
Algorithmic version of the local lemma

Uriel Feige
Department of Computer Science and Applied Mathematics

The Weizman Institute
Rehovot 76100, Israel

uriel.feige@weizmann.ac.il

May 8, 2022

1 The local lemma

Let A be a collection of random events A1 . . . Am. For event Ai, let Γ(Ai) be a minimal
set of events that Ai depends on in the sense that Ai is independent of all events in A \
{Γ(Ai) ∪ Ai} (information on events not in Γ(Ai) ∪ Ai does not affect the probability of
event Ai happening).

The general version of the Lovasz local lemma [5] (see also [1]) is as follows.

Theorem 1 If there is an assignment 0 < xi < 1 satisfying for every i:

Pr[Ai] ≤ xi
∏

j|Aj∈Γ(Ai)

(1− xj)

then the probability that no event Ai happens is at least
∏m

i=1(1− xi) > 0.

Observe that if the events were independent, the probability that no bad event happens
would have been exactly

∏m
i=1(1−Pr[Ai]). Hence in a sense, replacing the Pr[Ai] values by

the larger xi values is the penalty paid in the conclusion of the local lemma for the variables
not being truly independent.

In many applications, the following uniform version of the local lemma suffices.

Theorem 2 Let A be a collection of random events each happening with probability p.
Assume that every event depends on at most d events (including itself). Namely, |Γ(Ai)|+
1 ≤ d. Then if pde < 1 then with positive probability no event happens.

Proof: The uniform version follows from the general version by picking xi = pe for
every i. Then we have

xi
∏

j|Aj∈Γ(Ai)

(1− xj) ≥ pe(1− pe)d−1 ≥ pe(1− 1/d)d−1 ≥ p

2

Here is an application to the local lemma.

1

Theorem 3 Every k-CNF formula with n variables in which each variable appears in less
than 2k/ek clauses is satisfiable.

Proof: Consider a random assignment to the variables, and let Ai be the event that
clause Ci is not satisfied. Then Pr[Ai] = 2−k. Note that removing all events that correspond
to clauses that share variables with the clause correspond to event Ai leaves Ai independent
of all remaining events. Each clause shares variables with less than 1 + k(2k

ek − 1) < 2k/e
clauses including itself. Hence the uniform version of the local lemma implies that there
is positive probability that the formula is satisfied by the random assignment, and hence
some assignment is satisfying. 2

Note that the randomized algorithm implicit in the proof of Theorem 3 has exponentially
small success probability, and hence will need to be repeated an exponential number of
times until it is expected to produce a satisfying assignment. Finding a polynomial time
(“constructive”) version for the local lemma has been an open question for many years. The
first breakthrough in this respect was by Joseph Beck [2], which gave a constructive version
(with weaker parameters, and that applies only in some cases). A more recent breakthrough
by Robin Moser (extended further in [6]) managed to produce a constructive version that
among other things provides a polynomial time algorithm for the problem in Theorem 3.

2 An algorithmic version

The algorithmic versions of the local lemma do not always apply, but they do apply in
most interesting cases (see [4] for additional algorithmic versions). We shall show a random
polynomial time algorithm for satisfying sparse k-CNF formulas as in Theorem 3. This
algorithm can be derandomized and generalized to other applications, but this will not be
discussed here. The analysis (of the expected running time) that we provide is not the
tightest possible, since we try to keep it simple and intuitive. For stronger results, see [6].

Let x1, . . . , xn be the variables of a k-CNF formula and let m be the number of clauses.
Assume that each clause shares variables with at most d clauses (including itself). Let
p = 2−k be the probability that a clause is not satisfied by a random assignment to the
variables. We assume that pde < 1 and show a simple randomized algorithm for satisfying
the k-CNF formula.

1. Pick a random assignment for the variables, where each variable is set to true inde-
pendently with probability 1/2.

2. As long as there is some clause that is not satisfied, pick an arbitrary clause that is
not satisfied, and assign fresh random value to all its variables.

We shall show that the above algorithm terminates with a satisfying assignment in
expected polynomial time. The expectation is taken over the random coin tosses of the
algorithm. These are produced dynamically throughout the algorithm. It will be more
convenient for us to view them in an equivalent way, as if they are produced statically
before the algorithm begins. For this we imagine that there is a table R with r rows (r
can be thought of as infinite or very large) and n columns. The columns are indexed by
the variables, and rows are indexed from 1 to r, starting at the bottom row. Initially, one

2

fills the table by random and independent 0/1 values. Thereafter, whenever the algorithm
needs a fresh random value for a variable, in considers the column corresponding to the
variable, and uses the first yet unused entry in that column. All probabilistic statements
that we make are with respect to the random initial contents of R.

Consider now the sequence of unsatisfied clauses visited by the algorithm, C1, C2,
Note that Ci and Cj for i 6= j may refer to the same clause. Consider clause Ct that is
visited in step t of the algorithm. How do we determine which k entries of the table R
gave the value of its variables that made it unsatisfied at time step t? We know which
columns they belong to, but the row that each value belongs to depends on the history of
the execution of the algorithm. In particular, different variables might take their value from
different rows.

The part of the execution of the algorithm that is relevant to Ct can be viewed as a tree
Tt labeled by clauses. It is build by backward induction from step t towards step 1. At step
i for t ≥ i ≥ 1 we have the tree T i

t . It is derived from tree T i+1
t as follows. If clause Ci does

not intersect any of the clauses in T i+1
t then T i

t = T i+1
t . Else, Ci is appended to the clause

Cj deepest in the tree T i+i
t that shares a variable with Ci.

The tree T 1
t determines uniquely from which locations in R the random values for the

variables of each of the clauses Ci are taken, for all clauses Ci in the tree (and not just
for Cm). Simply start with the deepest node in the tree (breaking ties arbitrarily, which is
justified by Proposition 4), allocate to the respective clause the values from the respective
columns in the first row of R, erase these values and shift the respective columns down by
one row, and repeat.

Proposition 4 If two clauses Ci and Cj with i < j are at the same depth in T 1
t , then they

are disjoint.

Proof: Otherwise, Ci could have been placed at greater depth, as a descendant of Cj .
2

For the random values in R to make the generation of the tree T 1
t feasible, it must be

the case that all clauses in the tree are not satisfied by the respective values in R. Let q
be the number of clauses in T 1

t . The probability of the event that the tree T 1
t is feasible

is exactly pq. Note that even if given R, the tree T 1
t is feasible, it does not imply that

the tree is actually generated by the algorithm. For example, in step t there might be two
overlapping unsatisfied clauses, and the algorithm might choose any one of them, avoiding
the creation of the other respective feasible tree.

Lemma 5 Given the table R and q ≥ 1, for the algorithm to run for qm steps it must be
the case that R contains a feasible tree of size at least q.

Proof: Among the first qm clauses visited by the algorithm, at least q of them represent
the same clause. All q copies of the same clause must belong to the tree associated with
the last appearance of this clause in the sequence of visited clauses. 2

It follows that if R is such that no feasible tree of size q or more exists, the algorithm
must terminate after at most qm steps. (Observe that it might be the case that no feasible
tree of size q exists, but a feasible tree of larger size does exist, since each step of the
algorithm adds a root to a tree, and not a leaf, and this root might have degree larger
than 1.)

3

Let us provide an upper bound on the number of legally labeled trees of size q. A tree
is legally labeled if it is a rooted tree labeled by clauses, every two adjacent nodes (namely,
a node and its direct child) are labeled by clauses that share a variable, and the clauses
corresponding to any two nodes in the same level of the tree do not intersect. As every
clause intersects at most d different clauses (including itself - in a legally labeled tree a
clause can be a direct child of itself), this implies that any node in the tree has a choice of
at most d labels for its children. (The number of children of a node would then be at most
d, and also at most k, because clauses labeling children do not intersect, though this last
fact is not needed for the analysis.)

Pick an arbitrary order among the m clauses. There are m ways of choosing the root.
We represent the remaining tree as a Boolean vector of length d(q−1) with q−1 entries that
are 1. For every clause chosen into the tree, we append to the end of the vector d coordinates,
representing the (at most) d neighbors of the clause (and some of the coordinates might not
represent any clause at all if there are less than d neighbors). Their initial value is 0. Scan
the coordinates one by one, and for each coordinate that represents a clause that is in the
tree, set the corresponding entry in the vector to 1 (and append d coordinates, unless this
is the qth node in the tree). It can readily be seen that any legal tree can be represented
in such a fashion, and that any vector corresponds to at most one legal tree. Hence the
number of legal trees with q nodes is at most m

(d(q−1)
q−1

)
≤ m(de)q.

Hence the probability over R that there is a feasible legal tree of size Q or more is
at most m

∑∞
q=Q(de)qpq = m(dpe)Q/(1 − dpe). For large enough Q, (e.g., Q = Θ(logm)

suffices if dpe is bounded away from 1), the probability that a feasible legal tree of size at
least Q exists tends to 0. This implies both that the formula is satisfiable, and that the
randomized algorithm will find a satisfying assignment in expected O(mQ) steps.

2.1 Comments

For the purpose of applying the local lemma, the notion of events being independent might
be subtle, so some care is needed. Here is a simple example to illustrate this point. Suppose
that there are three 0/1 variables, and two equations x1 = x2 and x2 = x3. The variables are
given unbiased independent random values, and the events of interest are for each equation
to hold. Are the two events independent? Formally yes, because each equation is satisfied
with probability exactly 1/2, regardless of the other equation. Hence for the existential form
of the local lemma (theorem 1) the dependency sets are empty. However, the algorithmic
version of the local lemma presented in this lecture would need to treat them as if they are
dependent, because reassigning values at random to the variables in one clause may cause
the other clause to stop being satisfied.

3 Homework

Let d be sufficiently large. Prove that the vertices of every d regular graph can be colored
by k = d

3 ln d colors in such a way that every vertex has at least one neighbor of each color.
Propose a random polynomial time algorithm for achieving such a coloring. What is its
expected running time?

Remark: The value of k above can be improved to k = (1 + o(1)) d
ln d . See [3].

4

References

[1] Noga Alon and Joel Spencer. The Probabilistic Method. Wiley-Interscience Series in
Discrete Mathematics and Optimization.

[2] Joseph Beck. An algorithmic approach to the Lovasz Local Lemma. Random Structures
and Algorithms, 2 (1991), pp, 343-365.

[3] Uriel Feige, Magnus M. Halldorsson, Guy Kortsarz, Aravind Srinivasan: Approximat-
ing the Domatic Number. SIAM J. Comput. 32(1): 172–195 (2002).

[4] Bernhard Haeupler, Barna Saha, Aravind Srinivasan: New Constructive Aspects of the
Lovasz Local Lemma. J. ACM 58(6): 28 (2011).

[5] Paul Erdos and Laszlo Lovasz. Problems and results on 3-chromatic hypergraphs and
some related questions. In Infinite and Finite Sets, volume 11 of Colloq. Math. Soc. J.
Bolyai, pages 609-627. North-Holland, 1975.

[6] Robin A. Moser, Gabor Tardos: A constructive proof of the general Lovasz Local
Lemma. J. ACM 57(2) (2010).

5

