < Ihom and W s(vrest) is sufficiently large, reset
occurs within that domain and the orbit converges to vrest: Fig. 13(H1). This pattern is typical of
thalamo-cortical neurons (TC). Increasing Ib

in above Ihom produces more complex behaviors simi-
lar to those of Fig. 12, so that the initial burst may be followed by oscillations and/or spikes. An
example appears in Fig. 13(H2).

Responses to brief Stimuli: We now return to the injection of positive direct currents that
create fixed points, but additionally insert one or more brief stimuli or impulses, represented as
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Figure 14: Responses to brief stimuli for Iin < Ihom; same format as Figs. 12-13. B1: Iin =
0.12, sin = 1, d = 0: a large stimulus produces a single spike. B2: Iin = 0.12, sin = 0.3, d = 0:
a smaller stimulus produces slow periodic spiking. B3: Iin = 0.11, s+

in = 0.3, s−in = −0.65, d = 0:
positive and negative stimuli each produce one spike. B4: Iin = 0.11, sin = 0.3, d = 2: slow periodic
spiking with d > 0. B5: Iin = 0.11, s+

in = 0.3, s−in = −0.3, d = 2: slow periodic spiking initiated by
positive impulse and inhibited by negative impulse. BS6: Iin = 0.11, s+

in = 0.3, s+
in = 0.3, d = 2:

Slow periodic spiking initiated and inhibited by a positive impulse. Parameters a = 0.5, b = 1, c = 0
throughout; note that a, b are as in Fig. 4. Gray shading denotes W s(vrest), as in Fig. 4.
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delta functions. In the case of a single impulse, the input current is

Ibs(t) =

{
0, if t < t∗,

Iin + sinδ(t − (t∗ + ts)), if t > t∗.
(41)

Combinations of impulses and appropriate tuning of reset parameters can produce a considerable
variety of responses, especially when the background input Iin . Ihom. In Fig. 14 we set Iin = 0.12
(B1, B2) and 0.11 (B3 - B6), d = 0 (B1 - B3) and d = 2 (B4 - B5), and apply positive and negative
impulses of varying magnitudes sin. As in §4.1, we analyse responses by considering the phase
plane for I = Iin with initial conditions at the origin. The delta function shifts the voltage from
v(ts) to v(ts) + sin, so that the solution is reset at ts as well as at tpeak, after each spike.

For Iin . Ihom, W s(vth) bounds a narrow trapping region W s(vrest) for the sink, as in Fig. 4(d).
Solutions reset above this region exhibit slow periodic spiking, those reset within it are attracted
to vrest. Sufficiently large impulses can cause jumps in v that take orbits across W s(vth) in either
direction. In Figs. 14(B1,B2) orbits escape from the trapping region due to positive (excitatory)
impulses, but the large impulse (B1) places v with less time to grow to vpeak, so that u(t+peak) + d
is lower than for the small impulse (B2). Thus, after reset in B1 the orbit lies within W s(vrest),
while in B2 it lies above it, with the counterintuitive effect that a small impulse can create repeated
spiking (B2), while a large one might evoke only a single spike (B1).

As Iin decreases W s(vrest) grows, but if both branches of W s(vth) still limit on the right branch
of the v̇ = 0 nullcline, as in Fig. 4(e), either positive or negative jumps in v can shift the orbit
outside W s(vrest). Thus, for d ≈ 0, impulses of either sign typically elicit single spikes: Fig. 14(B3),
while for larger d > 0 post spike resets lie above W s(vth), resulting in periodic spiking (B4).

Both the timing and amplitudes of impulses influence responses. Solutions that have settled
into periodic spiking circulate from reset in the near- or below-threshold region to the left of
W s(vth) (see Fig. 4(e) and §3.2.1). When an impulse arrives, the position of (v(ts), u(ts)) relative
to this manifold is clearly critical. If v(ts) > vrest, then positive impulses have little effect (merely
advancing the next spike), and a negative impulse is required to place the orbit in W s(vrest) and
terminate spiking (B5). In contrast, if v(ts) < vrest, a positive impulse is required to terminate
spiking (B6), and negative impulses merely delay the next spike. These examples also show that
different inputs and parameter sets can produce similar spike patterns (B2, B4 and B5, B6).

To further illustrate the importance of timing, in Fig. 15 we show the effects of three realizations
of a train of ten impulses with prespecified amplitudes drawn from a uniform distribution U(−1, 1),
injected at times produced by a Poisson process with rate λ = 0.025. The resulting responses
contain single spikes and bursts of differing lengths separated by damped oscillations, and one can
also identify spikes that are delayed or advanced by the impulses. In BR1 and BR2, Iin . Ihom, so
that the sensitive reset phenomena of Fig. 14 are in play. In BR3 a slight decrease in Iin has moved
the left hand branch of W s(vth) below the v̇ = 0 nullcline, as in Fig 4(f), so that each impulse
elicits at most a single spike (the second, third, fifth, sixth and eighth impulses are so small, or
arrive at such times, that the orbit does not leave W s(vrest)).

5 Conclusions

In this paper we review phase plane and bifurcation analyses of a quadratic integrate-and-fire
neural model with a recovery variable (RQIF, Eq. (9)) (Izhikevich, 2003; Touboul, 2008; Touboul
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Figure 15: Effects of ten prespecified impulses sin = 0.84, 0.25, 0.81, -0.24, -0.93, 0.35, 0.2, 0.25,
0.62, 0.47, drawn from a uniform distribution U(−1, 1) and applied at random times; same format
as Figs. 12-14. BR1 and BR2: Iin = 0.11: two realizations showing disordered spike trains. BR3:
Iin = 0.1: for Iin � Ihom: each impulse causes at most a single spike. Parameters a = 0.5, b =
1, c = 0, d = 2 throughout; note that a, b are as in Fig. 4, and gray shading denotes W s(vrest).

and Brette, 2009). Local saddle-node and Andronov-Hopf bifurcations meet a branch of global
homoclinic loop bifurcations at a codimension two Takens-Bogdanov point (Guckenheimer and
Holmes, 1983; Kuznetsov, 2004), as illustrated in Fig. 3, with the corresponding phase portraits
of Fig. 4. Our analysis differs from that of (Touboul, 2008; Touboul and Brette, 2009) in using a
different normal form, “prepared” by means of a parameter-dependent translation (see Appendix:
Eqs. (52-53)) that fixes the saddle point involved in the homoclinic loop at the origin. The blow-up
transformation (57) is chosen to unfold the region near the codimension two bifurcation, where
the adaptation parameter b and the time scale of the recovery variable a are comparable, and we
checked that the predicted homoclinic bifurcation curve (13) is consistent with numerical compu-
tations. Moreover, with the saddle fixed, other limits such as 0 < a � b = O(1) can be explored
using appropriate blowup transformations. The computation provides a corrected estimate for the
homoclinic bifurcation curve, which can be exploited in fitting the model to recordings of neural
data.

In the case that the recovery variable evolves slowly relative to voltage (a � 1), we use phase
plane dynamics to derive approximations of “instantaneous” firing rates in three adjacent input
current ranges. We do this both for cases in which the system has no fixed points, so that periodic
spiking always occurs (Fig. 6), and in which a hyperpolarized state exists, so that the system is
bistable (Fig. 7). We find that firing rates decrease smoothly as input currents fall below threshold,
unlike the one-dimensional LIF and QIF models which have zero firing rates in this range. As
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the reset voltage c moves towards vpeak, the firing rate formulae reveal sharper transitions from
high to low rates in the near-threshold regime, signalling the mechanism for bursting. For weaker
separation of time scales (a = O(b)), numerical computations show that instantaneous firing rates
in the below-threshold range increase significantly with a (Fig. 6).

We then use the instantaneous firing rate estimates in deriving one-dimensional averaged sys-
tems that capture asymptotic behavior for a � 1 and d = 0. Proofs of existence, uniqueness and
stability of fixed points in the averaged equations for both c = 0 and c > 0 allow us to compute
parameter regimes for which the solutions asymptote to periodic dynamics, and hence to obtain
asymptotic firing rate curves. For d 6= 0, we study the dynamics via an Euler map approximation
of the averaged ODE. Solving for the fixed point of this map yields a family of firing rate curves
(Fig. 8), and the combination of instantaneous and asymptotic firing rates provides a complete,
analytical characterization of the dynamical regimes of the RQIF.

To illustrate the use of our analysis, we revisit and extend the work of (Izhikevich, 2003, 2006).
We further provide examples of steady state and transient responses to impulses and constant cur-
rent steps, characteristic of different classes of cortical neurons, and we explain how the interaction
of phase plane dynamics and post-spike reset points produces specific spiking patterns. The choices
of bifurcation and reset parameters used to generate Figs. 9-15 were guided by our phase plane and
firing rate studies, and the presence or absence of fixed points is again a key determinant of behav-
ior. In the former case, the domain of attraction of the stable hyperpolarized state is bounded by
the stable manifold of the saddle point, and the location of this curve relative to the slow manifold
largely controls whether orbits remain below threshold, or produce a spike after each reset. In the
latter case asymptotic firing rates are used to place the RQIF in a desired regime, and by doing
this we demonstrate the precision of the averaging approximation. The instantaneous firing rates
help to elucidate the dynamics and transitions among different regimes (fourth row of Figs. 9-11).

We believe that these results will be useful in adapting RQIF models in large-scale brain sim-
ulations such as those of (Izhikevich and Edelman, 2008). In future work we propose to compute
firing rate curves for an RQIF model with a recovery variable and additive Gaussian noise.

Appendix: Computational details for §§3.1 and 3.3.1

Saddle-node and Andronov-Hopf bifurcations

Linearizing the RQIF model (9) at the fixed points results in the Jacobian matrix

Df

∣
∣
∣
∣
(u,v)=(u±

f ,v±
f )

=

[
2v±f −1
ab −a

]

, (42)

with eigenvalues and eigenvectors:

λ1,2 = −
a

2
+ v±f ±

1
2

√
4(v±f )2 + a2 − 4a(b − v±f ), (43)

v1,2 =
(
1, 2v±f − λ1,2

)T
. (44)

Elementary calculations and appeal to the bifurcation results in (Guckenheimer and Holmes, 1983,
§3.4) then yield the SN and AH bifurcation curves of Eqs. (11-12).

To compute the first Lyapunov (stability) coefficient for the AH bifurcation we set b = ka > a
(choosing k > 1), so that the bifurcation occurs at IAH = a2(2k− 1)/4 (cf. Eq. (12)), and the fixed
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point lies at (vrest, urest) = (a/2, ka2/2). To bring the system to normal form we first translate the
fixed point to the origin by setting v = a/2 + v̄ and u = ka2/2 + ū, obtaining ẇ = Lw + N(w):

[
˙̄v
˙̄u

]

=

[
a −1

ka2 −a

] [
v̄
ū

]

+

[
v̄2

0

]

. (45)

A similarity transformation y = T−1w then takes L into normal form:
[
ẏ1

ẏ2

]

=

[
0 −a

√
k − 1

a
√

k − 1 0

] [
y1

y2

]

+

[
y2
2/
√

k − 1
y2
2

]

, (46)

where the columns of T are the imaginary and real parts of the eigenvectors of L. Letting f =
y2
2/
√

k − 1, g = y2
2 and subindices denote partial derivatives with respect to y1 and y2, we use the

formula developed in (Guckenheimer and Holmes, 1983, §3.4, Eq. (3.4.11)) to calculate the first
Lyapunov coefficient:

c3 =
1
16

(f111 + f122 + g221 + g222) +
1

16a
√

k − 1
(f12(f12 + f22) − g12(g11 + g22) − f11g11 + f22g22).

(47)

For Eq. (46) the only nonzero terms are f22 = 2/
√

k − 1 and g22 = 2 and hence

c3 =
1

4a(k − 1)
> 0, (48)

implying that the AH bifurcation is subcritical and the limit cycle is unstable for all b > a.

Takens-Bogdanov normal form

Let a > 0 be fixed and b and I be variable parameters. When I = a2/4 and b = a the degenerate
fixed point lies at vf = a/2, uf = a2/2 and the Jacobian matrix (42) has a zero eigenvalue with
algebraic multiplicity two and only one eigenvector. Universal unfoldings of planar systems with
such linear parts were studied by Takens (Takens, 1974) and Bogdanov (Bogdanov, 1975), see
(Guckenheimer and Holmes, 1983, §7.3). To derive the normal form we first translate the fixed
point to the origin by letting v = v̄ + a/2, u = ū + a2/2 and we replace I and b by

Ĩ = I − a2/4 and b̃ = b − a, (49)

so that the SN and AH bifurcation curves become ĨSN = ab̃/2+b̃2/4 and ĨAH = ab̃/2, and Ĩ = b̃ = 0
at the codimension two bifurcation point1. The RQIF system in v̄ and ū variables can then be
rewritten as ẇ = Lw + N(w) + P (w; Ĩ , b̃):

[
˙̄v
˙̄u

]

=

[
a −1
a2 −a

] [
v̄
ū

]

+

[
v̄2

0

]

+

[
Ĩ

a(b̃v̄ + ab̃
2 )

]

, (50)

where w = (v̄, ū)T , L is the linear term, N(w) includes the nonlinear terms independent of param-
eters and P (w; Ĩ , b̃) includes the parameter-dependent terms, which are linear in v̄. A similarity

1The parameters Ĩ , b̃ correspond to I1 and b1 in (Touboul, 2008; Touboul and Brette, 2009).
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transformation T whose columns are the eigenvector (1, a)T and generalized eigenvector (1, a−1)T

of L brings the linear part into Jordan form:

[
ẏ1

ẏ2

]

=

[
0 1
0 0

] [
y1

y2

]

+

[
(1 − a)(y1 + y2)2

a(y1 + y2)2

]

+

[
(1 − a)Ĩ + ab̃(y1 + y2 + a

2 )
aĨ − ab̃(y1 + y2 + a

2 )

]

, (51)

where y = T−1w and T−1LT = J =

[
0 1
0 0

]

.

Before computing the normal form, we apply a further, parameter-dependent translation that
fixes the saddle point vth at the origin, the reason for which is explained at the end of this appendix.
The saddle point of Eq. (51) is located at (ys

1, y
s
2), where

ys
1 + ys

2 =
b̃ +

√
K

2
, ys

2 = −
b̃

2

(
b̃ + a +

√
K
)

, with K = b̃2 − 4(Ĩ − ab̃/2). (52)

Letting y1 = ȳ1 + ys
1, y2 = ȳ2 + ys

2 and dropping the bars, Eq. (51) becomes

[
ẏ1

ẏ2

]

=

[
0 1
0 0

] [
y1

y2

]

+

[
(1 − a)(y1 + y2)2

a(y1 + y2)2

]

+

[
(b̃ + (1 − a)

√
K)(y1 + y2)

a
√

K(y1 + y2)

]

. (53)

In the Bogdanov normal form a further quadratic transformation eliminates scalar multiples of the
four vectorfields

[
y2
2

0

]

,

[
0
y2
2

]

,

[
y1y2

0

]

and

[
y2
1

−2y1y2

]

(54)

(Guckenheimer and Holmes, 1983, §3.3), so that the first component of the nonlinear term in (53)
can be nullified and the second retains only y2

1 and y1y2 terms:

[
ẏ1

ẏ2

]

=

[
0 1
0 0

] [
y1

y2

]

+

[
0

ay2
1 + 2y1y2

]

+

[
(b̃ + (1 − a)

√
K)(y1 + y2)

a
√

K(y1 + y2)

]

+ O(|yj |
3). (55)

Blowing up, Melnikov’s method and homoclinic bifurcation

To prove that a homoclinic bifurcation occurs, we must show that a homoclinic orbit for a “blown-
up” degenerate system at Ĩ = b̃ = 0 persists as one leaves this point on a specific path in the
parameter space. From the analysis of the simpler unfoldings in (Guckenheimer and Holmes, 1983,
§7.3) and (Kuznetsov, 2004, §8.4), we expect this to occur on a curve Ĩ = Ĩhom = ab̃/2 + O(b̃2). It
is convenient to introduce a further translation Ĩ = Ī + ab̃/2, so that the parameter K (Eq. (52))
and expected homoclinic bifurcation curve become

K = b̃2 − 4Ī , Īhom = νb̃2 + O(b̃3), (56)

where ν is the coefficient of b̃2 that we seek. We can then adopt the same blow-up scaling of state
variables, parameters, and time as used in (Guckenheimer and Holmes, 1983, §7.3):

y1 = ε2x1, y2 = ε3x2, b̃ = ε2, Ī = ε4ν, t 7→ εt, (57)
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under which d/dt becomes εd/dt,
√

K = ε2
√

1 − 4ν, and Eq. (55) becomes

ẋ1 = x2 + ε[(1 + (1 − a)η]x1 + O(ε2),

ẋ2 = (η + x1)x1 + ε(aη + 2x1)x2 + O(ε2), (58)

where η =
√

1 − 4ν.

For ε = 0, Eq. (58) is Hamiltonian with

H0 = −
x2

2

2
+ a(

ηx2
1

2
+

x3
1

3
) (59)

and has a homoclinic orbit that can be written explicitly as

x0
1(t) = −3/2η

(

sech2

(√
aηt

2

))
def
= −3/2ηS2, (60)

x0
2(t) = 3/2

√
aη3/2 tanh

(√
aηt

2

)

sech2

(√
aηt

2

)
def
= 3/2

√
aη3/2TS2. (61)

To determine the fate of this homoclinic orbit for ε > 0 it suffices to compute the first order
Melnikov function M1 as described in (Melnikov, 1963) and (Guckenheimer and Holmes, 1983,
§4.5). Writing Eq. (58) in the form

ẋ = f(x) + εg(x) + O(ε2), (62)

M1 is given by the following integral around the unperturbed orbit:

M1 =
∫ +∞

−∞
f(x0(t)) ∧ g(x0(t))dt,

and the distance between the perturbed unstable and stable manifolds to the saddle at the point
x0(0) is given by

xu(0) − xs(0) =
εM1

|f(x0(0))|
+ O(ε2). (63)

Using Eqs. (60-61), computation of M1 is straightforward:

M1 =
∫ +∞

−∞
x0

2(t)
2
[
2x0

1(t) + aη
]
− ax0

1(t)
2(η + x0

1(t)) [1 + (1 − a)η] dt = −
6
35

√
aη5/2(5η − 7). (64)

Eqs. (63) and (64) imply that xu(0)−xs(0) = 0 and the homoclinic loop is preserved on a parameter
set satisfying

5η − 7 = O(ε) ⇒ ν = −
6
25

+ O(ε). (65)

Letting ε → 0 and transforming back from Ī to Ĩ, we deduce that the homoclinic bifurcation curve
emerges from the codimension two point Ĩ = b̃ = 0 as

Ĩ = Ĩhom =
ab̃

2
+ νb̃2 + O(b̃3). (66)

Finally, transforming to the original parameters I and b and inserting the value of ν yields Eq. (13).
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We close by explaining why the transformation that fixes vth at (0, 0) was introduced (see
Eqs. (52-53) above). Direct application of the normal form transformation and blow-up scaling
of (57) to Eq. (51) produces a singular O(ε−1) term that drives the saddle to infinity as ε → 0,
invalidating the Melnikov perturbation calculations above. Although a different scaling removes
this problem, it leaves the O(ε) system analogous to (58) degenerate, necessitating a laborious
second order Melnikov calculation (Liu, 1990), for which the resulting prediction of the homoclinic
bifurcation curve is insufficiently accurate for reasonable values of Ĩ, b̃.

Proof that Eqs. (30) and (36) have unique stable fixed points

Although Eq. (30) is a special case of (36), the proof for the former is simpler and prepares the way
for the general case, so we treat it first. For fixed c = 0 and I, b and vpeak > 0, the function h̄2(ζ̄2)
limits on bvpeak/2 and 0 as ζ̄2 → −∞ and ζ̄2 → I. We claim that the derivative h̄′

2(ζ̄2) < 0 on
(−∞, I), which implies that there is a unique solution ζ̄fp

2 ∈ (0, I) to the equation h̄2(ζ̄2)− ζ̄2 = 0.
Moreover, this is a stable, hyperbolic fixed point, since h̄′

2(ζ̄
fp
2 ) − 1 < 0.

To prove the claim we compute

h̄′
2(ζ̄2) =

−bη

4vpeak(1 + η2) atan(η)

[(

1 + η2 +
η

atan(η)

)

ln
(
1 + η2

)
− 2η2

]

, (67)

where η = vpeak/
√

I − ζ̄2 ∈ (0,∞). The prefactor −bη/ . . . is strictly negative. We will show
that the quantity in square brackets is strictly positive for η ∈ (0,∞) (I ∈ (−∞, 0)). Since
η/atan(η) ≥ 1, it suffices to show that

ln(1 + η2) ≥
2η2

(2 + η2)
. (68)

At η = 0 both left and right hand sides of inequality (68) are zero, so if we can show that the values
of their derivatives are ordered in the same sense, i.e., that

2η

1 + η2
>

8η

(2 + η2)2
for η > 0, (69)

then our claim is true. But simplification shows that inequality (69) is equivalent to the claim that
η4 > 0, which clearly holds for all η > 0. This concludes the proof for Eq. (30), the case c = 0.

For c > 0, it is convenient to define the ratio κ = c/vpeak. We note that κ ∈ (0, 1), because
0 < c < vpeak, and that h̄2(ζ̄2)c>0 limits on the values bvpeak(1 + κ)/2 and 0 as ζ̄2 → −∞ and
ζ̄2 → I + c2. Since bvpeak(1 + κ)/2 > 0, to establish existence, uniqueness and stability of the
fixed point, it again suffices to prove that the derivative h̄′

2(ζ̄2)c>0 < 0. Differentiating the two
expressions of Eq. (36), we obtain

h̄′
2(ζ̄2)c>0 =

−b η

4vpeak(1 + η2)(1 + κ2η2) atan(T1(η))
×

[(

(1 + η2)(1 + κ2η2) + (1 − κη2)
(1 − κ)η

atan(T1(η))

)

ln(L1(η)) − 2 (1 − κ2) η2

]

for ζ̄2 < I (70)

=
−b ρ

4vpeak(ρ2 − 1)(κ2ρ2 − 1) atanh(T2(ρ))
×

[(

(κρ2 + 1)
(1 − κ)ρ

atanh(T2(ρ))
− (ρ2 − 1)(κ2ρ2 − 1)

)

ln(L2(ρ)) − 2 (1 − κ2) ρ2

]

for ζ̄2 > I, (71)
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where η = vpeak/
√

I − ζ̄2 ∈ (0,∞) as above, ρ = vpeak/
√

ζ̄2 − I ∈ (1/κ,∞), and

T1(η) =
(1 − κ) η

1 + κη2
≥ 0, L1(η) =

1 + η2

1 + κ2η2
≥ 1, T2(ρ) =

(1 − κ) ρ

κρ2 − 1
≥ 0, L2(ρ) =

ρ2 − 1
κ2ρ2 − 1

≥ 1.

(72)
As in Eq. (67), the prefactors of Eqs. (70-71) are both strictly negative, so it again suffices to

prove that the quantities in square brackets are strictly positive. For Eq. (70) this is complicated
by the change in sign of (1 − κη2). For η ∈ (0, 1/

√
κ] it is nonnegative, as are both expressions

multiplying the logarithm, and we may generalize the lower bound η/atan(η) ≥ 1, using the fact
that

atan(T1(η)) ≤ T1(η) ⇒ (1 + κη2) ≤
(1 − κ)η

atan(T1(η))
. (73)

Thus, the expression multiplying the logarithm in Eq. (70) can be bounded below by

(1 + η2)(1 + κ2η2) + (1 − κη2)(1 + κη2) = 2 + (1 + κ2)η2, (74)

and it suffices to show that

ln(L1(η)) = ln

(
1 + η2

1 + κ2η2

)

>
2(1 − κ2)η2

2 + (1 + κ2)η2
for η > 0. (75)

At η = 0 both left and right hand sides of inequality (75) are zero and, computing their derivatives
as for the case c = 0 we obtain the following sufficient condition:

2
(
1 − κ2

)
η

(1 + η2) (1 + κ2η2)
>

8
(
1 − κ2

)
η

(2 + (1 + κ2) η2)2
⇐⇒ (1 − κ2)2η4 > 0. (76)

which clearly holds for all η > 0 and κ ∈ [0, 1).
When (1 − κη2) < 0 we may bound 1/atan(T1(η)) from above using

1
atan(T1(η))

≤

√
1 + T1(η)2

T1(η)
⇒

(1 − κ)η
atan(T1(η))

≤
√

(1 + η2)(1 + κ2η2)
def
= A1. (77)

Employing this bound in the same manner as above we obtain the sufficient condition

ln(L1(η)) >
2 (1 − κ2) η2

X1
, where X1 = A1(A1 − (κη2 − 1)). (78)

We can verify that inequality (78) holds at η = 1/
√

κ and again take derivatives of its right and left
hand sides to show that they are appropriately ordered. Using the identity (2X1−ηX ′

1)/X2
1 = (κη2+

1)/A3
1 (discovered using Mathematica and verified analytically), we finally obtain the following

sufficient condition

2
(
1 − κ2

)
η

A2
1

>
2
(
1 − κ2

) (
1 + κη2

)
η

A3
1

⇐⇒ A2
1 > 1 + κη2 ⇐⇒ (1 − κ)2η2 > 0,

which clearly holds for all η > 0 and κ ∈ [0, 1). Further details of the derivation are available from
the first author.
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Figure 16: Fixed points of the single-step Euler map for the averaged equation with I = 5, b =
1, vpeak = 10 and a = 0.05. Gray curves show q(ζ̄2) for c = 0 (left) and q(ζ̄2)c>0 for c = 2 (right),
and their intersections with each dashed line, −d/a, for d = −0.2 (blue), d = 0 (gray) and d = 0.2
(black) denote the unique fixed point for the corresponding value of d.

We now turn to Eq. (71). It can be verified that the required inequality holds as ρ → 1/κ
and ρ → ∞. Since the first term multiplying the logarithm is positive definite and the second is
negative definite, we require a lower bound on the first. The analogue to (77) is

1
atanh(T2(ρ))

≥

√
1 − T2(ρ)2

T2(ρ)
⇒

(1 − κ)ρ
atanh(T2(ρ))

≥
√

(ρ2 − 1)(κ2ρ2 − 1)
def
= A2, (79)

and use of this in Eq. (71) results in the following inequality

ln(L2(ρ)) >
2 (1 − κ2) ρ2

X2
, where X2 = A2(κρ2 + 1 − A2). (80)

Using the identity (2X2 − ρX ′
2)/X2

2 = (1 − κρ2)/A3
2 (analogous to that used in the case above),

we find that the derivative of the left hand side of (80) is larger than that of its right hand side,
so that we expect inequality (80) to hold from the point at which its left hand side is greater or
equal to its right hand side. Unfortunately, this does not occur at the endpoint ρ = 1/κ: at this
point X2 = 0 and ln(L2(η)) = 2, so the left hand side, multiplied by X2, vanishes while the right
hand side is positive for κ ∈ (0, 1). We find numerically that for ρ ≥ ρc = 2/κ the inequality
holds for all κ ∈ (0, 1). Thus, in conjunction with the derivative argument, we conclude that for all
ρ > ρc = 2/κ the inequality holds. For ρ < (1/κ, 2/κ) we can verify numerically that the inequality
of Eq. (71) holds. This concludes the (computer-assisted) proof for the case c > 0. Also see the
d = 0 cases of Fig. 16 for numerical evidence of unique fixed points.
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The single-step Euler maps (32) and (37) and their fixed points

The fixed point ζ̄fp
2 of the map (32) for c = 0 is determined by:

q(ζ̄fp
2 ) =

(
h2(ζ̄

fp
2 ) − ζ̄fp

2

)
Ta(I − ζ̄fp

2 ) =
−d

a
, or (81)

h2(ζ̄
fp
2 ) − ζ̄fp

2 =
−d

aTa(I − ζ̄fp
2 )

. (82)

For d = 0 Eq. (82) is the fixed point equation of the averaged ODE (30), and the proof above implies
that its left-hand side decreases monotonically from ∞ to −I as ζ̄2 goes from −∞ to I, crossing
zero in the interval 0 < ζ̄2 < I. Since Ta increases monotonically from 0 to ∞ over this domain, for
d > 0 the right-hand side of Eq. (82) also increases monotonically from −∞ to 0, guaranteeing the
existence of a unique solution ζ̄fp

2 ∈ (0, I). Perturbative arguments imply that a unique fixed point
persists for d < 0 with |d| small, but since the right-hand side of (82) is monotonically decreasing
for d < 0, fixed points need no longer exist for larger |d|, and if they do, uniqueness can fail. In
fact for sufficiently large negative d < 0 no fixed point exists. Replacing h2(ζ̄

fp
2 ) with h2(ζ̄

fp
2 )c>0

in Eq. (82), similar monotonicity arguments can be applied to establish existence, uniqueness and
stability of the fixed point for c > 0.

For small aTa(I− ζ̄fp
2 ) the fixed point is stable since the map is the forward Euler approximation

to the ODE (30) which has a unique stable fixed point. To illustrate that unique fixed points
apparently exist over a range including relatively large negative d, in Fig. 16 we plot the left-
and right-hand sides of Eq. (81). Alas, a proof that the left-hand side of this equation decreases
monotonically continues to elude us.
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