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Chaining

We will show an example on how to bound the Rademacher complexity
for regression. The technique is called Dudley chaining.

Theorem 1.1

Let F = ` ◦ H for a loss ` bounded by 1.

R(F ◦ S) ≤ inf
α≥0

[
4α+

12√
m

∫ 1

α

√
N (F|S , ε, d2)dε

]

Proof idea: We look at a series of coverings with εj = 2−j and write the
Rademacher sum as a series of incremental updates.
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Chaining

Proof: Let V j be a minimal εj cover of F|S . Define V 0 = (0, ..., 0) a
cover at scale 1. For all f ∈ F we can define fj as the nearest neighbor
of f in V j (so ||(f(x1), ..., f(xm))− (fj(x1), ..., fj(xm))||2 ≤

√
mεj). We

can then write

f(x) = (f(x)− fN (x)) +

N∑
j=1

(fj(x)− fj−1(x)) (1)

From this we get

sup
f∈F

m∑
i=1

σif(xi) = sup
f∈F

m∑
i=1

σi(f(xi)− fN (xi)) +

m∑
i=1

N∑
j=1

σi(fj(xi)− fj−1(xi))

≤ sup
f∈F

m∑
i=1

σi(f(xi)− fN (xi)) + sup
f∈F

m∑
i=1

N∑
j=1

σi(fj(xi)− fj−1(xi))
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Chaining

sup
f∈F

m∑
i=1

σi(f(xi)− fN (xi)) + sup
f∈F

m∑
i=1

N∑
j=1

σi(fj(xi)− fj−1(xi))

C−S
≤ sup

f∈F
||σ||2 · ||f − fN ||2 + sup

f∈F

m∑
i=1

N∑
j=1

σi(fj(xi)− fj−1(xi))

=
√
m ·
√
mεj + sup

f∈F

m∑
i=1

N∑
j=1

σi(fj(xi)− fj−1(xi)) ≤ mεj+

N∑
j=1

sup
f∈F

m∑
i=1

σi(fj(xi)− fj−1(xi))

We now need to bound the Rademacher sums over differences.
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Chaining

Define W j = {fj − fj−1 : f ∈ F|S}. We have that |W j | ≤ |V j | · |V j−1|
≤ |V j |2 = N (F|S , εj , d2)2. We also have for all w ∈W j that
||w||2 = ||fj−fj−1||2 ≤ ||fj−f ||2+ ||f−fj−1||2 ≤

√
m(εj+εj−1) = 3

√
mεj

Combining everything and using the Massarat lemma we get

1

m
E

[
sup
f∈F

m∑
i=1

σif(xi)

]
≤ εj +

N∑
j=1

1

m
E

[
sup
f∈F

m∑
i=1

σi(fj(xi)− fj−1(xi))

]
≤

εN +

N∑
j=1

3
√
mεj
m

√
2 log (N (F|S , εj , d2)2) = εN

+

N∑
j=1

6εj√
m

√
log (N (F|S , εj , d2))
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Chaining

To turn the sum into an integral we note that εj = 2(εj − εj+1) so

N∑
j=1

6εj
m

√
log (N (F|S , εj , d2)) =

12√
m

N∑
j=1

(εj − εj+1)
√

log (N (F|S , εj , d2))

≤ 12√
m

∫ 1

εN+1

√
log (N (F|S , εj , d2))

If we now pick N = maxj{εj = 2−j ≥ 2α} we have εN ≤ 4α and
εN+1 ≥ α
If for example N (F|S , ε, d2) = O(m1/ε) we can get that

RD(F ,m) = O
(√

log(m)
m

)
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Definition

A very common and useful ML algorithm we will study is the Support
Vector Machine - SVM. It will be a running example and we will see
how we can analyse it from various perspectives.

The basic idea of SVM is a large margin linear predictor.

Assume a training set is linearly separable - i.e. there exists some w such
that ∀i : yi 〈w, xi〉 > 0. This means the ERM has zero loss, but this
zero loss is achieved by many vectors. SVM picks the one with the
largest margin.

Lemma 2.1

The distance between x and the hyperplane defined by w is |〈w,x〉|||w|| .
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Definition

Algorithm Hard-SVM

Input: (x1, y1), ..., (xm, ym) linearly separable.
Return: w = arg min ||w||2
Subject to: ∀i : yi 〈w, xi〉 ≥ 1

Lemma 2.2

If the data is linearly separable, the Hard-SVM returns the maximal
margin vector.

Proof -exercise.
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Definition

The demand that the data is linearly separable is usually not satisfied,
so to solve this we add slack variables.

Algorithm SVM

Input: (x1, y1), ..., (xm, ym), parameter λ
Return: w = arg minw,ξ

(
λ||w||2 + 1

m

∑m
i=1 ξi

)
Subject to: ∀i : yi 〈w, xi〉 ≥ 1− ξi and ξi ≥ 0.

There is another way to view the SVM objective -

Lemma 2.3

Define `hinge(w, (x, y)) = max{0, 1− y 〈w, x〉}. Then the SVM returns

arg min(λ||w||2 + LhingeS (w)).

This means that we replace the 0− 1 loss with the hinge loss, and add a
regularization that biases towards lower norm.
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Properties

Lemma 2.4

The hinge loss has the following properties:

`0−1(w, (x, y)) ≤ `hinge(w, (x, y)).

`hinge is convex.

`hinge(w, (x, y)) is ||x||-Lipschitz in w.

The first two claims make the hinge loss a convex surrogate loss, which
makes the optimization computationally tractable.

One can show that the hinge loss is the smallest function satisfying all
three requirements.
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Theorem 2.5 (Representation Theorem)

Let w̄ = arg min
w

(
λ||w||2 +

m∑
i=1

f(〈w, xi〉 , yi)
)

for some λ > 0, then

w̄ ∈ span(x1, ..., xm), i.e. is a linear combination of the inputs.

Proof.

Let w̄ be the minimizer, then w̄ = w⊥ + w‖ where w‖ ∈ span(x1, ..., xm)
and w⊥ ⊥ span(x1, ..., xm). We have ||w||2 = ||w⊥||2 + ||w‖||2. If by
contradiction ||w⊥|| > 0, then f(〈w̄, xi〉 , yi) = f(

〈
w‖, xi

〉
, yi) while

||w‖||2 < ||w̄||2 contradiction it being the minimum.
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Properties

Theorem 2.6

Let w̄ be the minimizer of the SVM objective, then w̄ =
∑
αiyixi where

αi ≥ 0, and αi > 0 iff xi is on the margin or has a non-zero slack.

These vectors with αi > 0 are the support vectors which give the
algorithm its name. The proof is based on the KKT optimality
conditions.
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Bounds on Linear classes

We will show how the Rademacher complexity can be used to prove
generalization bounds for SVM. We will start with a general linear
space:

Theorem 3.1

Define H2 = {x→ 〈x,w〉 : ||w||2 ≤ 1} and let S = (x1, ..., xm) be vectors
in that space. Then

R(H2 ◦ S) = R({(〈w, x1〉 , ..., 〈w, xm〉) : ||w||2 ≤ 1}) ≤ maxi ||xi||2√
m

Proof:

mR(H2 ◦ S) = Eσ

[
sup

w: ||w||≤1

m∑
i=1

σi 〈w, xi〉

]
= Eσ

[
sup

w: ||w||≤1

〈
w,

m∑
i=1

σixi

〉]
Using the Cauchy-Schwartz inequality and the norm bound on w we get
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Bounds on Linear classes

mR(H2 ◦ S) ≤ Eσ

[
||

m∑
i=1

σixi||2

]
= Eσ

(|| m∑
i=1

σixi||22

)1/2


1
≤

(
Eσ

[
||

m∑
i=1

σixi||22

])1/2

=

Eσ
∑
i,j

σiσj 〈xi, xj〉

1/2

2
=

(
m∑
i=1

||xi||2Eσ[σ2i ]

)1/2

≤
√
mmax

i
||xi||2

Where (1) is due to the Jensen inequality, and (2) is due to
independence.
Notice that the bound does not depend on the dimension!
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Hard-SVM

We will show a generalization bound for Hard-SVM, if the data is
linearly separable.

Theorem 3.2

Let D be a distribution on X × {±1} such that there exists some w∗ with
PD(y 〈w∗, x〉 ≥ 1) = 1 and ||x||2 ≤ R with probability 1. Let wS be the
output of the Hard-SVM, then with probability greater or equal to 1− δ
we have

PD(y 6= sign(〈wS , x〉) = L0−1
D (wS) ≤ 2R||w∗||√

m
+ (1 +R||w∗||)

√
2 ln(2/δ)

m
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Hard-SVM

Proof: As the hinge loss bounds the 0− 1 loss we note that
L0−1
D (wS) ≤ LhingeD (wS). Also note that LhingeS (wS) = 0.

Define φ(〈w, x〉 , y) = max{0, 1− y 〈w, x〉}. Note that φ is 1−Lipschitz on
our domain.

Define H2 = {w : ||w||2 ≤ ||w∗||2}, we know that for any sample wS ∈ H2

so it is enough to bound
R(F ◦ S) = {(φ(〈w, x1〉 , y1), ..., φ(〈w, xm〉 , ym)) : w ∈ H2}. From
theorem 3.1 and the concentration lemma we get that
R(F ◦ S) ≤ R||w∗||√

m
.

From the generalization theorem on Rademacher complexity, with
probability greater or equal to 1− δ for all w ∈ H2

LD(h)− LS(h) ≤ 2RD(F ,m) + c

√
2 ln(2/δ)

m , where c is the maximal loss

which in our case is 1 +R||w∗|| finishing the proof.
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Hard-SVM

There is one drawback to our proof - we do not know ||w∗||. We will now
show a data-dependent bound.

Theorem 3.3

Let D be a distribution on X × {±1} such that there exists some w∗ with
PD(y 〈w∗, x〉 ≥ 1) = 1 and ||x||2 ≤ R with probability 1. Let wS be the
output of the Hard-SVM, then with probability greater or equal to 1− δ
we have

PD(y 6= sign(〈wS , x〉) ≤
4R||wS ||√

m
+ (1 + 2R||wS ||)

√
2 ln(4||wS ||/δ)

m
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Hard-SVM

Proof - Define Hi = {w : ||w|| ≤ 2i} and δi = δ/2i. Note that∑∞
i=1 δi = δ. For each i we have (similar to previous theorem) that for

all h ∈ Hi with probability greater then 1− δi,

LD(w) ≤ LS(w) +
2R2i√
m

+ (1 +R2i)

√
2 ln(2/δi)

m

From the union bound, we get that with probability greater then 1− δ
this holds for all Hi. This means that for all w ∈ H we have for
i = dlog(||w||)e ≤ log(||w||) + 1

LD(w) ≤ LS(w) +
4R||w||√

m
+ (1 + 2R||w||)

√
2 ln(4||w||/δ)

m

Plugging w = wS , remembering LS(wS) = 0 finishes the proof.
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SVM

We notice that the last proof can be adjusted easily to work for ”soft”
SVM

Theorem 3.4

Let D be a distribution on X × {±1} such that ||x||2 ≤ R with probability
1. Let wS be the output of the SVM algorithm, then with probability
greater or equal to 1− δ we have

L0−1
D (wS) ≤ LhingeS (wS) +

4R||wS ||√
m

+ (1 + 2R||wS ||)
√

2 ln(4||wS ||/δ)
m
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