
Santa Claus Meets Hypergraph Matchings

Arash Asadpour∗, Uriel Feige†, and Amin Saberi‡

June 17, 2008

Abstract

We consider the problem of max-min fair allocation of indivisible
goods. Our focus will be on the restricted version of the problem in
which there are m items, each of which associated with a non-negative
value. There are also n players and each player is only interested in
some of the items. The goal is to distribute the items between the
players such that the least happy person is as happy as possible, i.e.
one wants to maximize the minimum of the sum of the values of the
items given to any player. This problem is also known as the Santa
Claus problem [3]. Feige [9] proves that the integrality gap of a certain
configuration LP, described by Bansal and Sviridenko [3], is bounded
from below by some (unspecified) constant. This gives an efficient
way to estimate the optimum value of the problem within a constant
factor. However, the proof in [9] is nonconstructive: it uses the Lovasz
local lemma and does not provide a polynomial time algorithm for
finding an allocation. In this paper, we take a different approach to
this problem, based upon local search techniques for finding perfect
matchings in certain classes of hypergraphs. As a result, we prove that
the integrality gap of the configuration LP is bounded by 1

5 . Our proof
is nonconstructive in the following sense: it does provide a local search
algorithm which finds the corresponding allocation, but this algorithm
is not known to converge to a local optimum in a polynomial number
of steps.

1 Introduction

Resource allocation problems, i.e. allocating limited resources to a num-
ber of players while satisfying some given constraints, have been studied

∗Stanford University, Stanford CA 94305, USA. asadpour@stanford.edu
†Weizmann Institute, Rehovot 76100, Israel. uriel.feige@weizmann.ac.il
‡Stanford University, Stanford CA 94305, USA. saberi@stanford.edu

1

extensively in computer science, operations research, economics, and the
mathematics literature. Depending on whether the resource is divisible or
not one can distinguish two main types of such problems. The divisible case
has been considered mostly by combinatorists and measure theorists in the
past century under the title of “Cake Cutting” problems [16, 5]. On the
other hand, the indivisible resource allocation problems have been mostly
the focus of algorithmic lines of research. In such problems, often the set
of resources R consists of m items. There is also a set P of n players.
Each player i has a value function fi : 2S → R. For the sake of simplicity
we define vij = fi({j}). The goal is to partition the set of items to sub-
sets S1, S2, · · · , Sn and allocate each part to one of the players such that a
certain objective function is optimized.

Depending on the objective functions, various indivisible resource allo-
cation problems can be considered. For example, the problem of maximizing
social welfare arises when we want to maximize

∑
i fi(Si). See [6, 8, 10, 17]

for recent progress on this problem.
Minimizing the makespan is another example of indivisible resource al-

location problems in which the goal is to minimize maxi fi(Si) and fi’s are
linear functions, i.e. fi(Si) =

∑
j∈Si

vij . Lenstra, Shmoys and Tardos [15]
provide a 2-approximation algorithm and also prove that the problem is hard
to approximate within a factor of 1.5. Approximation ratios better than 2
are known for some very special cases of this problem [7].

Another interesting trend in indivisible resource allocation is Max-min
fair allocation problems. Here, we aim to maximize mini fi(Si) while fi’s
are still linear functions. Although very similar at the first glance, this
problem has turned out to be fundamentally different from minimizing the
makespan and the techniques that are known to be useful there fail to give
non-trivial results here. Most notably, the assignment LP used in [15] yields
an additive approximation of maxij vij [4]. It can be used to find a solution
of value at least OPT − maxij vij , where OPT is the value of the optimal
solution. Unfortunately, it offers no approximation guarantee in the most
challenging cases of the problem when OPT ≤ maxij vij .

Bansal and Sviridenko [3] studied this problem under the name of the
Santa Claus problem, where Santa wants to distribute some presents among
some kids and his goal is to do this in such a way that the least happy kid is
as happy as possible. They considered a certain type of linear programming
relaxation of the problem (known as configuration LP that we will explain
shortly), and showed that it can be used to find a solution with value at least
OPT/n. They also showed that the integrality gap of this LP is no better
than O(1/

√
n). Asadpour and Saberi [2] showed how to round the solution

of configuration LP to get a solution with value at least Ω(OPT/
√

n(log n)3).
Our focus here will be on a special case of the Max-min fair allocation

problem, known as restricted assignment problem, in which each item j has
an inherent value vj and a set of players to which the item can be assigned.
In other words, for each such player i, the value of vij is vj and for all other
players it is 0. Bezakova and Dani [4] showed that this problem is hard to

2

approximate within a factor better than 1
2 . (In fact, this is also the best

hardness result known for the general problem.) Bansal and Sviridenko [3]
showed that it is possible to round the values of the configuration LP and
get a feasible solution with value Ω(OPT log log log n/ log log n). Recently,
Feige [9] proved that the optimal value of the configuration LP is in fact
within a constant factor of OPT. Although [9] does not give a polynomial
time algorithm to find a constant factor approximation solution, it does
provide a constant factor estimation for the optimal value of the problem1.
This is due to the fact that the configuration LP can be solved (up to
arbitrary precision) in polynomial time, and its value is an upper bound on
OPT. The main result of this paper can be summarized as the following:

Theorem 1 In the restricted assignment problem, there is a polynomial
time algorithm that estimates the optimal value of max-min allocation prob-
lem within a factor of 1

5 − ε, where ε > 0 is an arbitrarily small constant.

The polynomial time algorithm referred to in the above theorem is sim-
ply the configuration LP. The proof of the 1

5 estimation factor will follow
from our proof that the optimal value of the configuration LP is at most
5OPT. There is a small loss of ε in the estimation factor because the known
polynomial time algorithms [3] solve the configuration LP up to any desired
degree of accuracy, but not necessarily exactly.

Our proof of Theorem 1 transforms the problem into a problem of finding
a perfect matching in certain hypergraphs. We design a local search algo-
rithm that finds such a perfect matching. It is inspired by the techniques
of [11] which will be discussed in Sect.2. This method can be viewed as a
generalization of Hungarian method [14] to the domain of hypergraphs.

Comparing our results to those in [9], our result has the advantage of
providing an explicit bound (of 1

5) on the integrality gap of the configuration
LP. Also, our proof technique suggests an algorithmic approach to round the
solution of the configuration LP. While in [9] multiple applications of the
Lovasz local lemma are used, here we introduce a local search algorithm and
prove that it ends up in a solution with value at least OPT

5 . Although we
cannot bound the running time within a polynomial, it puts the problem in
the complexity class PLS2 and proposes the open question of whether this
local search (or a modified version of it) converges in polynomial time to an
appropriate solution.

1.1 The Configuration LP

Fix a real number t and suppose that we want to see if it is possible to do
the allocation in such a way that each player i receives a bundle of items

1We emphasize that all the results related to the hardness of approximation remains
valid even for estimating the optimal value of the problem.

2The complexity class PLS consists of problems for which, given any input instance
there exists a finite set of solutions and an efficient algorithm to compute a cost for each
solution, and also a neighboring solution of lower cost provided that one exists. Then the
problem is to find a solution, namely a local optimum, that has cost less than or equal to
all its neighbors. For more information, see [12].

3

Si with fi(Si) ≥ t. For any bundle S of items, let xiS be the indicator 0/1
variable, representing if the whole bundle S is allocated to person i (in this
case xiS will be 1) or not (xiS = 0). To provide a bundle with value at least
t for every person, we need to solve the following integer program:

• Every player only accepts bundles with value at least t; ∀i : xiS = 0
whenever fi(S) < t.

• Every player receives one bundle; ∀i :
∑

S xiS = 1.

• Every item is allocated to at most one player: ∀j :
∑

i,S|j∈S xiS ≤ 1.

• xiS ∈ {0, 1} for every player i and bundle S.

The configuration LP is the relaxation of the above integer program.
The last constraint is replaced by xiS ≥ 0

If the LP is feasible for some t0, then it is also feasible for all t ≤ t0.
Let optLP be the maximum of all such values of t (it can be shown that
such maximum exists). Every feasible allocation is a feasible solution of
configuration LP. Hence optLP ≥ OPT. The value of optLP and a feasible
solution to the configuration LP of value optLP can be approximated within
any desired degree of accuracy in polynomial time, as shown in [3].

In this paper we show that any fractional solution of configuration LP
corresponding to optLP can be rounded (though not necessarily in polyno-
mial time) to an integral solution whose value is within a constant factor of
optLP. We provide two versions of our proof. In Section 2 we show how this
result can be deduced by combining (in a blackbox manner) a previous in-
termediate result of Bansel and Sviridenko [3] with a theorem of Haxell [11].
In Section 3 we provide our main result which is basically a local search that
finds an integral solution with value at least optLP

5 . The proof in Section 3
is inspired by the results of Section 2, but is presented in a self contained
way. It circumvents the use of the intermediate result of [3], and extends
the proof technique of [11] in certain ways. Any of the two sections 2 and 3
can be read and understood without needing to read the other section.

2 Matchings in Hypergraphs

Let H = (V, E) be a hypergraph. A matching in H is a set of pairwise
disjoint edges. We denote by ν(H) the maximum size of a matching in
H. A matching is called perfect if any vertex appears in exactly one of
its edges. Unlike the case for matchings in graphs, the problem of finding a
perfect matching in hypergraphs is NP-complete. (A well known special case
of this problem is the NP-hard problem of 3-dimensional matching. Note
that 3-dimensional matching can also be cast as a special case of finding a
perfect matching in a bipartite hypergraph, a problem that we shall describe
below.) There are some sufficient conditions known for the existence of
perfect matchings in hypergraphs. See for example [1] and [13]. Some of
these sufficient conditions are not computable in polynomial time.

4

Here, we focus on the problem of finding a maximum matching in bipar-
tite hypergraphs. A hypergraph H = (V, E) is called bipartite if the ground
set V is the disjoint of sets U and V , and every E ∈ E satisfies |E ∩U | = 1.
A perfect matching in a bipartite hypergraph is defined as a matching that
saturates all the vertices in U . A transversal for hypergraph H is a subset
T ⊆ V with the property that E ∩ T 6= ∅ for every E ∈ E . Let τ(H) denote
the minimum size of a transversal of H. For a subset C ⊆ U , we write
EC = {F ⊆ V : {c}∪F ∈ E for some c ∈ C}, and let HC be the hypergraph
(V, EC). The following theorem is proved by Haxell in [11].

Theorem 2 (Haxell [11]) Let H = (U ∪ V, E) be a bipartite hypergraph
such that for every E ∈ E we have |E ∩ V | ≤ r − 1, and also τ(HC) >
(2r − 3)(|C| − 1) for every C ⊆ U . Then ν(H) = |U |.

When r = 2, H becomes a graph, and Haxell’s theorem reduces to Hall’s
theorem.

The proof of Theorem 2 as described in [11] is not constructive.

2.1 A Constant Integrality Gap

In this section, we will consider a combinatorial conjecture (which is by now
a theorem, by the results of [9]) which is equivalent up to constant factors
to the restricted assignment problem, and prove it via Theorem 2. It reveals
the intuition behind the relation between the restricted assignment problem
and matchings in hypergraphs. Also, it is through this transformation that
our local search appears.

Bansal and Sviridenko proved that if the following conjecture is true for
some β, then it can be shown that the integrality gap of configuration LP
relaxation for the restricted assignment problem is Ω(β).

Conjecture (by Bansal and Sviridenko [3]): There is some
universal constant β > 0 such that the following holds. Let
C1, · · · , Cp be collections of sets, Ci = {Si1, · · · , Sil} for i =
1, · · · , p, where each set Sij is a k-element subset of some ground
set and each element appears in at most l sets Sij . Then there
is a choice of some set Si,f(i) ∈ Ci for each i = 1, · · · , p, and a
choice S′i ⊆ Si,f(i) with the property that |S′i| ≥ βk and that
each element occurs in at most one set in {S′1, · · · , S′p}.

For every value k, it is not hard to see that the conjecture is true when
β = 1/k. Feige [9] shows that the conjecture is true for some small enough
universal constant β, for all values of k. Here, using Theorem 2 we prove
that it is true even for β = 1

5 . (For every k ≥ 3, our value of β is the largest
number satisfying two constraints. Namely, that (1 − β) ≥ 2β, which will
be needed in the proof of Theorem 3, and that βk is an integer. Hence ,
β = 1/3 when k is divisible by 3, but might be as small as 1

5 for k = 5.)

Theorem 3 Conjecture 2.1 is true for any β ≤ bk/3c
k

5

Proof : Consider the following bipartite hypergraph H = (U ∪ V, E).
Here, V =

⋃
i,j Si,j and U = {a1, a2, · · · , ap}. Also E = {S ∪ {ai} : S ⊆

Si,j for some j, |S| = βk}. Note that here r = βk + 1. By the construction
of H, it is enough to prove that H has a perfect matching (i.e. a matching
with size |U |). We will do so by showing that H satisfies the conditions of
Theorem 2.

Consider an arbitrary C ⊂ U and a transversal set T in HC . Because T
is a transversal set in HC , it must have some intersection with all the edges
in HC . But edges in HC correspond to all subsets S of V with βk elements
such that for some j and ai ∈ C it holds that S ⊆ Si,j . It means that for
any such i and j, at least (1− β)k elements of Si,j should be in T . (In fact,
the number of elements of Si,j in T should be at least (1− β)k + 1, but the
extra +1 term does not appear to have a significant effect on the rest of the
proof, so we omit it.)

Now, consider a bipartite graph G = (V ′, E) such that V ′ = U ′ ∪ T
where U ′ =

⋃
i∈C{ai,1, · · · , ai,l} and E = {{ai,j , q} : q ∈ Si,j}. By the above

discussion, deg(v) ≥ (1 − β)k, for all v ∈ U ′. Hence, |E| ≥ (1 − β)k|C|l.
Also by the assumption of the conjecture, deg(v) ≤ l for all v ∈ V ′. Hence
|E| ≤ l|T |. Therefore,

l|T | ≥ (1− β)k|C|l.
Thus, |T | ≥ (1− β)k|C| = 1−β

β (r− 1)|C|. Picking any β ≤ 1/3, we have
|T | ≥ 2(r − 1)|C| which means that τ(HC) > (2r − 3)(|C| − 1) for every
C ⊆ U . This completes the proof. 2

3 A 1
5-approximate Solution Through a Local Search

In this section we prove that the integrality gap of the configuration LP is
no worse than 1

5 .
Given a feasible solution {xiS} to the configuration LP, we modify it as

follows. To simplify notation, scale values of all items so that we can assume
that t = 1. Recall that vij ∈ {0, vj}. Call an item j fat if vj > 1

5 and thin
it vj ≤ 1

5 . (The value of 1
5 is taken with hindsight, being the largest value p

satisfying 2(p+p) ≤ 1−p, needed later in the proof of Lemma 5.) For every
fat item j, change vj so that vj = 1. Now modify the LP solution so as to
make it minimal, by restricting players to choose bundles that are minimally
satisfying for the player – dropping any item from the set reduces its value
below 1. This can be achieved in polynomial time by dropping items from
sets whenever possible. We are now left with an LP solution that uses only
two types of sets:

• Fat sets. These are sets that contain only a single fat item and nothing
else.

• Thin sets. These are sets that contain only thin items.

6

We call such a solution to the LP a minimal solution.
Construct a bipartite hypergraph based on the modified LP solution.

The U side are the players. The V side are the items. For every player i
put in hyperedges associated with those sets for which xiS > 0 as follows. If
S = {j} is a fat set, include the hyperedge {i, j}. If S is a thin set, then for
every minimal subset S′ ⊂ S of value at least 1

5 (minimal in the sense that
dropping any item from S′ reduces its value below 1

5), put in the hyperedge
{i, S′}. Observe that by minimality, S′ has weight at most 2

5 .

Theorem 4 Given any minimal solution to the configuration LP, the bipar-
tite hypergraph constructed above has a perfect matching (namely, a match-
ing in which all vertices of U are covered).

We note that Theorem 4 implies that there is an integer solution of value
at least 1

5 , since every player can get either a fat set (that contains an item
of value more than 1

5), or a part of a thin set of value at least 1
5 .

Our proof of Theorem 4 is patterned a proof of [11], with some changes.
The most significant of these changes is the use of Lemma 5.

For a set W of edges, we use the notation WU to denote the vertices
of U that are covered by W , and WV to denote the vertices of V that are
covered by W .

Proof : The proof is by induction on U . For |U | = 1, the theorem is
obviously true (since the hypergraph has at least one edge). Hence assume
that the theorem is true for |U | = k, and prove for |U | = k + 1.

Denote the vertices of U by {u0, . . . uk}. By the inductive hypothesis,
there is a matching of size k involving all U vertices except for u0. (This
is true because by removing u0 from the hypergraph and all its edges, one
obtains a hypergraph which corresponds to a minimal solution to an LP
with one less player.) Pick an arbitrary such matching M . We present
an algorithm that transforms this matching into a new matching of size
k + 1. The algorithm is in some respects similar to the known algorithm
for constructing matchings in bipartite graphs. It constructs an alternating
tree in an attempt to find an alternating path. In the graph case, when such
a path is found, the matching can be extended. In the hypergraph case,
the situation is more complicated, and hence the proof will not provide a
polynomial upper bound on the number of steps required until eventually
the matching is extended.

In our alternating tree, there will be two types of edges. Edges of type A
are edges that we try to add to the matching (A stands for Add). Edges of
type B will be existing matching edges (hence B ⊂ M) that intersect edges
of type A, and hence block us from adding edges of type A to the matching
(B stands for Block). Every root to leaf path will be an alternating sequence
of edges of type A and B.

The A edges will be numbered in the order in which they are added to the
alternating tree. Hence their names will be a1, a2, . . ., and these names are
relative to a currently existing alternating tree (rather than being names that
edges keep throughout the execution of the algorithm). For every i ≥ 1, we

7

associate with edge ai an integer mi ≥ 1 that will correspond to the number
of B edges that block ai. The strict positivity of mi implies that |B| ≥ |A|.

Initially one needs to pick the first edge for the alternating tree. Pick
an arbitrary edge e such that eU = u0. Let m1 denote the number of edges
from M that eV intersects. If m1 = 0, then terminate, because the edge e
can be added to M , obtaining a perfect matching. If m1 > 0, rename e as
a1, add a1 to A, and add the m1 matching edges that intersect a1 to B.

Let i ≥ 2 and assume that the alternating tree already contains i − 1
edges of type A (named as a1, . . . , ai−1), and at least i− 1 edges of type B.
We now pick an edge e such that eU ∈ (A ∪ B)U and eV does not intersect
(A ∪B)V . The following lemma shows that such an edge must exist.

Lemma 5 Let H(U, V,E) be the hypergraph associated with a minimal so-
lution to the configuration LP. Then given any alternating tree as described
above, there always is an edge e such that eU ∈ (A ∪ B)U and eV does not
intersect (A ∪B)V .

Proof : Let ` denote the number of vertices of U in the alternating tree.
Each hyperedge corresponds in a natural way either to a fat set or to (part
of) a thin set. Let Af (At, respectively) denote the collection of A edges
in the alternating tree that correspond to fat sets (thin sets, respectively),
and similarly for Bf and Bt with respect to B edges in the alternating tree.
Observe that in an alternating tree necessarily |Af | + |At| = |A| < ` and
|Bf |+ |Bt| = |B| < `. Moreover, |Af | = |Bf | = |(Af ∪Bf)V |, because every
fat edge of A contains exactly one vertex in V , this vertex is contained only
in fat edges, and hence this fat edge is intersected by exactly one fat edge
in B.

Consider now the restriction of the minimal solution to the LP to the
set of players P represented by the ` vertices of (A ∪ B)U . Let Sf be
the collection of fat sets and St be the collection of thin sets. Let α =∑

i∈P, S∈Sf
xiS denote the total weight assigned by this restricted solution

to fat sets, and let β = ` − α =
∑

i∈P, S∈St
xiS denote the total weight

assigned by this restricted solution to thin sets. If α > |(Af ∪ Bf)V | then
it must be the case that some fat set has positive weight in the restricted
solution but is not part of the alternating tree. In this case, this fat set can
contribute a hyperedge to the alternating tree. Hence it remains to deal with
the case that α ≤ |Af |. In this case, 2β ≥ |At|+ |Bt|+2. The hyperedges in
the alternating tree that correspond to thin sets each take up value at most
2
5 . Hence even after removing all items appearing in the alternating tree,
the sum of weights multiplied by respective remaining value of thin sets in
the LP is ∑

i∈P, S∈St

xiS

∑

j∈S\(At∪Bt)

vij >
β

5

This means than at least one thin set must have retained a value of at
least 1

5 . Hence, this thin set can contribute a hyperedge to the alternating
tree. 2

8

Pick an arbitrary hyperedge e satisfying Lemma 5 and let mi denote the
number of edges of M that e intersects. If mi > 0, we call this an extension
(the alternating tree grew larger), rename e as ai, add ai to A, and add the
mi matching edges that intersect ai to B.

We now describe what to do when mi = 0. If eU = u0, add edge e to
the matching M , and terminate. If eU 6= u0, then let e′ be the unique edge
in B for which eU = e′U . Let aj (here necessarily we will have j < i) be
the unique edge in A that intersects e′. In the matching M , replace the
matching edge e′ by the matching edge e. Note that this still gives a valid
matching of size k, because by construction, e does not intersect any edge
of M except for sharing its U side vertex with e′, which is removed from M .
Update mj by decreasing it by 1. If the new value of mj is still positive, this
step ends. However, if mj = 0, then the above procedure is repeated with
j replacing i (in particular, aj will also become part of the matching M).
Because j < i, the number of times the procedure can be repeated is finite,
and hence eventually the step must end. We call such a step a contraction
(the alternating tree becomes smaller).

This completes the description of the algorithm. Observe that the algo-
rithm terminates only when we extend the matching M by one more edge.
Hence it remains to show that the algorithm must terminate.

To see this, consider the evolution of vector m1,m2, . . . ,mj . For simplic-
ity of the argument, append at the end of each such vector a sufficiently large
number (|M | + 1 would suffice). We call the resulting vector the signature
of the alternating tree. We claim that the signatures of any two alternat-
ing trees are distinct. This is because ordering the signatures by the time
in which they were generated sorts them in decreasing lexicographic order.
For extension steps, this follows from the fact that we appended |M |+ 1 at
the end of the respective vector. For contraction steps, this follows from the
fact that mj decreases.

Since
∑

i mi ≤ |M | and mi > 0 (whenever mi is defined), the number
of possible signatures is 2|M | (there is a one to one correspondence between
these vectors and choices of after which items to place delimiters in a se-
quence of |M | items), and hence the algorithm cannot have infinite execu-
tions. 2

The proof of Theorem 4 implicitly provides a local search algorithm to
find an integral solution with value 1

5 . Its basic objects are the alternating
trees. A basic step is that of adding an edge to the tree, resulting in either
an extension step or a contraction step. The measure of progress of the local
search is via the lexicographic value of the corresponding signature. Given
a matching with |M | < n edges (an allocation to M players), it will be
extended after at most 2|M | steps. Hence starting with the empty matching
it takes at most

∑n−1
|M |=0 2|M | < 2n local search steps uptil a perfect matching

is found. This corresponds to allocating disjoint bundles of value at least
optLP/5 to all players. Noting that optLP is at least as large as the optimal
solution, the following theorem is established.

9

Theorem 6 After 2n local moves, our algorithm finds a feasible integral
1
5 -approximate allocation.

4 Open Directions

Characterizing the best possible approximation ratio for the max-min allo-
cation problem is still open, both for the restricted assignment version and
for the general version of the problem. We list here some research questions
that are suggested by our work.

1. Integrality gap. We showed that the integrality gap of the configuration
LP for the restricted assignment problem is no worse than 1/5. It was
previously known to be no better than 1/2 (in particular, this follows
from the NP-hardness result of [4]). Narrow the gap between these
two bounds.

2. Complexity of local search. Our proof is based on a local search proce-
dure. Can a locally optimal solution with respect to this local search
be found in polynomial time? Is finding such a solution PLS-complete?
These questions apply also to similar local search procedures that find
a perfect matching in hypergraphs satisfying the conditions of Theo-
rem 2.

3. Approximation algorithms. Provide an approximation algorithm (that
actually finds an allocation) with a constant approximation ratio for
the restricted assignment problem.

4. Hypergraph matchings. Can the proof techniques used in our paper
be used also for other problems? For example, can our approach be
employed to prove that the integrality gap of configuration LP for
general max-min fair allocation problem is Θ(1√

n
) (saving a log3 n

factor compared to [2])?

Acknowledgements

Part of this work was performed at Microsoft Research, Redmond, Wash-
ington. The first and third authors were supported in part through NSF
grants 0546889 and 0729586 and a gift from Google.

References

[1] R. Aharoni and P. Haxell. Hall’s theorem for hypergraphs, Journal of
Graph Theory, Vol 35 (2000), 83-88.

[2] A. Asadpour and A. Saberi. Max-Min Fair Allocation of Indivisible
Goods, Proceedings of the ACM Symposium on Theory of Computing
(STOC), 2007.

10

[3] N. Bansal and M. Sviridenko. The Santa Claus problem, Proceedings
of the ACM Symposium on Theory of Computing (STOC), 2006.

[4] I. Bezakova and V. Dani. Allocating indivisible goods, SIGecom Ex-
changes, 2005.

[5] S. J. Brams and A. D. Taylor. Fair division: from Cake Cutting to
Dispute Resolution, Cambridge University Press, 1996.

[6] S. Dobzinski and M. Schapira. An improved approximation algorithm
for combinatorial auctions with submodular bidders, Proceedings of
Symposium on Discrete Algorithms (SODA), 2006.

[7] T. Ebenlendr, M. Krcal and J. Sgall. Graph Balancing: A Special Case
of Scheduling Unrelated Parallel Machines, Proceedings of Symposium
on Discrete Algorithms (SODA), 2008.

[8] U. Feige. On maximizing welfare when utility functions are subadditive,
Proceedings of the ACM Symposium on Theory of Computing (STOC),
2006.

[9] U. Feige. On allocations that maximize fairness, Proceedings of Sym-
posium on Discrete Algorithms (SODA), 2008.

[10] U. Feige and J. Vondrak. Approximation algorithms for allocation prob-
lems: Improving the factor of 1 - 1/e, Proceedings of Foundations of
Computer Science (FOCS), 2006.

[11] P.E. Haxell. A Condition for Matchability in Hypergraphs, Graphs and
Combinatorics (1995), Vol 11, 245-248.

[12] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is
local search?, Journal of Computer and System Sciences (1988), Vol 37,
79-100.

[13] O. Kessler. Matchings in Hypergraphs, D.Sc. Thesis, Technion, 1989.

[14] H.W. Kuhn. The Hungarian Method for the assignment problem, Naval
Research Logistic Quarterly, 2 (1955) 83-97.

[15] J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approximation algorithms
for scheduling unrelated parallel machines, Mathematical Programming,
Series A, 1993.

[16] H. Steinhaus. The problem of fair division, Econometrica, 1948.

[17] J. Vondrak. Optimal approximation for the Submodular Welfare Prob-
lem in the value oracle model, Proceedings of the ACM Symposium on
Theory of Computing (STOC), 2008.

11

