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Abstract

We define an infinite class of 2-pile subtraction games, where the amount that can be subtracted from both piles simultaneously
is an extended Boolean function f of the size of the piles, or a function over GF(2). Wythoff’s game is a special case. For each
game, the second player winning positions are a pair of complementary sequences. Sample games are presented, strategy complexity
questions are discussed, and possible further studies are indicated. The motivation stems from the major contributions of Professor
Peter Hammer to the theory and applications of Boolean functions.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We invented 2-pile Boolean subtraction games to pay tribute to Peter Hammer, in honor of his outstanding scientific
achievements, in particular his major contributions to the theory and applications of Boolean and pseudo-Boolean
functions. The applications Peter has contributed to span a very wide spectrum of human activity, including optimization,
maximization, minimization, operations research; and lately, medical applications, about which Peter lectured in his
captivating invited address at the workshop.

Within the class of 2-player perfect information games without chance moves, we consider games on two piles of
tokens (x, y) of sizes x, y, with 0�x�y < ∞. Their interest stems, inter alia, from the special and important case of
Wythoff’s game [20]. See also [1–7,11,12,16–18,21].

For any acyclic combinatorial game, such as 2-pile subtraction games, a position u= (x, y) is labeled N (Next player
win) if the player moving from u can win; otherwise it is a P-position (Previous player win). Denote by P the set of
all P-positions, by N the set of all N-positions, and by F(u) the set of all (direct) followers or options of u. It is easy
to see that for any acyclic game,

u ∈ P if and only if F(u) ⊆ N, (1)

u ∈ N if and only if F(u) ∩ P �= ∅. (2)

� Based on a banquet talk delivered in honor of Peter Hammer at the Third Haifa Workshop on Interdisciplinary Applications of Graph Theory,
Combinatorics and Computing, The Cæsarea Edmond Benjamin de Rothschild Institute for Interdisciplinary Applications of Computer Science,
Haifa, Israel, May 27–29, 2003.
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Indeed, player I, beginning from an N-position, will move to a P-position, which exists by (2), and player II has no
choice but to go to an N-position, by (1). Since throughout our games are finite and acyclic, player I will eventually
win by moving to a leaf, which is clearly a P-position.

The partitioning of the game’s positions into the sets P and N is unique for every finite acyclic combinatorial game
without ties.

In our games, two players alternate removing tokens from the piles:

(a) Remove any positive number of tokens from a single pile, possibly the entire pile.
(b) Remove a positive number of tokens from each pile, say k, �, so that |k − �| is not too large with respect to the

position (x1, y1) moved to from (x0, y0), namely, |k − �| < f (x1, y1, x0), equivalently:

|(y0 − y1) − (x0 − x1)| = |(y0 − x0) − (y1 − x1)| < f (x1, y1, x0), (3)

where the constraint function f (x1, y1, x0) is integer-valued and satisfies:
• Positivity:

f (x1, y1, x0) > 0 ∀y1 �x1 �0 ∀x0 > x1.

• Monotonicity:

x′
0 < x0 �⇒ f (x1, y1, x

′
0)�f (x1, y1, x0).

• Semi-additivity (or generalized triangle inequality) on the P-positions (Ai, Bi) (Ai �Bi for all i�0), namely:
for n > m�0,

m∑
i=0

f (An−1−i , Bn−1−i , An−i )�f (An−m−1, Bn−m−1, An).

The player making the move after which both piles are empty (a leaf of the game) wins; the opponent loses.
Let S ⊂ Z�0, S �= Z�0, and S = Z�0\S. The minimum excluded value of S is

mex S = min S = least nonnegative integer not inS.

Note that mex of the empty set is 0.
We defined the above class of games in [10], where we proved:

Theorem 1. Let S = ⋃∞
i=0(Ai, Bi), where, for all n ∈ Z�0,

An = mex{Ai, Bi : 0� i < n}, (4)

B0 = 0, and for all n ∈ Z>0,

Bn = f (An−1, Bn−1, An) + Bn−1 + An − An−1. (5)

If f is positive, monotone and semi-additive, then S is the set of P-positions of a general 2-pile subtraction game with
constraint function f, and the sequences A = ⋃∞

i=1{ai}, B = ⋃∞
i=1{bi} share the following common features: (i) they

partition Z�1; (ii) bn+1 − bn �2 for all n ∈ Z�0; (iii) an+1 − an ∈ {1, 2} for all n ∈ Z�0.

We also showed there that if any of the three conditions of Theorem 3 is dropped, then there are games for which its
conclusion fails:

Proposition 1. There exist 2-pile subtraction games with constraint functions f which lack precisely one of positivity,
monotonicity or semi-additivity, such that S �= P, where S= ⋃∞

i=0(Ai, Bi), and Ai satisfies (4) (i ∈ Z�0); B0 = 0,
Bn satisfies (5) (n ∈ Z>0).
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Throughout this paper we consider the case where f is a function over GF(2), or an extended Boolean function.
The latter is defined (in a seemingly new way) as follows. Variables assume values in Z�0 rather than, as in Boolean
Algebra, only in {0, 1}, and also coefficients and constants are in Z�0. The binary Boolean operators “plus” denoted
by � and “times” denoted by � operate bitwise on the vectors that are the binary expansions of the numbers, where
0�0 = 0�0 = 0�1 = 1�0 = 0, 0�1 = 1�0 = 1�1 = 1�1 = 1. These operations are identical to the classical
Boolean operations. The special Boolean idiosyncrasy is embodied in the idempotent relation 1�1 = 1. For example,
1�3 = 2�3 = 3�3 = 3, 5�6 = 7.

We have a�a = a�a = a for all a ∈ Z�0, and

1�a =
{

0 if a is even,

1 if a is odd.

Further, � and � are both associative and commutative, since the bitwise operations are. The same argument shows
that also the two distributive laws hold: a�(b�c) = (a�b)�(a�c) and a�(b�c) = (a�b)�(a�c).

For defining extended Boolean complements, let C(a) denote the 1’s-complement of a, beginning from the most-
significant 1-bit of a. For b�a, let Cb(a) = C(2�log b�+1 + a). Then Ca(a) = C(2�log a�+1 + a) = C(1a) = C(a). The
Boolean rule of involution C2(x) = C(C(x)) = x has then the following form in our extended Boolean algebra.

Proposition 2. For all a ∈ Z�0, C2
a (a) = Ca(C(a)) = a.

Proof. C2
a (a) = C(2�log a�+1 + C(a)), which is the 1’s complement of C(a) beginning from a 1-bit left-adjacent to

the most significant bit of C(a). Thus C2
a (a) = C(1C(a)) = a. �

2. Bach, Boole, Escher, Galois, Gödel

Consider the 2-pile subtraction game denoted G1, subject to conditions (a) and (b) above, with constraint func-
tion f (x1, y1, x0) = x1�1. Positivity and monotonicity hold trivially, and semi-additivity follows from (An−1�1) +
(An−2�1)�An−2�1. Thus by (5),

Bn = (An−1�1) + Bn−1 + An − An−1. (6)

The first few P-positions (An, Bn) of G1, where An satisfies (4) and Bn satisfies (6), are depicted in Table 1.
The P-positions are the key for winning. From any position not in Table 1, such as (4, 8), there is a legal move

leading back into the table. In fact, (4, 8) → (3, 5) is legal, since (8 − 4) − (5 − 3) = 2 < 3�1 = 3. The position (4, 8)

is an N-position, and in order to win, the Next player will make the move to (3, 5). But (4, 9), which is in the table,
cannot be moved legally into any other table position. It is a Previous player position, i.e., a P-position.

On p. 73 of [15], the reader is asked to characterize the following sequence:

B ′
n�0 = {1, 3, 7, 12, 18, 26, 35, 45, 56, . . .}.

Answer: the sequence {2, 4, 5, 6, 8, 9, 10, 11, . . .} constitutes the set of differences of consecutive terms of B ′
n,

as well as the complement with respect to Z>0 of B ′
n. For our purposes it is convenient to preface 0 to the second

sequence, so we define

A′
n�0 = {0, 2, 4, 5, 6, 8, 9, 10, 11, . . .}.

Table 1
The first few P-positions for G1

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

An 0 1 3 4 6 7 8 10 11 12 13 14 15 17 18 19 20
Bn 0 2 5 9 16 24 32 43 55 67 81 95 111 128 146 166 186
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Table 2
The first few P-positions for G2

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

An 0 1 3 5 6 7 9 10 11 12 14 15 16 17 18 19 20
Bn 0 2 4 8 13 21 29 38 50 61 76 92 107 125 142 162 181

Comparing the sequences A′
n, An and B ′

n, Bn, there does not seem to be a clear connection. But from (6),

Bn − Bn−1 = An + (An−1�1) − An−1 =
{

An + 1 if An−1 even,

An if An−1 odd,
(7)

so the Hofstadter property that An−1 is the difference between Bn and Bn−1, in addition to being its complement, is
almost retained for the P-positions of the game G1. Our first Boolean game is thus related to Bach, Escher and Gödel.

Before continuing with another Boolean game, let us make a short detour via a game for which the constraint function
is computed over the field GF(2), for which 0 ⊕ 0 = 1 ⊕ 1 = 0 ⊗ 0 = 0 ⊗ 1 = 1 ⊗ 0 = 0, 0 ⊕ 1 = 1 ⊕ 0 = 1 ⊗ 1 = 1. For
example, 3 ⊕ 6 = 5, 3 ⊗ 6 = 2. Note that a ⊗ b = a�b for all nonnegative integers a, b; we use a�b in the Boolean
context, and a ⊗ b in Galois-type formulas.

The constraint function for G2 is f (x1, y1, x0) = x1 ⊕ 1. Positivity and monotonicity are trivially satisfied, and
semi-additivity follows from (An−1 ⊕ 1)+ (An−2 ⊕ 1)�An−2 ⊕ 1. From (5), Bn = (An−1 ⊕ 1)+Bn−1 +An −An−1.
Thus,

Bn − Bn−1 = An + (An−1 ⊕ 1) − An−1 =
{

An + 1 if An−1 even,

An − 1 if An−1 odd,
(8)

analogously to the behavior of G1. A prefix of the P-positions for this Galois game is shown in Table 2.
Prior to generalizing the games G1 and G2, it is helpful to prove the following auxiliary result.

Proposition 3. Let b�a�0. Then a�b = b + (a�C(b)) = a + (b�Cb(a)), with extrema

a�b =
{

b if a�b = a,

b + a if a�b = 0.
(9)

Similarly, a ⊕ b = b + (a ⊗ C(b)) − (a ⊗ b) = a + (b ⊗ Cb(a)) − (a ⊗ b), with extrema

a ⊕ b =
{

b − a if a ⊗ b = a,

b + a if a ⊗ b = 0.

Proof. For b�a, a�b has 1-bits precisely where b has, augmented by 1-bits at positions where a has 1-bits and b does
not, i.e., at positions where a�C(b) has 1-bits. Similarly, it has 1-bits precisely where a has, augmented by 1-bits at
positions where b has 1-bits and a does not, i.e., at a + (b�Cb(a)), since b�a. The same argument holds for a ⊕ b,
but we have to subtract the 1-bits co-occurring in a and b. �

Theorem 2. Let k ∈ Z>0. For the 2-pile game with constraint function f (x1, y1, x0) = x1�k, we have
P = ⋃∞

n=0(An, Bn), where An, Bn are given by (4), (5), respectively, and for n�1,

Bn − Bn−1 =
{

An + (C(An−1)�k) if An−1 �k,

An − An−1 + k + (An−1�C(k)) if An−1 �k.
(10)

A similar result holds for the constraint function f (x1, y1, x0) = x1 ⊕ k, namely, for n�1,

Bn − Bn−1 =
{

An + (C(An−1) ⊗ k) − (An−1 ⊗ k) if An−1 �k,

An − An−1 + k + (An−1 ⊗ C(k)) − (An−1 ⊗ k) if An−1 �k.
(11)
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Table 3
The first few P-positions for G3

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

An 0 1 2 3 5 6 7 9 10 11 13 14 15 16 18 19 20
Bn 0 4 8 12 17 25 33 42 54 66 79 95 111 127 148 168 188

Table 4
The first few P-positions for G4

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

An 0 1 2 3 5 6 8 10 12 13 14 15 16 17 19 20 21
Bn 0 4 7 9 11 18 25 38 49 65 80 94 107 127 147 164 188

Table 5
The first few P-positions for G5

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

An 0 1 3 4 5 6 8 9 10 11 12 14 15 16 17 18 19
Bn 0 2 7 13 23 43 90 174 342 692 1396 2799 5585 11185 22355 44695 89373

Proof. As before, positivity, monotonicity and semi-additivity are easily seen to hold for both x1�k and x1 ⊕ k. By
Theorem 1 we get, for x1�k,

Bn − Bn−1 = An + (An−1�k) − An−1,

and (10) follows directly from the first part of Proposition 3.
An analogous argument proves the validity of (11), using the second part of Proposition 3. �

Note that for the special case k = 1, (10) implies (7), and (11) implies (8). The first few P-positions of G3 and G4
for k = 3 are displayed in Tables 3 and 4, respectively, where f (x1, y1, x0) = x1�3 for G3, and f (x1, y1, x0) = x1 ⊕ 3
for G4.

3. Games Boole and Galois played together

What happens when Boole and Galois join together in a game? Here is a special case of a 2-pile subtraction game
they liked to play, with the constraint function f (x1, y1, x0) = (x1 ⊕ y1)�1, containing both a Boolean and Galois-
type operator. Positivity and monotonicity are again immediate. Semi-additivity is implied by ((An−1 ⊕ Bn−1)�1) +
((An−2 ⊕Bn−2)�1)�((An−2 ⊕Bn−2)�1). The first few P-positions for this game, G5, are depicted in Table 5,where,
by (5), Bn = Bn−1 + An − An−1 + ((An−1 ⊕ Bn−1)�1).

Homework. (i) Compute the P-positions for the “complementary” Boole–Galois collaborative game with the constraint
function f (x1, y1, x0) = (x1�y1) ⊕ 1.

(ii) Let k ∈ Z>0. Compute the P-positions for the game with constraint function f (x1, y1, x0) = (x1 ⊕ y1)�k; and
also for the game with f (x1, y1, x0) = (x1�y1) ⊕ k.

We have thus learned how to win even when Boole and Galois contribute jointly to the constraint function.
Hmm. . .Could Boole and Galois have played together? Well, George Boole (1815–1864) lived in England, and Évariste
Galois (1811–1832) in France. Of course Galois became a genius because of the mathematical games he played with
Boole for his last 13 years, from age 8, when he decided to teach the 4-year old Boole, across the English Channel, via
the 19th century Channel-Internet!
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4. Hammer wins even when the theory fails!

Not only did Peter Hammer give us wonderful new insights into the theory and applications of Boolean functions; he
also taught us the important art of selecting profitable research topics. Peter did not choose to work in esoteric areas of
mathematics, but, instead, on Boolean functions, with the rich abundance of applications he managed to squeeze from
the theory he has developed. I will demonstrate, however, a deeper reason for Peter’s clever embrace of Booleanity!

Consider the Boolean game G6 with the constraint function f (x1, y1, x0) = x1�x0. It is clearly positive. Semi-
additivity is implied by (9): (An−1�An)+ (An−2�An−1)�An +An−1 > An +An−2 �An�An−2. But the counterex-
ample 2�5=7 > 2�6=6 shows that f is not monotone.We can still compute the first few positions ofS=⋃∞

n=0(An, Bn),
displayed in Table 6, where An, Bn are given by (4), (5), respectively, so Bn = (An−1�An) + Bn−1 + An − An−1. But
Theorem 1 fails to tell us whether they are or are not P-positions.

In the proof of Theorem 1 in [10] it is first shown, independently of monotonicity, that

An > An−1 (12)

for all n ∈ Z>0, and

Bn − An > Bm − Am �0 for all n > m�0. (13)

Monotonicity is used in precisely two places. The first one is in showing that A and B are complementary sets of integers,
i.e., A ∪ B = Z�1, and A ∩ B = ∅, where A = ⋃∞

n=1 An, B = ⋃∞
n=1 Bn. This is done as follows: if An = Bm, then

n > m implies that An is the mex of a set containing Bm = An, a contradiction to the mex definition; and 1�n�m is
impossible since

Bm = f (Am−1, Bm−1, Am) + Bm−1 − Am−1 + Am

�f (Am−1, Bm−1, An) + Bn−1 − An−1 + An (by (12), (13) and monotonicity)

> An (by positivity).

Though monotonicity fails for the present game, the proof of the complementarity of A and B can be completed in a
simple manner for G6. For m�n�1,

Bm = (Am−1�Am) + Bm−1 − Am−1 + Am

�2Am + Bm−1 − Am−1 (by (9))

�2An + Bn−1 − An−1 (by (12), (13))

> An.

The second place where monotonicity is used in the proof of Theorem 1 is towards the end, where we conclude

f (Am, Bm, Am+1)�f (Am, Bm, An) (14)

for all 0�m < n. As we pointed out, 2�5 = 7 > 2�6 = 6, so without monotonicity, we do not seem to be able to get
(14). We use an auxiliary result.

Proposition 4. Let a, b, c be integers satisfying 0�a < b�c, b − a ∈ {1, 2}. Then a�b�a�c.

Table 6
The first few values of S for G6

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

An 0 1 3 4 5 6 8 9 10 11 12 13 14 16 17 18 19
Bn 0 2 7 15 21 29 45 55 67 79 95 109 125 157 175 195 215
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Proof. (A) Suppose b − a = 1. Then a, b have different parities. If a is even, then, by (9), a�b = a�(a + 1) = a +
1 = b�c�a�c. If a is odd, we may write

a =
k−1∑
i=0

2i +
∑

i �k+1

�i2
i , (15)

where �i ∈ {0, 1} (i�k + 1), and k�1. Then b = a + 1 = 2k + ∑
i �k+1�i2

i . Further,

a�b =
k∑

i=0

2i +
∑

i �k+1

�i2
i . (16)

Since c�b, we can write c = 2k + ∑
i �k+1�i2

i + s for some s�0. Hence a�c = ∑k
i=0 2i + ∑

i �k+1 �i2i + s�a�b.
(B) Suppose b − a = 2. Then a, b have the same parity. We first consider the case where both are odd. Then we may

assume that a is given by (15), so b = a + 2 = 1 + 2k +∑
i �k+1�i2

i . Thus a�b is again given by (16), so we conclude,
as in (A) above, a�b�a�c.

Now consider the case where a, b are both even. Since b − a = 2, one of a, b has the form 4� + 2, whereas the other
is divisible by 4. If a = 4�, b = 4�+ 2, then a�b = b�c�a�c. In the other case, a is twice the right-hand side of (15),
and the proof proceeds in a straightforward way as in case (A), but a, b are multiplied by 2. We omit the details. �

In [10] it was shown, based on the complementarity of A, B, that An − An−1 ∈ {1, 2} for all n�1. By Proposition 4
we thus see that (14) holds also for G6. In conclusion, S=P for G6, where the first few entries of S are displayed in
Table 6.

Thus, although G6 fails to satisfy the hypotheses of the general Theorem 1, it nevertheless enjoys its conclusions.
Peter Hammer demonstrated the merit of picking a research area where conclusions are valid even when the theory
fails!

5. Epilogue

We have presented an assortment of Boolean and Galois 2-player subtraction games on 2 piles of tokens. There are
two types of moves: either remove any positive number of tokens from a single pile, or else, take k > 0 from one and
� > 0 from the other, subject to |k − �| < f , where f is a suitable extended Boolean or GF(2)-type function. These
games were motivated by Peter Hammer’s fascinating work with Boolean functions.

The generalized Wythoff game [6] is a special case of the family of games considered here, namely, the case f = c,
where c is a positive integer constant. (The case c = 1 is the original game as defined by Wythoff.) It has the property
that a polynomial strategy can be given by using a special numeration system, and noting that the An members are
characterized by ending in an even number of 0’s in that representation, and the Bn being their left shifts.

Some of the remaining open questions:

(i) Determine subsets of 2-pile subtraction games for which the indicated strategy is polynomial. (The computation
of the P-positions presented here is exponential in their succinct (logarithmic) input size.)

(ii) Extend the games in a natural way to multi-pile games. This seems to be difficult for Wythoff’s game, for which I
have a conjecture; see [8, Section 6(2); 14, Problem 53; 9, Section 5; 19].

(iii) Compute the Sprague–Grundy function for the games or a subset of them. A polynomial algorithm for this would
permit to play sums of such games efficiently. Seems difficult for Wythoff’s game.

(iv) Compute a strategy for the games when played in misère version, i.e., the player making the last move loses. This
is easy for Wythoff’s game. See [1, Chapter 13].

(v) Computation of complexities of P-positions sequences; for example, Kolmogorov-, program-, subword-,
palindrome-, squares-complexities. For a related class of 2-pile subtraction games the subword complexity was
computed in [13].

Peter Hammer died tragically on December 27, 2006, four days after his 70th birthday. This paper was written in
happier days, when Peter was bristling with scientific activity. We preferred to leave the setting happy, rather than
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turning it into a eulogy, because Peter was a person radiating optimism and happiness, and I cannot but remember him
that way. May his memory be blessed.
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