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Abstract

Beatty sequences �n� + �� are nearly linear, also called balanced, namely, the absolute value of the difference D of the number of
elements in any two subwords of the same length satisfies D �1. For an extension of Beatty sequences, depending on two parameters
s, t ∈ Z>0, we prove D ��(s − 2)/(t − 1)�+ 2 (s, t �2), and D �2s + 1 (s �2, t = 1). We show that each value that is assumed, is
assumed infinitely often. Under the assumption (s − 2)�(t − 1)2 the first result is optimal, in that the upper bound is attained. This
provides information about the gap-structure of (s, t)-sequences, which, for s = 1, reduce to Beatty sequences. The (s, t)-sequences
were introduced in Fraenkel [Heap games, numeration systems and sequences, Ann. Combin. 2 (1998) 197–210; E. Lodi, L. Pagli,
N. Santoro (Eds.), Fun with Algorithms, Proceedings in Informatics, vol. 4, Carleton Scientific, University of Waterloo, Waterloo,
Ont., 1999, pp. 99–113], where they were used to give a strategy for a 2-player combinatorial game on two heaps of tokens.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Denote by Z, Z�0 and Z>0 the set of integers, the set of nonnegative integers and the set of positive integers,
respectively. For a subset S ⊂ Z�0, S �= Z�0, the minimum excluded value of S is denoted mex S and defined to be
the least nonnegative integer not in S. Denoting S = Z�0\S, we have that2

mex S = min S.

For two positive integers s, t ∈ Z>0, define the (s, t)-sequences {An}, {Bn} by

An = mex {Ai, Bi : 0� i < n} for all n�0, (1)

Bn = sAn + tn for all n�0. (2)

Thus, A0 = B0 = 0 and A1 = 1, B1 = s + t . Prefixes of the two sequences, for s = t = 2, are displayed in Table 1.
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Table 1
The first few entries of the (2, 2)-sequences

n An Bn n An Bn

0 0 0 28 35 126
1 1 4 29 37 132
2 2 8 30 38 136
3 3 12 31 39 140
4 5 18 32 41 146
5 6 22 33 42 150
6 7 26 34 43 154
7 9 32 35 44 158
8 10 36 36 45 162
9 11 40 37 47 168

10 13 46 38 48 172
11 14 50 39 49 176
12 15 54 40 51 182
13 16 58 41 52 186
14 17 62 42 53 190
15 19 68 43 55 196
16 20 72 44 56 200
17 21 76 45 57 204
18 23 82 46 59 210
19 24 86 47 60 214
20 25 90 48 61 218
21 27 96 49 63 224
22 28 100 50 64 228
23 29 104 51 65 232
24 30 108 52 66 236
25 31 112 53 67 240
26 33 118 54 69 246
27 34 122 55 70 250

Note that (1), (2) imply that An and Bn are strictly increasing sequences. Denoting A =⋃∞
n=1An and B =⋃∞

n=1Bn,
we have that A and B are complementary sets with respect to Z>0, that is, A∪B =Z>0 (by (1)), and A∩B =∅. The last
equality is true since if Am=Bn, then m > n > 0 implies that Am is the mex of a set containing Bn=Am, a contradiction;
and 0 < m�n is impossible since Bn = sAn + tn�sAm + tm > Am. The (s, t)-sequences were introduced in Fraenkel
[9], where they were used to give a strategy for a 2-player combinatorial game on two heaps of tokens.

Notation 1. For m, n, j ∈ Z�0, let

Dm,n,j = |(An+j − An) − (Am+j − Am)|,

Em,n,j = |(Bn+j − Bn) − (Bm+j − Bm)|.

Note that Dm,n,j and Em,n,j are symmetric in m, n, i.e., Dm,n,j = Dn,m,j , Em,n,j = En,m,j . Our main purpose is to
prove the following theorem, in Section 2.

Theorem 1. Let s�2, t �2 and assume that (s − 2)�(t − 1)2. Then Dm,n,j ∈ S1, where S1 := {0, . . . , q}, q :=
�(s − 2)/(t − 1)� + 2, and each of the values in S1 is assumed infinitely often.

Note that (2) implies Em,n,j = sDm,n,j . Thus Theorem 1 implies the following result about Em,n,j :

Corollary 1. Let s�2, t �2 and assume that (s − 2)�(t − 1)2. Then Em,n,j ∈ sS1 := {0, s, 2s, . . . , qs}, q as in
Theorem 1. Each of the values in sS1 is assumed infinitely often.
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For the case s − 2 > (t − 1)2 we can only show an upper bound, namely we have

Theorem 2. Let s�2, t �2 and assume that (s − 2) > (t − 1)2. Then Dm,n,j ∈ S1, where S1 and q are as in
Theorem 1, and each of the values in S1 which is assumed, is assumed infinitely often.

For s�2 and t = 1 we prove the following result in Section 3.

Theorem 3. Let s�2, t = 1. Then Dm,n,j ∈ S2 := {0, . . . , 2s + 1}. Moreover, each of the values in S2 which is
assumed, is assumed infinitely often.

The two latter results are weaker than Theorem 1, since we do not know whether the upper bounds in each of them
are sharp. The corresponding corollaries applying to Em,n,j can be formulated for each of these cases analogously to
Corollary 1.

Notice that if t �s�2, then �(s − 2)/(t − 1)� = 0, so that in Theorem 1 we have that S1 = {0, 1, 2}. However, if
s > t �2, then we may have |S1| > 3.

Theorem 1 provides information about the behavior of the gap-structure of (s, t)-sequences. For s = 1, both {Am}
and {Bm} are special cases of Beatty sequences, namely An = �n��, Bn = �n(� + t)�, where � = (2 − t + √

t2 + 4)/2
(so, for t = 1, � = � is the golden section). A general Beatty sequence has the form An = �n� + ��, where � > 0, � are
real numbers, n ∈ Z�0. It is well known that for general Beatty sequences, the difference Dm,n,j assumes only two
values: Dm,n,j =Em,n,j ∈ {0, 1} for all j, m, n ∈ Z�0, where each of 0 and 1 is assumed infinitely often. In the earlier
literature this property was called nearly linear; see Graham et al. [11], Boshernitzan and Fraenkel [4,5]. Nowadays it
is called balanced: Berstel and Séébold [3], Tijdeman [13].

We note in passing that Theorem 1 holds also for s = 1 and t �2, since then S1 = {0, 1}. In this case Corollary 1
coalesces with Theorem 1.

Balanced sequences have been used previously for providing a strategy for games. See Wythoff [14], Coxeter [6],
Yaglom and Yaglom [15] (s = t =1); Fraenkel [7] (s =1, t ∈ Z>0). The subword complexity C(n) of the characteristic
functions of these sequences was computed in [10]. It is linear in the length n of the subword, but larger than C(n)=n+1,
which characterizes the subword complexity of Sturmian sequences, the characteristic functions of Beatty sequences.
The subword complexity C(n) of a sequence S is the number of distinct words of length n appearing in S. See e.g., [1].

2. Proof of Theorems 1 and 2

The proofs of Theorems 1 and 2 will be separated into three steps. First we show that the number q in the statements
of the theorems is, in both cases, an upper bound for Dm,n,j . Then we will show that, in both cases, for each value which
is ever assumed, every value not exceeding it is assumed infinitely often. Finally we show that under the assumption
(s − 2)�(t − 1)2 of Theorem 1, the upper bound q is attained. We thus split the proofs into the following three parts.

Proposition 1. Let s�2, t �2. Then Dm,n,j ∈ S1, where S1 := {0, . . . , q}, q := �(s − 2)/(t − 1)� + 2.

Proposition 2. Let s�2, t �2. Then if for some d and some m, n, j, we have Dm,n,j = d, then for every d ′ �d there
are infinitely many m, n, j such that Dm,n,j = d ′.

Proposition 3. Let s�2, t �2 and assume that (s − 2)�(t − 1)2. Then for some m, n, j we have Dm,n,j = �(s −
2)/(t − 1)� + 2.

We begin by introducing some notation, followed by three auxiliary results.

Notation 2. Let n ∈ Z�0. An A-gap is GA = GA
n := An+1 − An. A B-gap is GB = GB

n := Bn+1 − Bn. For
i, m, n ∈ Z�0, put �i := |Dm,n,i+1 − Dm,n,i |.

Lemma 1. Let s, t ∈ Z>0. For all n ∈ Z�0,

GA
n ∈ {1, 2}, (3)
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and each of the values 1, 2 is assumed infinitely often. Also for all n ∈ Z>0,

GB
n = s + t ⇐⇒ GA

n = 1,

GB
n = 2s + t ⇐⇒ GA

n = 2, (4)

and each of the B-gaps s + t and 2s + t is assumed infinitely often.

Proof. If there is some GA �3, then the complementarity of A, B implies that there is some GB = 1. However, for all
n ∈ Z�0, (2) implies GB

n = sGA
n + t �s + t �2. This proves (3); and (4) follows from (2).

If there is N ∈ Z�0 such that GA
n =1 for all n�N , then for sufficiently large i there exists j such that Bi=sAi+t i=Aj ,

contradicting complementarity. If there is N ∈ Z�0 such that GA
n = 2 for all n�N , then GB

n = 2s + t �3 for all
sufficiently large n, so some positive integers are missing, again contradicting complementarity. Thus each of the values
1, 2 in (3) is assumed infinitely often. It follows that also each of s + t and 2s + t in (4) is assumed infinitely often. �

Definition 1. Let n ∈ Z�0. An A-word is a maximal run of Ai : An+1, . . . , An+m, such that GA
n+i = 1 for i ∈

{1, . . . , m − 1}, GA
n = GA

n+m = 2.
A B-word is the corresponding maximal run of m elements Bi : Bn+1, . . . , Bn+m, which satisfies, by (3), GB

n+i =s + t

for i ∈ {1, . . . , m − 1}, GB
n = GB

n+m = 2s + t .
The length of an A-word or a B-word is the number m of its elements.
An A-word of length s + t − 1 is a small A-word; an A-word of length 2s + t − 1 is a large A-word.

Consider Z>0 = A ∪ B as a sequence C in which the elements of A and B are sort-merged in increasing order. Note
that C consists of small A-words or large ones, separated by B-singletons, since GA ∈ {1, 2}, GB ∈ {s + t, 2s + t}, by
Lemma 1.

Lemma 2. Let s, t ∈ Z>0. Following a finite prefix of small A-words, the sequence C is composed of large A-words
which are separated by s + t − 2 or by 2s + t − 2 small A-words. Each of these A-word lengths and separating lengths
occur infinitely often, and there are no others.

Proof. By Lemma 1, GB ∈ {s+ t, 2s+ t}, so the complementarity of A, B implies that the A-word lengths are restricted
to {s + t − 1, 2s + t − 1}.

By (4), the B-words have the same length as the A-words. A B-word of length s + t − 1 contains precisely s + t − 2
B-gaps of size s + t . By complementarity, each such gap constitutes an A-word of length s + t − 1. A B-word of length
2s + t − 1 contains precisely 2s + t − 2 B-gaps of size s + t . Each such gap again constitutes a small A-word. Either
of these two B-words is flanked on both sides by GB = 2s + t , which, again by complementarity, induces A-words of
length 2s + t − 1.

By (4), the A-words of C, except the prefix, have only two possible lengths: s + t − 1 and 2s + t − 1, and also the
number of consecutive B-gaps is restricted to s + t − 2 and 2s + t − 2. Therefore the cases considered here are the
only ones, and by Lemma 1 each occurs infinitely often. This also implies that the prefix has finite length. �

Lemma 3. Let m, j ∈ Z�0, k ∈ Z>0. Then

(i) Dm,m+k,j = Dm,m+j,k ,
(ii) Dm,m+1,j = Dm,m+j,1 ∈ {0, 1},

(iii) �i ∈ {0, 1} for all i�1.

Proof. (i) We have

Dm,m+k,j = |(Am+k+j − Am+k) − (Am+j − Am)|
= |(Am+j+k − Am+j ) − (Am+k − Am)| = Dm,m+j,k .
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(ii) The equality is the special case k=1 of (i). By (3),Dm,m+j,1=|(Am+j+1−Am+j )−(Am+1−Am)|=|GA
m+j−GA

m| ∈
{0, 1}.

(iii) By the triangle inequality (in the form ||x| − |y||� |x − y|),
�i = ‖(An+i+1 − An) − (Am+i+1 − Am)|

− |(An+i − An) − (Am+i − Am)‖
� |(An+i+1 − An+i ) − (Am+i+1 − Am+i )| = Dm+i,n+i,1 ∈ {0, 1}

by (ii). �

Proof of Proposition 1. The following trivial observation will be used throughout the proof: for every a, k ∈ Z�0,
the cardinality of the half-open interval (Ak, Ak+a] ⊆ C is

Ak+a − Ak = a + card{B ∩ (Ak, Ak+a)} (5)

and for every b, � ∈ Z�0, the cardinality of the half-open interval (B�, B�+b] ⊆ C is

B�+b − B� = b + card{A ∩ (B�, B�+b)}. (6)

We show, by induction on j, that for any m, n ∈ Z�0, we have Dm,n,j ∈ S1. By Lemma 3(ii), for every m and n
one has Dm,n,1 ∈ {0, 1} ⊆ S1. Let j �2 and assume inductively that Dm,n,i ∈ S1 for all i < j and for all m, n ∈ Z�0.
Suppose that the assertion is false, i.e., Dm,n,j = d > q for some m, n ∈ Z�0. Without loss of generality, and using
(5), we may assume that for some h�0 there are h members of B in [Am, Am+j ] and h + d (d > q) members of B in
[An, An+j ]. So C must contain the following two subwords,

Bu . . . Am . . . Bu+1 . . . Bu+h . . . Am+j . . . Bu+h+1 . . . Bu+h+d−1, (7)

Bv . . . An . . . Bv+1 . . . Bv+h+d . . . An+j . . . Bv+h+d+1 (8)

for suitable indices u, v ∈ Z�0, where possibly Bu = 0 or Bv = 0. We wish to estimate Ev+1,u,h+d−1. From (6) and
(7) we get

Bu+h+d−1 − Bu �(h + d − 1) + (d − 2)(s + t − 1) + (j + 1),

since there are at least s + t − 1 members of A in (Bu+h+i , Bu+h+i+1) for all i ∈ {1, . . . , d − 2}, and j + 1 members
of A in (Bu+1, Bu+h+1).

Similarly, (6) and (8) imply that Bv+h+d − Bv+1 �(h + d − 1) + j − 1, since there are at most j − 1 members of A
in (Bv+1, Bv+h+d). Hence

Ev+1,u,h+d−1 �(s + t − 1)(d − 2) + 2

= s(d − 2) + (t − 1)(d − 2) + 2�s(d − 2) + (t − 1)(q − 1) + 2

= s(d − 2) + (t − 1)(�(s − 2)/(t − 1)� + 1) + 2

> s(d − 2) + (t − 1)(s − 2)/(t − 1) + 2 = s(d − 1)�qs. (9)

Recall that in the interval [An, An+j ] there are h + d members of B. Taking (5) and (8) into account, we can see that
h + d < j : indeed, Lemma 1 guarantees that between each two elements of B there are at least s + t − 1�3 elements
of A. But between Bv+1 and Bv+h+d there are at most j − 1 members of A. Thus 3(h + d − 1)�j − 1, which in turn
implies h + d < j (since j �2). The induction hypothesis now implies that Ev+1,u,h+d−1 �qs, contradicting (9). Thus
also Dm,n,j ∈ S1. �

We now wish to show the second part of Theorems 1 and 2, that each of the values in S1 is attained infinitely often.
We begin by proving Proposition 2, stating that (for both Theorems 1 and 2) once a value is assumed, this value, and
all of the values below it, will be assumed infinitely often.
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Proof of Proposition 2. We first claim that it suffices to show that d is assumed infinitely often, and that this already
implies that all d ′ < d are also assumed infinitely often. Indeed, assume that Dm,n,j =d for some m, n ∈ Z�0. Without
loss of generality, m < n. When i increases by 1, then Dm,m+i,j = Dm,m+j,i changes by at most 1 (Lemma 3). Since
Dm,m,j = 0, we see that as i changes from 0 to n − m, Dm,m+i,j assumes all the values in {0, . . . , d}. If d is assumed
infinitely often, then so are all the values {0, . . . , d}.

Thus, without loss of generality, we will assume that d is the largest value which is assumed. We have to show that
it is assumed infinitely often. So we let d be such that Dm,n,j = d for some m, n, j ∈ Z�0 and Dm,n,j �d for all
m, n, j ∈ Z�0. From Proposition 1 it follows that d �q.

Choose m and n such that C contains the subwords

Bu . . . Am . . . Bu+1 . . . Bu+h . . . Am+j . . . Bu+h+1 . . . Bu+h+d−1, (10)

Bv . . . An . . . Bv+1 . . . Bv+h+d . . . An+j . . . Bv+h+d+1, (11)

where, possibly, Bu = 0 or Bv = 0.
To every subword containing some terms Ai , there corresponds a subword, appearing later on in C, containing the

terms Bi with the same indices as the terms Ai . In particular, corresponding to parts of the subwords (10), (11) above
there exist subwords:

AxBmAx+1 . . . Bm+1 . . . Ax+i1−1Bm+jAx+i1 , (12)

Ay−1BnAy . . . Bn+1 . . . Ay+i2Bn+jAy+i2+1, (13)

where the indices x, y are chosen so that Ax + 2 = Bm + 1 = Ax+1 and Ay−1 + 2 = Bn + 1 = Ay , and the indices i1
and i2 are chosen so that Ax+i1−1 + 2 = Bm+j + 1 = Ax+i1 and Ay+i2 + 2 = Bn+j + 1 = Ay+i2+1. It suffices to show
that Dx,y,i1 = d. By (2) and since Am+j − Am = h + j and An+j − An = h + d + j , we have

Bm+j − Bm = sh + sj + tj = j + i1 − 1,

Bn+j − Bn = sh + sj + sd + tj = j + i2 + 1.

Thus, i2 − i1 = sd − 2, which implies the identity i2 − i1 = F + G + H , where

F = 2s + t − 1, G = (d − 3)(s + t − 1), H = (s − 2) − (d − 2)(t − 1).

Notice that: (i) F is the length of a large A-word, (ii) G might be negative (e.g., if s = 2); (iii) d �q implies H �0. To
compute Dx,y,i1 we need to compute the cardinality of the half-open interval I := (Ay+i1 , Ay+i2 ], which is, by (5),

Ay+i2 − Ay+i1 = i2 − i1 + |{B ∩ (Ay+i1 , Ay+i2)}|.

To estimate |{B ∩ (Ay+i1 , Ay+i2)}| suppose that I contains �2 large A-words. Since between 2 distinct large A-words
there are at least s+t−2 small A-words, we thus have 2F +(s+t−2)(s+t−1)�F +G+H , i.e., F +(s+t−2)(s+t−
1)�G+H =s(d−2)− t −1. However, s(d−2)− t −1�s(q−2)− t −1�s(s−2)− t −1 < F +(s+ t −2)(s+ t −1),
since s�s + t − 1, s − 2 < s + t − 2. So there is at most one large A-word in I. If there is one, then there are at least
(d − 3) small A-words in I, and we still have H A-terms to spare, which may also include a B-term. So I contains at
least d − 2 A-words, the rightmost of which ends at Ay+i2 , since to the right of Ay+i2 there is a B-term by (13). The
leftmost of the A-words in I does not begin with Ay+i1 , since it is outside I, nor with Ay+i1 + 1, since then the first
A-word of I would be incomplete. Therefore it begins with Ay+k for some k > i1, so there is a B-term to its left which
is still in I. It follows that I contains at least d − 2 B-terms, one to the left of each A-word in I. Hence,

|{B ∩ (Ay+i1 , Ay+i2)}|�d − 2,

which implies Ay+i2 − Ay+i1 � i2 − i1 + d − 2.
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In case there is no large A-word in [Ay+i1 , Ay+i2 ] we are only better off, and still have at least (d − 2) B-terms in
the interval. From (12), Ax+i1 − Ax = i1 + j + 1, and from (13), Ay+i2 − Ay = i2 + j − 1. Therefore,

Dx,y,i1 = |(Ax+i1 − Ax) − (Ay+i1 − Ay)|
= |(Ax+i1 − Ax) − (Ay+i2 − Ay) + (Ay+i2 − Ay+i1)|
= (i1 + j + 1) − (i2 + j − 1) + Ay+i2 − Ay+i1 �d

but as d was chosen to be the largest value assumed, we see that Dx,y,i1 = d. �

To prove Proposition 3, we follow the same lines and notations as in the proof of Proposition 2 above, with a
modification at the end.

Proof of Proposition 3. Notice that already in the proof of Proposition 2 we were quite close to proving that q is
attained. Indeed, if we would have been able to show that I = (Ay+i1 , Ay+i2 ] contains (d −1) small A-words, we could
rewrite i2 − i1 as

i2 − i1 = (d − 1)(s + t − 1) + ((s − 2) − (d − 1)(t − 1)).

Assuming d < q, we have d �1 + (s − 2)/(t − 1), that is, (d − 1)(t − 1)�s − 2, so that

i2 − i1 �(d − 1)(s + t − 1).

By the same reasoning as in the proof of Proposition 2, we would then get that there are at least (d − 1) B-terms in I
(one to the left of each A-word), and so, as in the proof of Proposition 2, that

Dx,y,i1 �d + 1,

contradicting the maximality of d assumed in that proof, so d = q. However, there is no guarantee that there are only
small A-words in this interval.

Remark 1. The interval I cannot contain a large A-word and d − 2 small A-words. Indeed, d �1 by Lemma 1, say by
choosing m, n so that GA

n = 1, GA
m = 2, hence Dm,n,1 = |GA

n − GA
m| = 1. Thus F + (d − 2)(s + t − 1) = sd + (d −

1)(t − 1)�sd > i2 − i1.

The plan of the proof below is as follows: We choose d to be the largest value attained, and assume d < q. We then
repeat the construction as in Proposition 2, that is, arrive at words of the form (10)–(13). By the same argument as in
Proposition 2, Dx,y,i1 = d . We will then “count” the number of small A-words in I = (Ay+i1 , Ay+i2 ]. In the case where
this number is at least (d − 1), then, as explained above, we arrive at a contradiction and the proof is complete. In the
complementary case, we will iterate the construction once more.

More precisely, we consider the subword (13) and ask what is the number of small A-words to the left of Bn+j . To
check what are the lengths of the various A-words we have to look back at the structure of the original word (11). Let
k ∈ Z�0 denote the number of consecutive A terms to the left of An+j , that is, Bv+h+d +1=An+j−k . Then, in the word
(13) (which is the “B-image” of (11)) we have, counting A-words from right to left, starting with the A-word which
ends with Ay+i2 , exactly k small A-words to the right of the first large A-word. If k�(d − 1), the proof is complete. So
we may assume that k < (d − 1), and that there are less than (d − 1) small A-words in I. Then we know the structure
of the word (13) in more detail. We consider two cases.

(i) k�d − 3. There are k small A-words to the left of Bn+j , followed on the left by a large A-word, and then (by the
formula for i2 − i1)) we have (d − 3 − k)�0 additional small A-words. The last word on the left counted up-to-now
has the term Bn+j−(d−2) to its left. To the left of that we have H = (s − 2) − (d − 2)(t − 1) extra A-terms, which
do not form a full A-word by Remark 1, and then the term Ay+i1 (which is already outside I, since I was chosen to be
half-open). Since we assume s − 2�(t − 1)2 and d < q, we have (s − 2) + (t − 1)�(s − 2)t/(t − 1)�(d − 1)t . This
implies H = (s − 2) − (d − 2)(t − 1)�(d − 1). As before, this means that there are at least (d − 1) B-terms in the
interval [Az+l1 , Az+l2), one to the right of each A-word. Plugging this back into the equations we get Dz,w,l2 = d + 1,
a contradiction.
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(ii) k = d − 2. There are (d − 2) small A-words to the left of Bn+j , the leftmost of which has Bn+j−(d−2) to its left.
This is followed on the left by F + G + H − (d − 2)(s + t − 1) = 2s − 2 − (d − 2)(t − 1) A-terms, not enough to fill
a whole large A-word, and then we have Ay+i1 .

We rewrite part of the subword (13) in a way emphasizing its properties discussed in cases (i) and (ii).

BnAy . . . Bn+1 . . . Bn+j−d+1 . . . Ay+i1 . . . Bn+j−(d−2). (14)

We now generate the following two subwords (15) and (16) from (14) and (12) respectively, the same way as the words
(13) and (12) were generated from (10), (11):

AzByAz+1 . . . By+1 . . . Az+l1−1By+i1Az+l1 . . . Az+l2 , (15)

Aw−1BxAw . . . Bx+1 . . . Aw+l2Bx+i1Aw+l2+1, (16)

where the indices z, w are chosen so that Az + 2 = By + 1 = Az+1 and Aw−1 + 2 = Bx + 1 = Aw, and the indices l1
and l2 are chosen so that Az+l1−1 + 2 = By+i1 + 1 = Az+l1 and Aw+l2 + 2 = Bx+i1 + 1 = Aw+l2+1. We now repeat
the reasoning of the type used in the proof of Proposition 2. We have,

By+i1 − By = s(i1 + j − d + 1) + i1t = i1 + l1 − 1,

Bx+i1 − Bx = s(i1 + j + 1) + i1t = i1 + l2 + 1.

Thus,

l2 − l1 = sd − 2 = (s + t − 1)(d − 1) + ((s − 2) − (d − 1)(t − 1)).

We would now like to estimate Dz,w,l2 . We have,

Az+l2 − Az = (Az+l1 − Az) + (Az+l2 − Az+l1)

= i1 + 1 + l2 + |B ∩ (Az+l1 , Az+l2)|
and

Aw+l2 − Aw = l2 + i1 − 1.

We wish to show that there are at least (d − 1) B-terms in the interval J := [Az+l1 , Az+l2), since then we will have our
desired contradiction: Dz,w,l2 = d + 1. To this end we count the A-words in J, to the right of each of which there is a
B-term.

We have exactly 2s − 2 − (d − 2)(t − 1) small A-words to the right of By+i1 , because this is the number of A-terms
to the right of Ay+i1 . This number is easily checked to be at least (d − 1), assuming d < q:

2s − 2 − (d − 2)(t − 1) = 2s + t − 3 − (d − 1)(t − 1)�s + t − 1�d − 1.

Thus, there are at least (d − 1) B-terms in the interval [Az+l1 , Az+l2), one to the right of each A-word. Plugging this
back into the equations we get Dz,w,l2 = d + 1, a contradiction. �

3. Proof of Theorem 3

Both Theorem 3 and Proposition 1 give an upper bound. In fact, their proofs are very similar. We sketch the proof
of Theorem 3, elaborating only on the points that are different from that of Proposition 1.

We again use induction. Assume that the assertion is false for the smallest j in Dm,n,j . We may assume that j �2,
since Dm,n,1 ∈ S2 by Lemma 3(ii). Thus for some d > q := 2s + 1 we have two words of the form (10) and (11),
where now A-words have either length s or 2s. This time we use the fact that d − 2 > 2s − 1, which implies that at least
one of the A-words between Bu+h+1 and Bu+h+d−1 is of length 2s (follows from Lemma 2). This in turn implies the
inequality

Bu+h+d−1 − Bu �(h + d − 1) + (d − 1)s + (j + 1).



Author's personal copy

4586 S. Artstein-Avidan et al. / Discrete Mathematics 308 (2008) 4578 –4588

The second inequality is the same as for the case t > 1, Bv+h+d − Bv+1 �(h + d − 1) + j − 1, and combining the two
we arrive at

(Bu+h+d−1 − Bu) − (Bv+h+d − Bv+1)�s(d − 1) + 2 > s(2s + 1). (17)

However, again h + d < j , so the induction hypothesis guarantees that this cannot be true, and we arrive at the desired
contradiction. We conclude that for all m, n, j ∈ Z�0, Dm,n,j ∈ S2. �

The following questions remain open: (i) Is the condition s − 2�(t − 1)2 in Theorem 1 indeed necessary? We used
it just once, in the proof of Proposition 3. If in that proof we would iterate the construction of (15) and (16) from (14)
and (12) once more, it appears that the condition could be relaxed to s − 2� t (t − 1). (ii) Is the upper bound 2s + 1 in
Theorem 3 not sharp when t = 1?

4. Epilogue

For n ∈ Z>0, the characteristic function �(n) of any sequence Am is defined by

�(n) =
{

1 if ∃m such thatAm = n,

0 otherwise.

Let S2n be any binary word of length 2n, and �(2i), the sum of the elements of its prefix of length 2i (1� i�n).
Tijdeman observed (private communication), that if �(2i) = i for all i ∈ Z>0, and we let Ak be a sequence with
characteristic function S2n, then:

(i) Every such sequence that contains the subwords 00, 01 and 11, satisfies Dm,n,1 ∈ {0, 1, 2}, and so is not a Beatty
sequence. It also satisfies GA

n ∈ {1, 3}, and so it is not an (s, t)-sequence by Lemma 2. This shows that the converse
of Theorem 1 does not hold.

(ii) There are |S2n|=2n such sequences. (We can always prefix such a sequence with 00, 01, or 11 if either is missing.)

We note that similar constructions (say with �(4i) = 2i), show that also the converse theorem in the case t = 1 does
not hold. We also mention that Mignosi [12] has shown that Dk,m,j ∈ {0, 1} for all k, m, j ∈ Z�0 is satisfied only by
O(n3) sequences of length n.

Explicit functions satisfying Dm,n,j �2; and Dm,n,j = 2 infinitely often, can be constructed using the following

Theorem 4 (Fraenkel [8, Theorem 1]). Let n�1 and a0, . . . , an, m, K, L, M ∈ Z. Suppose that anx
n + an−1x

n−1 +
· · · + a1x + a0 = 0 has a real nonzero root �. Let A(m) = �m��. Then

A

(
M + Lm +

n−2∑
i=0

Ai(Kai+2A(m))

)
= (L − Ka1)A(m) − Ka0m + D,

where D is bounded in m, namely,

D = �M� + (L + Ka0�
−1){m�} − ���,

� =
n−2∑
i=1

(Kai+2A(m)�i − Ai(Kai+2A(m))),

where {x} is the fractional part of x.

Put n = 2, a2 = 1, a1 = −2, a0 = −1, K = 1, L = M = 0 in (17). Then

��m���� = 2�m�� + m − 1

for � = 1 + √
2. Since �m�� satisfies Dk,�,j ∈ {0, 1}, the right-hand side of this identity shows that Dk,�,j �2. In fact,

Dk,�,j ∈ {0, 2}. Theorems 1 and 2 thus imply that this is not an (s, t)-sequence. The first few entries of this table are
depicted in Table 2.
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Table 2
Discrete chaos 1

m �m�� ��m����
1 2 4
2 4 9
3 7 16
4 9 21
5 12 28
6 14 33
7 16 38
8 19 45
9 21 50

10 24 57
11 26 62
12 28 67
13 31 74
14 33 79
15 36 86
16 38 91
17 41 98
18 43 103
19 45 108
20 48 115

Table 3
Discrete chaos 2

m �m�� ��m��2��
1 1 3
2 3 9
3 4 12
4 6 19
5 8 25
6 9 29
7 11 35
8 12 38
9 14 45

10 16 51
11 17 55
12 19 61
13 21 67
14 22 71
15 24 77
16 25 80
17 27 87
18 29 93
19 30 97
20 32 103

Putting a1 = −1, K = 2, but retaining the other values leads to

��m��2�� = 2�m�� + �(1 − √
5){m�}�,

where � is the golden section. Note that �(1 − √
5){m�}� ∈ {−1, −2} for all m ∈ Z>0. It can be seen that now

Dk,�,j ∈ {0, 1, 2, 3, 4}, and each of these values is assumed infinitely often. Lemma 1 once again shows that it is not
an (s, t)-sequence. See Table 3.
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