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Abstract. Motivated by a recent conjecture of the second author related to the ternary partition
function, we provide an elegant characterization of the values bm(mn) modulo m where bm(n)

is the number of m-ary partitions of the integer n and m ≥ 2 is a fixed integer.

1. INTRODUCTION. Congruences for partition functions have been studied ex-
tensively for the last century or so, beginning with the discoveries of Ramanujan
[9]. In this note, we will focus our attention on congruence properties for the parti-
tion functions that enumerate restricted integer partitions known as m-ary partitions.
These are partitions of an integer n wherein each part is a power of a fixed integer
m ≥ 2. Throughout this note, we will let bm(n) denote the number of m-ary partitions
of n.

As an example, note that there are five 3-ary partitions of n = 9:

9, 3 + 3 + 3, 3 + 3 + 1 + 1 + 1,

3 + 1 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.

Thus, b3(9) = 5.

In 1940, Mahler [8] found an asymptotic estimate of bm(n) as n tends to infinity.
Mahler’s estimate was improved significantly by de Bruijn [5] in 1948.

In the late 1960s, Churchhouse [3, 4] initiated the study of congruence properties
of binary partitions (m-ary partitions with m = 2). By his own admission, he did so
serendipitously. To quote Churchhouse [4], “It is however salutary to realise that the
most interesting results were discovered because I made a mistake in a hand calcula-
tion!”

Within months, other mathematicians proved Churchhouse’s conjectures and
proved natural extensions of his results. These included Rødseth [10], who extended
Churchhouse’s results to include the functions bp(n) where p is any prime, as well
as Andrews [2] and Gupta [6, 7], who proved that corresponding results also held
for bm(n) where m could be any integer greater than 1. As part of an infinite family
of results, these authors proved that, for any m ≥ 2 and any nonnegative integer n,

bm(m(mn − 1)) ≡ 0 (mod m).

We now fast forward 40 years. In 2012, the second author conjectured the following
absolutely remarkable result related to the ternary partition function b3(n).

• For all n ≥ 0, b3(3n) is divisible by 3 if and only if at least one 2 appears as a
coefficient in the base 3 representation of n.

• Moreover, b3(3n) ≡ (−1) j (mod 3) whenever no 2 appears in the base 3 represen-
tation of n and j is the number of 1s in the base 3 representation of n.

http://dx.doi.org/10.4169/amer.math.monthly.122.9.880
MSC: Primary 05A17, Secondary 11P83

880 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 122



This conjecture is remarkable for at least two reasons. First, it provides a complete
characterization of b3(3n) modulo 3. Such characterizations in the world of integer
partitions are rare. Secondly, the result depends on the base 3 representation of n and
nothing else.

Just to “see” what the second author saw, let’s quickly look at some data related to
this conjecture.

n Base 3 Representation of n b3(3n) b3(3n) (mod 3)

1 1 × 30 2 2
2 2 × 30 3 0
3 0 × 30 + 1 × 31 5 2
4 1 × 30 + 1 × 31 7 1
5 2 × 30 + 1 × 31 9 0
6 0 × 30 + 2 × 31 12 0
7 1 × 30 + 2 × 31 15 0
8 2 × 30 + 2 × 31 18 0
9 0 × 30 + 0 × 31 + 1 × 32 23 2
10 1 × 30 + 0 × 31 + 1 × 32 28 1
11 2 × 30 + 0 × 31 + 1 × 32 33 0
12 0 × 30 + 1 × 31 + 1 × 32 40 1
13 1 × 30 + 1 × 31 + 1 × 32 47 2
14 2 × 30 + 1 × 31 + 1 × 32 54 0
15 0 × 30 + 2 × 31 + 1 × 32 63 0

In recent days, the authors succeeded in proving this conjecture. Thankfully, the
proof was both elementary and elegant. After just a bit of additional consideration,
we were able to alter the proof to provide a completely unexpected generalization. We
describe this generalized result and provide its proof in the next section.

2. THE FULL RESULT. Our main theorem, which includes the above conjecture in
a very natural way, provides a complete characterization of bm(mn) modulo m.

Theorem 1. If m ≥ 2 is a fixed integer and

n = a0 + a1m + · · · + a j m
j

is the base m representation of n (so that 0 ≤ ai ≤ m − 1 for each i), then

bm(mn) ≡
j∏

i=0

(ai + 1) (mod m).

Notice that the conjecture mentioned above is exactly the m = 3 case of Theorem
1.

In order to prove Theorem 1, we need a few elementary tools. We describe these
tools here.

First, it is important to note that the generating function for bm(n) is given by

Bm(q) :=
∞∏
j=0

1

1 − qm j . (1)
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Note that Bm(q) satisfies the functional equation

(1 − q)Bm(q) = Bm(qm).

From here, it is straightforward to prove that

bm(mn) = bm(mn + i)

for all 1 ≤ i ≤ m − 1. Thus, we see that Theorem 1 actually provides a characteriza-
tion of bm(N ) (mod m) for all N , not just for those N that are multiples of m.

With this information in hand, we now prove a small number of lemmas that we
will use in our proof of Theorem 1.

Lemma 2. If | x | < 1, then

1 − xm

(1 − x)2
≡

m∑
k=1

kxk−1 (mod m).

Proof. This elementary congruence can be proven rather quickly using well-known
mathematical tools. We begin with the geometric series identity

1

1 − x
=

∞∑
k=0

xk .

Differentiating both sides yields

1

(1 − x)2
=

∞∑
k=1

kxk−1.

We then multiply both sides by 1 − xm and simplify as follows:

1 − xm

(1 − x)2
=

∞∑
k=1

kxk−1 − xm
∞∑

k=1

kxk−1

=
∞∑

k=1

kxk−1 −
∞∑

k=m+1

(k − m)xk−1

=
m∑

k=1

kxk−1 +
∞∑

k=m+1

mxk−1

≡
m∑

k=1

kxk−1 (mod m).

Lemma 3. If ζ is the mth root of unity given by ζ = e2π i/m, then

m−1∑
k=0

1

1 − ζ kq
= m

(
1

1 − qm

)
.
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Proof. Using geometric series and elementary series manipulations, we have

m−1∑
k=0

1

1 − ζ kq
=

m−1∑
k=0

∞∑
r=0

ζ kr qr

=
m−1∑
k=0

⎛
⎝∑

r | m

ζ kr qr +
∑
r �m

ζ kr qr

⎞
⎠

=
m−1∑
k=0

∞∑
j=0

ζ k( jm)q jm +
m−1∑
k=0

∑
r �m

ζ kr qr

=
m−1∑
k=0

1

1 − qm
using facts about roots of unity

= m

(
1

1 − qm

)
.

Lemma 4. If Tm(q) := ∑
n≥0 bm(mn)qn, then

Tm(q) = 1

1 − q
Bm(q).

Proof. As in Lemma 3, let ζ = e2π i/m . Note that

Tm(qm) =
∑
n≥0

bm(mn)qmn

= 1

m

(
Bm(q) + Bm(ζq) + · · · + Bm(ζ m−1q)

)

=
⎛
⎝ ∞∏

j=1

1

1 − qm j

⎞
⎠ × 1

m

m−1∑
k=0

1

1 − ζ kq

= 1

1 − qm

∞∏
j=1

1

1 − qm j

thanks to Lemma 3. Lemma 4 then follows by replacing qm by q.

We now combine these elementary facts from the lemmas above to prove one last
lemma. This lemma will, in essence, allow us to “move” from considering Tm(q) mod-
ulo m to a new function modulo m that makes the result of Theorem 1 transparent.

Lemma 5. If Um(q) =
∞∏
j=0

(
1 + 2qm j + 3q2m j + · · · + mq (m−1)m j

)
, then

Tm(q) ≡ Um(q) (mod m).
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Proof. Lemma 5 will follow if we can prove that 1
Tm (q)

· Um(q) ≡ 1 (mod m), and this
will be our means of attack. Thankfully, this follows from a novel generating function
manipulation that we demonstrate here. Using (1) and Lemma 4, we know that

1

Tm(q)
· Um(q)

= (1 − q)2
∞∏
j=1

(1 − qm j
)

∞∏
j=0

(
1 + 2qm j + 3q2m j + · · · + mq (m−1)m j

)

≡ (1 − q)2
∞∏
j=1

(1 − qm j
)

∞∏
j=0

1 − qm j+1

(1 − qm j
)2

(mod m) thanks to Lemma 2

=
∏∞

j=0 1 − qm j+1

∏∞
j=1 1 − qm j

= 1.

We can now utilize all of the above results to prove Theorem 1.

Proof. First, we remember that

∑
n≥0

bm(mn)qn = Tm(q) ≡ Um(q) (mod m).

So we simply need to consider Um(q) modulo m to obtain our proof. Note that

Um(q) =
∞∏
j=0

(
1 + 2qm j + 3q2m j + · · · + mq (m−1)m j

)
.

If we expand this product as a power series in q, then each term of the form qn can
occur at most once (because the terms qi ·m j

are serving as the building blocks for the
unique base m representation of m). Thus, if

n = a0 + a1m + · · · + a j m
j ,

then the coefficient of qn in this expansion is

j∏
i=0

(ai + 1) (mod m).
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