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Covering number

So far we characterised learning for binary classification. Next we will
show a similar result for regression.

The loss functions are continuous but not in general bounded. To
overcome this we will assume that the output is bounded in some [0, B].

The main difference from the binary classification proof - H|C is not
finite even for finite C.

We will need to measure size in a different manor.
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Covering number

Definition (Covering number)

Let (A, d) be a metric space. A set C is an ε-cover of A if every point of
x ∈ A there is a point y ∈ C such that d(x, y) < ε. The covering number
N (ε, A, d) is the size of the smallest ε-cover (or ∞).

N (ε, A, d) = min{|C| s.t. C is an ε− cover} (1)

We will use d2(x, y) =

√
1
d

d∑
i=1

(xi − yi)2, d1(x, y) = 1
d

d∑
i=1
|xi − yi| and

d∞(x, y) = maxi∈[d] |xi − yi|.

We note that d1(x, y) ≤ d2(x, y) ≤ d∞(xy) and therefore
N (ε, A, d1) ≤ N (ε, A, d2) ≤ N (ε, A, d∞).
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Covering number

Examples:

The hypercube In = [0, 1]n with d∞: The volume of In is 1, while the
volume of the d∞ ball of radius ε (hypercubes) is εn. Using a regular
grid we can cover using b1ε + 1cn, and

(
1
ε

)n
is a lower bound. This means

that the N (ε, In, d∞) = Θ
[(

1
ε

)n]
.

The hypercube In = [0, 1]n with d2: The volume of In is 1, while the
volume of the d2 ball of radius ε is Vn(ε) = Cn · εn.

A ⊂ {±1}n with d∞: If ε > 2 then N (ε, {±1}n, d∞) = 1. If ε ≤ 2 then
N (ε, {±1}n, d∞) = |A|
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Covering number

Definition (Uniform covering number)

Let H be a hypothesis space of real functions. For any ε > 0, and m the
dp unifrom covering number Np(ε,H,m) is defined as

Np(ε,H,m) = max
C:|C|=m

N (ε,H|C , dp) (2)

For C = {x1, ..., xm} we have HC ⊂ Rm. Np(ε,H,m) is the maximal
”size” of H|C for finite C. This is a continues version of the growth
function.

For ε < 2 and binary functions, N∞(ε,H,m) = ΠH(m).
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Uniform convergence bound

We define for convenience F = ` ◦ H a set of functions from X × Y to R.
F = {`h(x, y) = `(h(x), y) : for h ∈ H}

Theorem

For H space of real functions, and loss ` bounded in [0, B] for any
distribution D and ε > 0 we have

PS∼Dm

(
sup
h
|LS(h)− LD(h)| ≥ ε

)
≤ 4N1(ε/8,F , 2m) exp

(
− mε2

32B2

)
(3)

Proof sketch: The idea is similar to binary classification. First
symmetrization - replace LD with LS̃

Second - Fix some sample (S1, S2) and use random permutations σ ∈ Γm.

Last step is discretization: Let G be an ε/8 cover of F|(S1,S2)
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Uniform convergence bound

Proof cont: If for some `h = ` ◦ h ∈ F we have

|LS1(h)− LS2(h)| =

∣∣∣∣∣ 1

m

m∑
i=1

`h(xi, yi)−
1

m

2m∑
i=m+1

`h(xi, yi)

∣∣∣∣∣ ≥ ε

2
(4)

then for some `g ∈ G we have∣∣∣∣∣ 1

m

m∑
i=1

`g(xi, yi)−
1

m

2m∑
i=m+1

`g(xi, yi)

∣∣∣∣∣ ≥ ε

4
(5)

from the triangle inequality.

We can now use the Hoeffding inequality on the finite set G.
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Uniform convergence bound

Lemma

If the loss function ` is Lipschitz in the prediction with constant L > 0
then N1(ε,F ,m) ≤ N1(ε/L,H,m)

Proof:

1

m

m∑
i=1

|`h(xi, yi)− `g(xi, yi)| =
1

m

m∑
i=1

|`(h(xi), yi)− `(g(xi), yi)|

≤ L

m

m∑
i=1

|h(xi)− g(xi)| = L · d1(h|C , g|C)

So if we have an ε/L cover of H|C we have a ε cover of F|C .
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Definitions

We have seen we can generalize the growth function
∏
H(m) to uniform

covering number N1(ε,H,m).

We now will define continuous versions of the VC dimension,
pseudo-dimension and fat-shattering dimension.

For binary classification, shattering means we can generate any output
we want. This is too strong to generalize as is. The useful generalization
is that binarize the output any way we want.
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Definitions

Definition (pseudo-shattering)

Let H be a set of real valued functions from input space X . We say
C = (x1, ..., xm) is pseudo-shattered by H if there exists a vector
r = (r1, ..., rm) (called ”witness”) such that for all
b ∈ {±1}m = (b1, ..., bm) there exists hb ∈ H such that
sign(hb(xi)− ri) = bi

Shattering means you can find thresholds ri such that you can get any
combination of above/below.

Definition (pseudo-dimension)

Let H be a set of real valued functions from input space X . The
pseudo-dimension Pdim(H) is the cardinality of the largest set
pseudo-shattered by H.
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Definitions

We can connect the Pseudo-dimension to the VC dimension:

Theorem

For every h ∈ H define the binary function Bh(x, r) = sign(h(x)− r).
Define BH = {Bh : h ∈ H} then V C(BH) = Pdim(H).

The proof is direct from the definition of pseudo-shattering.
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Definitions

An alternative to Pdim(H) is the fat-shattering dimension or
scale-sensitive dimension.

Definition (γ-shattering)

Let H be a set of real valued functions from input space X . We say
C = (x1, ..., xm) is γ-shattered by H if there exists a vector
r = (r1, ..., rm) such that for all b ∈ {±1}m = (b1, ..., bm) there exists
hb ∈ H such that bi(hb(xi)− ri) ≥ γ

γ-Shattering means you can find thresholds ri such that you can get any
combination of above/below with a margin of γ.

Definition (Fat-shattering dimension)

Let H be a set of real valued functions from input space X . The
fat-shattering dimension at scale γ, fatH(γ) is the cardinality of the
largest γ-shattered by H.
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Properties

Example 1: If H is a vector space of real-valued functions , then
Pdim(H) = fatH(γ) = dim(H).

Proof: Using BH and scale invariance.

Example 2: If H is the set of all functions from [0, 1] to [0, 1] with total

variation at most V , then fatH(γ) = 1 +
⌊
V
2γ

⌋
and Pdim =∞.

Proof - HW.
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Properties

Theorem

Let H be a set of real-valued functions

1 For all γ, fatH(γ) ≤ Pdim(H).

2 The function fatH is non-increasing with γ.

3 If a finite set S is pseudo-shattered, then there is some γ0 > 0 such
that for all γ < γ0 the set S is γ-shattered.

4 lim
γ↘0

fatH(γ) = Pdim(H)

Proof: For (1) we note that if a set is γ-shattered it is pseudo-shattered
as well.
For (2) we note that if γ′ < γ and a set is γ-shattered, it is also
γ′-shattered.
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Properties

Proof continued: (3) Assume S = {x1, ..., xn} is pseudo-shattered, i.e.
there exists a witness r1, ..., rn. For each b ∈ {±1}m there exists hb ∈ H
such that sign(hb(xi)− ri) = bi.

If for all b, xi we have |hb(xi)− ri| > 0 then the set is γ-shattered for
γ ≤ γ0 = min |hb(xi)− ri| and witnessed by r.

Otherwise define γ0 = 1
2 min{ri − hb(xi) : ri > hb(xi)} and the witness to

the shattering is r − γ0/2.

(4) is a conclusion from (1)-(3).
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Theorems

Theorem

Let H be a set of real-valued functions from X into [0, 1]. Let
d = fatH(ε/8) for ε ∈ (0, 1]. Then for m ≥ d,

N1(ε,H,m) < 2

(
4

ε

)3d log2(16em/dε)

(6)

Theorem

Let H be a set of real-valued functions from X into [0, 1]. Let
d = Pdim(H) then,

N1(ε,H,m) < e(d+ 1)

(
2e

ε

)d
(7)
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Theorems

Notice that the bound using Pdim does not depend on m.

If Pdim is finite, then that bound will be better but the fat-shattering
one.

Theorem

Let H be a hypothesis space of real valued functions with Pdim(H) <∞

then H has uniform convergence with M(ε, δ) = O
(
Pdim(H) ln( 1

ε )+ln( 1
δ )

ε2

)
Theorem

Let H be a hypothesis space of real valued functions with finite
fat-shattering dimension then H has uniform convergence with

M(ε, δ) = O
(
fatH(ε/256) ln( 1

ε )+ln( 1
δ )

ε2

)
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Proof

We will sketch the proof of the fat-shattering bound.

If d = fatH(ε/8) for ε ∈ (0, 1]. We need to show that for m ≥ d,

N1(ε,H,m) < 2
(
4
ε

)3d log2(16em/dε).

The first step is to use packing numbers. Instead of measuring the size
by how many points you need to cover, we measure by how many
separate points can we pack.
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Proof

Definition

A set W is ε-separated (regarding d metric) if ∀x, y ∈W : d(x, y) > ε.
The ε packing number M(ε,W, d) is the maximal criminality of an
ε-separated set. The uniform packing number
Mp(ε,H, k) = max{M(ε,H|C , dp) : |C| = k}

Theorem

Let (A, d) be a metric space. For all positive ε, and for every subset
W ⊂ A the covering and packing number satisfy

M(2ε,W, d) ≤ N (ε,W, d) ≤M(ε,W, d) (8)

Left inequality if from the pigeonhole principle. The right inequality is
from the fact that a maximal packing is also a cover.
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Proof

The main work is to prove the following lemma

Lemma

Let H be a set of real-valued functions from X into [0, 1] and that
0 < ε ≤ 1 then

M1(ε,H,m) < 2b3(dlog2 ye+1) (9)

where b = b4/εc, d = fatH(ε/8) and y =
d∑
i=1

(
m
i

)
bi

Proving the theorem given the lemma is easy:

N1(ε,H,m) ≤M1(ε,H,m) ≤ 2
(
4
ε

)3(dlog2 ye+1)
and we have

y ≤
d∑
i=1

(
m
i

) (
4
ε

)d ≤ (4emεd )d
From this we can show dlog2(y)e+ 1 ≤ d log2

(
16em
dε

)
to finish the proof.
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Lemma

We new need to prove the lemma. The next step is to replace each
function h with a quantized version.

For all h ∈ H define the quantized version Qα(h) as
Qα(h)(x) = αbh(x)/αc. If h(x) = kα+ r where k ∈ Z and 0 ≤ r < α
then Qα(h)(x) = kα. We define Qα(H) as the set of quantized functions.

It is not hard to show that for all h1, h2 ∈ H we have

d1(h1|C , h2|C) =
1

n

n∑
i=1

|h1(xi)− h2(xi)| ≤ d1(Qα(h1)|C , Qα(h2)|C) + α

(10)
From this we can see that M1(ε,H,m) ≤M1(ε− α,Qα(H),m)
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Lemma

We have M1(ε,H,m) ≤M1(ε− α,Qα(H),m) and one can show
fatQα(H)(ε) ≤ fatH(ε− α/2).

Pick α = ε/4 and denote F = Qε/4(H), d = fatF (ε/4) ≤ fatH(ε/8)

It is enough to prove that M1(3ε/4, F,m) ≤ 2b3(dlog2(y)e+1). We can
rescale everything by ε/4

Lemma

Let Y = {0, 1, ..., b} with b ≥ 3 and suppose |X | = m and F ⊂ YX has
fatF (1) = d ≥ 1, then

M(3, F, d1) ≤ 2b3(dlog2(y)e+1) (11)

for y =
∑d

i=1

(
m
i

)
bi
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Lemma

Proof sketch: The proof is based on the following definition

t(k,m) = min{|{(A, r) : G 1− shattersA ⊂ X , witnessed by r, A 6= ∅}| :

|X | = m,G ⊂ YX |G| = k, andG is 3− separated}

The minimum is infinity if it is the empty set.

The key observation is that if the fat-shattering dimension is d, there are
at most y =

∑d
i=1

(
m
i

)
bi possible (A, r) pairs.

If t(k,m) > y that means that every 3-separated set of size k must
1-shatter a set of size greater then d. Since this is not possible it proves
M(3, F, d1) < k

It is therefore enough to show t(2b3(dlog2(y)e+1),m) ≥ y
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Lemma

Need to show t(2b3(dlog2(y)e+1),m) ≥ y

Let G be 3-separated set of size k = 2b3(dlog2(y)e+1), then we can split it
into k/2 arbitrary pairs.

One can show (pigeonhole) that there x0, i, j with j > i+ 2 and at least
k/b3 pairs such that g1(x0) = i and g2(x0) = j.

We can define G1, G2 ⊂ G as all the functions such that g(x0) = i and
g(x0) = j. Both G1 and G2 are 3-separated.

If G1 or G2 shatters (A, r) A ⊂ X − {x0} then so does G. If both then
so G shatters A ∪ {x0}. We can conclude that t(k,m) ≥ 2t(b k

b3
c,m− 1)

and the proof follows by induction.
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