Introduction to Statistical Learning Theory

Lecture 7

Lecture 7

Chaining

We will show an example on how to bound the Rademacher complexity
for regression. The technique is called Dudley chaining.

Theorem 1.1

Let F =L oH for a loss £ bounded by 1.

’R,(fOS)SiI;f [404—1—/ VN (Fls, €,dz2)de
a>0

Proof idea: We look at a series of coverings with ¢; = 277 and write the
Rademacher sum as a series of incremental updates.

Lecture 7

Radamacher and r:
(o] Jelele]

Chaining

Proof: Let V7 be a minimal €; cover of F|s. Define V% = (0,...,0) a
cover at scale 1. For all f € F we can define f; as the nearest neighbor

of fin V7 (so [|(f(21), s f(xm)) = (fj(@1)s s fi(@m))l|2 < /mej). We

can then write

N
flx) = (f(x))+) (fil@) = fi-1(2)) (1)

Jj=1

From this we get

m m N
Supzazf ;) = Z i(f (@) = (@) +)Y ol filwi) = i
feria Fim1 =1 j—1

< supZaZ fN a:z + SUPZZUZ fg 1’@ fj—l(xi))

fe}—zl lel

Lecture 7

Chaining

supZal fN xz +Supzzaz f] xz fj—l(afi))

fe]:zl 11]1

< Sup||o'||2 ”f fNHQ'f‘?upZZUz fj xz fj—1($i))

i=1 j=1

= Vm - /me; + JS{upZZm fi(xs) = fi—1(zs)) < mej+

i=1 j=1

Zsupzaz fi(@i) = fi-1(z:))

1 feF 4

We now need to bound the Rademacher sums over-differences.

Lecture 7

Radamacher and regressic

Define W7 = {f; — fj_1: f € Fls}. We have that |W7| < |VJ|. |[Vi~}

<|VI? = N(Fls,€j,d2)?. We also have for all w € W7 that
lwll2 = [1f5 = fi=1llz < 1y = fll2+[1f = fi=1ll2 < Vmlej+ej1) = 3v/me;

Combining everything and using the Massarat lemma we get

supZazf x,] <€J+Z

fE]-—Z 1

supZU@ (fi(zi) = fi—1(z)) | <

fer ;4

3v/me;
EN + Z \/T;]\/ﬂog (N(.F‘S,ej,dg)z) = €N
j:l

\/log]:|S7€]7d2))

Lecture 7

Chaining

To turn the sum into an integral we note that €; = 2(¢; — €j41) so

N
6e 12
Z >3\ log (N (Fls, ¢j,da)) = T 2l = 1))\/log (N (Fls. ¢, d2))

j=1

12 [t

S -
\/m €N+1

If we now pick N = max;{e; = 277 > 2a} we have ey <4a and

EN+1 = (O
If for example N'(F|s, ¢, d2) = O(m!/€) we can get that

Rp(F,m) =0 < logrflm)>

Lecture 7

\/log (N (Fls,€j,d2))

O

Support -~ Machines
[lele}

Definition

A very common and useful ML algorithm we will study is the Support
Vector Machine - SVM. It will be a running example and we will see
how we can analyse it from various perspectives.

The basic idea of SVM is a large margin linear predictor.

Assume a training set is linearly separable - i.e. there exists some w such
that Vi : y; (w,z;) > 0. This means the ERM has zero loss, but this
zero loss is achieved by many vectors. SVM picks the one with the
largest margin.

[(w,z)|
[lwl]

The distance between x and the hyperplane defined by w is

Lecture 7

Support -~ Machines

(o] le}

Definition

Algorithm Hard-SVM

Input: (z1,91), .., (Tm, ym) linearly separable.
Return: w = argmin ||w]|?
Subject to: Vi: y; (w,x;) >1

Lemma 2.2

If the data is linearly separable, the Hard-SVM returns the mazximal
margin vector.

Proof -exercise.

Lecture 7

Definition

The demand that the data is linearly separable is usually not satisfied,
so to solve this we add slack variables.

Algorithm SVM

Input: (z1,91), ., (Tm, Ym), parameter A
Return: w = argmin, ¢ (A||w|> + = 37, &)
Subject to: Vi: y; (w,x;) > 1—& and & > 0.

There is another way to view the SV M objective -

Define £7n9¢(w, (z,y)) = maz{0,1 — y (w,z)}. Then the SVM returns
arg min(A|Jw||? + L™ (w)).

This means that we replace the 0 — 1 loss with the hinge loss, and add a
regularization that biases towards lower norm.

Lecture 7

Support -~ Machines

@00

Properties

The hinge loss has the following properties:
n 07N (w, (2,y)) < M9 (w, (,9)).

m /hinge s conver.

- ehmge(w’ (:r,y)) 28 H;[;H-Lipschitz mw.

The first two claims make the hinge loss a convex surrogate loss, which
makes the optimization computationally tractable.

One can show that the hinge loss is the smallest function satisfying all
three requirements.

Lecture 7

achines

Properties

Theorem 2.5 (Representation Theorem)

Let w = argmln <)\Hw\|2 + Z fw, z;), yz)> for some X\ > 0, then
=1
W € span(xy, ..., Tm,), i.€. is a linear combination of the inputs.

Let w be the minimizer, then w = w, + wy where w| € span(x1, ..., Tm)
and w, L span(zi,...,xmy). We have HwH2 = leHQ + |[wyl]?. If by
contradiction [|w || > 0, then f((w,z;),y:) = f({w),x:),y;) while
|lw)|]* < ||@]||* contradiction it being the minimum. O

Lecture 7

Support -~ Machines

ooe

Properties

Theorem 2.6

Let w be the minimizer of the SVM objective, then w =) ay;x; where
a; > 0, and o; > 0 iff x; is on the margin or has a non-zero slack.

These vectors with a; > 0 are the support vectors which give the
algorithm its name. The proof is based on the KKT optimality
conditions.

Lecture 7

awtion bounds for SVM

Bounds on Linear classes

We will show how the Rademacher complexity can be used to prove
generalization bounds for SVM. We will start with a general linear
space:

Theorem 3.1

Define Ha = {x — (x,w) : ||w||]2 < 1} and let S = (x1,...,2:m) be vectors
in that space. Then

max; HI‘ZHQ

R(Hy o S) = R{((w, 21) , .., (w, zm)) : [[wl2 <1}) < Jm

Proof:

mR(Hzo0S)=E, | sup Z o (w, ;)

w:||w]|<1 55

m
sup w, E g;%;
w: [|w|[<1 i=1

Using the Cauchy-Schwartz inequality and the norm bound on w we get

Lecture 7

Bounds on Linear classes

m
1> oiwill2

i=1

m 1/2
HZUz‘ﬂ?iH%D = | Bo |D_ 0io) (@i, z))
i=1 ij

mR(H 0 S) < B,

(Eg

m 1/2
<Z lei\IQEa[aﬂ) < Vimmax| |zl
=1

m 1/2
=L, <| Zm%!@)
=1

1/2

A=

[[v

Where (1) is due to the Jensen inequality, and (2) is due to
independence. [
Notice that the bound does not depend on the dimension!

Lecture 7

Ssupport Vector Machines

Hard-SVM

We will show a generalization bound for Hard-SVM, if the data is
linearly separable.

Theorem 3.2

Let D be a distribution on X x {1} such that there exists some w* with
Pp(y (w*,z) > 1) =1 and ||z||]2 < R with probability 1. Let wg be the
output of the Hard-SVM, then with probability greater or equal to 1 — §
we have

20l (1 4 i) 2R

Poly # sign((ws, z)) = L3 (us) < = i

Lecture 7

Hard-SVM

Proof: As the hinge loss bounds the 0 — 1 loss we note that
L%_l(ws) < L%mge(ws). Also note that Lgmge(wg) =0.

Define ¢((w, z) ,y) = max{0,1 —y (w, z)}. Note that ¢ is 1—Lipschitz on
our domain.

Define Ho = {w : ||w||]2 < ||w*||2}, we know that for any sample wg € Ho
so it is enough to bound

R(FO S) = {(¢(<w7$1> 7y1)7) ¢(<w7 xm> vym)) Twe HQ} From
theorem 3.1 and the concentration lemma we get that

R(FoS) < %

From the generalization theorem on Rademacher complexity, with
probability greater or equal to 1 — ¢ for all w € Ho

Lp(h) — Ls(h) < 2Rp(F,m) +c 2In(2/9)

m

which in our case is 1 + R||w*|| finishing the proof. O

Lecture 7

, where c is the maximal loss

zation bounds for SVM

Hard-SVM

There is one drawback to our proof - we do not know ||w*||. We will now
show a data-dependent bound.

Theorem 3.3

Let D be a distribution on X x {1} such that there exists some w* with
Pp(y (w*,z) > 1) =1 and ||z||]2 < R with probability 1. Let wg be the
output of the Hard-SVM, then with probability greater or equal to 1 — §
we have

Poly # sign((ws, o)) < 2SI | (1 4 opjjwg|))y/ 22 wsl/9)

Vm m

Lecture 7

Generalization bounds for SVM

[e]ele]]
Hard-SVM

Proof - Define H; = {w : ||w|| <2} and §; = /2. Note that

Y2, 8; = 4. For each i we have (similar to previous theorem) that for
all h € H; with probability greater then 1 — §;,

Lp(w) < Lg(w) + 21%\/% + (14 R2Y) 21n<m2/52)

From the union bound, we get that with probability greater then 1 — §
this holds for all ;. This means that for all w € H we have for
i = [log(||wl)] < log(||w]]) + 1

Lo(w) < Law) + 81 (1 + oy 22

Plugging w = wg, remembering Lg(wg) = 0 finishes the proof. O

Lecture 7

support Vector Machines

We notice that the last proof can be adjusted easily to work for ”soft”
SVM

Theorem 3.4

Let D be a distribution on X x {£1} such that ||z||2 < R with probability
1. Let wg be the output of the SVM algorithm, then with probability
greater or equal to 1 — 9§ we have

AR]Jws| 2 n(d][ws]1/9)
e (L 2Rlslhy =

LY H(ws) < LE™(wg) +

Lecture 7

	Radamacher and regression
	Chaining

	Support Vector Machines
	Definition
	Properties

	Generalization bounds for SVM
	Bounds on Linear classes
	Hard-SVM
	SVM

