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COMPLEMENTARY ITERATED FLOOR WORDS
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Abstract. Let ϕ = (1+
√
5)/2 denote the golden section. We investigate relationships between

unbounded iterations of the floor function applied to various combinations of ϕ and ϕ2. We use them
to formulate an algebraic polynomial-time winning strategy for a new four-pile take-away game Flora,
which is motivated by partitioning the set of games into subsets CompGames and PrimGames. We
further formulate recursive, arithmetic, and word-mapping winning strategies for it. The arithmetic
one is based on the Fibonacci numeration system. We further show how to generate the floor words
induced by the iterations using word-mappings and characterize them using the Fibonacci numeration
system. We also exhibit an infinite array of such sequences.
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1. Introduction. As is customary, we denote by �x� the integer part of x, com-
monly known as the floor function. It is the largest integer not exceeding x. Let
ϕ = (1 +

√
5)/2 denote the golden section.

Two topics motivate this work. On the one hand, we wish to study what happens
when we keep iterating the floor function with either ϕ or ϕ2 in various ways. Are any
interesting relationships between them discernible even after an unbounded number
of iterations, or does total chaos take over?

On the other hand, we aim at shedding more light on the class of impartial
take-away games. This class appears to be partitioned into two disjoint subclasses:
those that are easy to generalize to more than one or two piles, and those for which
this seems to be very hard (section 3). A well-known representative of the former is
Nim [2], and of the latter there is Wythoff’s game [8]. Some progress in generalizing
Wythoff to multiple piles was recently made; see [14], [31], [30]. Three-pile games
that are extensions rather than generalizations of Wythoff were also given recently
[12], [5], [6].

Here we consider an extension of Wythoff to four piles. The efforts in defining a
“right” extension and particularly in proving the validity of the winning strategy are
considerably greater than those for three-pile extensions. We present four formulations
of the winning strategy.

In section 2 we investigate unbounded iterations of the floor function and for-
mulate a wealth of relationships and identities. In section 3 we define the subclasses
CompGames and PrimGames, which motivate the definition of the four-pile game
dubbed Flora. In section 3.1 we formulate an algebraic winning strategy for the
game, based on the results derived in section 2, and prove that its complexity is
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polynomial-time. In section 3.2 we formulate a recursive winning strategy which ap-
pears very simple, but its polynomiality is implied only by a recent result [17]. We
end in section 3.3 with a polynomial-time arithmetic winning strategy, based on the
Fibonacci numeration system. In section 4 we indicate how to generate sequences in-
duced by iterations of the floor function using word-mappings. We apply it to one of
the sequences in section 4.1. In section 4.2 we present our fourth winning strategy for
the Flora game, which is also polynomial-time; it stems from a word-mapping view-
point. In section 4.3 we use results from sections 3.3 and 2 and make minor use of the
language of section 4 to characterize the representations of general cases of the special
sequences playing a major role in the algebraic formulation of the winning strategy
of Flora. In section 5 we show, by means of an example, how to produce infinite
complementary arrays using sequences induced by the iterations. In the conclusion
we wrap up and indicate natural further directions of research.

Let n ∈ Z≥1. Let a(n) = �nϕ�, b(n) = �nϕ2�. It is well known that the sequences
a and b split the positive integers [8, section 3]. An example of an iterated identity
is a(b(n)) = a(n) + b(n). It can be abbreviated as ab = a + b, where the product
means iteration (composition) and the suppressed variable n is assumed to range over
all positive integers, unless otherwise specified. We also write a2 for aa, ab3a2 for
abbbaa, etc. An example of four iterated complementary sequences is a2 = b − 1,
ab = a + b, ba = a + b − 1, b2 = a + 2b, since every positive integer is in precisely
one of these four sequences. We use the notation w = w1w2 . . . wk to denote the word
w as well as the (iterated) sequence w(n). If the sequence is intended, we sometimes
write w(n) rather than only w. Notice that the product, though not commutative, is
associative. A general reference on combinatorics of words is [25].

Let h = b, u = a, and, for k ≥ 2, hk = ak−1b, uk = bak−1. Let Δak(n) =
ak(n+ 1)− ak(n), Δhk(n) = hk(n+ 1)− hk(n). For technical reasons we put

a0(n) = n, h0(n) = a(n).

Further, let F−1 = 1, F0 = 1, Fn = Fn−1 + Fn−2 (n ≥ 1) be the Fibonacci sequence.
Notation 1. For k ≥ 0, s ∈ Z, let Gk = ∪∞

n=1a
k(n), Hk = ∪∞

n=1h
k(n), Uk =

∪∞
n=1u

k(n), V2 = ∪∞
n=1b

2(n), and Gk − s = ∪∞
n=1(a

k(n)− s) (subtracting s from every
element of Gk).

In particular, G0 = Z≥1, and H0 = G1 = U1.
Note. In our applications, s ∈ {−2,−1, 0, 2}, most often 0.

2. Identities. After multiplying by the irrational ϕ and then throwing out the
fractional part for an unbounded number of times, one might expect complete chaos
among relationships involving ak, hk, uk, and bk. It is thus surprising that there are
many striking identities and relationships among them. Our purpose in this section
is to prove a selection of them.

Theorem 1. For every k ∈ Z≥1 and every n ∈ Z≥1 the following hold:
(a) The k + 1 sequences Gk, Hk, Hk−1, . . . , H2, H1 partition Z≥1.
(b) uk+1 = ak + ak+1 = ak+2 + 1.
(c) hk = ak+1 + Fk−1.
(d) uk+1 = hk+1 − Fk + 1 = ak+2 + 1.
(e) (e1) hk+1 − hk = ak + Fk−2 − 1.

(e2) hk+1 − ak+1 = ak + Fk − 1.
(e3) auk+1 = uk+2 + 1.

(f) (f1) Let

S1 = {n ∈ Z≥1 : Δa(n) = F0}, S2 = {n ∈ Z≥1 : Δa(n) = F1}.
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Then S1 and S2 split Z≥1; and each of S1 and S2 is an infinite set.
(f2) For all k ∈ Z≥1 the following holds: Δak(n) = Fk−1 for all n ∈ S1 and

Δak(n) = Fk for all n ∈ S2.
(f3) (i) If Δak(n+1) = Fk−1 for some n ∈ Z≥1, then Δak(n) = Δak(n+2) =

Fk.
(ii) If Δak(n+1) = Δak(n+2) = Fk for some n ∈ Z≥1, then Δak(n) =
Δak(n+ 3) = Fk−1.

(f4) Δak(n) = Δhk−1(n) ∈ {Fk−1, Fk}, and each of Fk−1 and Fk is assumed
for infinitely many n.

(f5) (i) Δak(0) = 1.
(ii) Δhk(0) = Fk−1 + 1.

(g) ak(h(n)) = hk+1(n) (due to Lior Goldberg).
(h) (h1) (G2 + 2) ⊂ G1.

(h2) G2 ∪ (G2 + 2) = G1.
(h3) U2 ⊂ (G1 − 2) ⊂ G1 ∪ U2.
(h4) (V2 − 1) ⊂ G2.

We begin by recalling some elementary properties of the floor function. Let x, y
be any real numbers. Denote by {x} the fractional part of x, so x = �x�+ {x}. Then
we have the following:

• 0 ≤ {x} < 1, x − 1 < �x� ≤ x. Replacing x by −x, −x − 1 < �−x� ≤ −x,
hence −1 ≤ �x�+ �−x� ≤ 0 and �x�+ �−x� = 0 if and only if x is an integer.
For example, �ϕ� = 1, �−ϕ� = −2, �ϕ�+ �−ϕ� = −1; and ϕ2 = ϕ+1 implies
{ϕ} = ϕ−1 = ϕ− 1.

• �x�+ �y� ≤ �x+ y� ≤ �x�+ �y�+1. This follows immediately from �x+ y� =
��x�+ {x}+ �y�+ {y}� = �x�+ �y�+ �{x}+ {y}�.

Lemma 1. (i) Let s ∈ Z. Each of the sequences Gk + s, Hk + s, Uk + s, and
V2 + s is strictly increasing for every k ≥ 1.

(ii) The sequences Gk, Hk split Gk−1 for every k ≥ 1.
Proof. (i) The proof follows from the fact that ϕ2 = ϕ+ 1 > ϕ > 1.
(ii) Since ϕ−1 + ϕ−2 = 1, the sequences G1 and H1 split Z≥1 = G0 (see, e.g., [8,

section 3]), so the result holds for k = 1. For any k ≥ 1, assume that Gk, Hk split
Gk−1. Then

Gk+1 ∪Hk+1 =
⋃
n

(ak+1(n) ∪ hk+1(n)) =
⋃
n

(aak(n) ∪ ahk(n))

=
⋃
n

aak−1(n) (by induction) =
⋃
n

ak(n) = Gk.

Proof of Theorem 1(a). We noted that G1 and H1 split Z≥1. Suppose that
Gk, Hk, Hk−1, . . . , H2, H1 partition Z≥1. Then Gk+1, Hk+1, Hk, . . . , H2, H1 partition
Z≥1, since Gk+1, Hk+1 split Gk by Lemma 1.

Note. It follows from Lemma 1(ii) (or from Theorem 1(a)) that for any positive
integers m,n, a(m) 
= b(n). This property will be referred to in what follows as
disjointness.

Proof of Theorem 1(b). By definition,

ak+2 = a2ak = �ϕ�ϕak�� ≤ �ϕ2ak� = bak = uk+1.

By disjointness, uk+1 = bak ≥ ak+2 +1. Conversely, multiply ϕak < ak+1 +1 by ϕ to
get ϕ2ak < ϕ(ak+1 + 1); hence bak ≤ �ϕ(ak+1 + 1)�. By disjointness this inequality
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is strict, so

uk+1 ≤ �ϕ(ak+1 + 1)� − 1 ≤ ak+2 + �ϕ� = ak+2 + 1.

On the other hand, uk+1 = �(ϕ+ 1)ak� = ak + ak+1.
Lemma 2. For every k ∈ Z≥1,
(i) �ϕFk−1� ∈ {Fk − 1, Fk};
(ii) �ϕ2F2k−2� = F2k − 1, �F2k−1ϕ

2� = F2k+1.
Proof. (i) The ratios Fk/Fk−1 are the convergents of the simple continued fraction

expansion of ϕ = [1, 1, 1, . . .]. Therefore |ϕFk−1−Fk| < F−1
k−1 (see, e.g., [19, Chap. 10]),

so ϕFk−1 − Fk = δ, where −F−1
k−1 < δ < F−1

k−1. Thus �ϕFk−1� = Fk + �δ�. The result
follows if |δ| < 1, which is the case for all k ≥ 1, since Fk−1 ≥ F0 = 1.

(ii) The ratios Fk+2/Fk are the convergents of the simple continued fraction ex-
pansion of ϕ2 = [2, 1, 1, 1, . . .]. In fact, F2k+1/F2k−1 < ϕ2 < F2k/F2k−2. This follows
easily from [19, Chap. 10]. Then ϕ2F2k−1 − F2k+1 = δ, where 0 < δ < F−1

2k−1; hence
�ϕ2F2k−1� = F2k+1, since 0 < δ < 1 for all k ≥ 1. Similarly, ϕ2F2k−2−F2k = δ, where
−F−1

2k−2 < δ < 0. Thus �ϕ2F2k−2� = F2k − 1, since −1 < δ < 0 for all k ≥ 1.
Lemma 3. h2 − a3 = 2.
Proof. In Lemma 9 of [12] we proved the special case k = 1 of Theorem 1(d),

namely, h2 = u2+1. Thus h2−a3 = u2−a3+1. Clearly a3 = �ϕ�ϕ�nϕ��� ≤ �ϕ2a� =
u2. But this inequality is strict by disjointness. Thus h2 − a3 ≥ 2.

Conversely, multiply the inequality ϕa < a2 + 1 by ϕ to get ϕ2a < ϕ(a2 + 1).
Therefore �ϕ2a� ≤ �ϕ(a2 + 1)�. Again by disjointness, this inequality is strict; i.e.,
u2 ≤ a3 + 1. As we saw, Lemma 9 of [12] asserts that u2 = h2 − 1. Therefore,
h2 − a3 ≤ 2.

Notation 2. For any positive integer N , denote by R(N) the representation of
N in the Fibonacci numeration system. It has the form R(N) = (dm, . . . , d0), where
N =

∑m
i=0 diFi, di ∈ {0, 1}, di = 1 =⇒ di−1 = 0, i ≥ 1 [9]. The position of a

representation is the subscript i of di. Thus, d0 is in position 0, d1 in position 1, etc.
Proof of Theorem 1(c). For k = 1, this is Lemma 5 of [12, section 5]. For

k = 2, it is Lemma 3 above. Suppose that hk = ak+1 + Fk−1 for some arbitrary
k ≥ 2. Multiply by ϕ and take the floor of both sides. This gives, by Lemma 2,
hk+1 = �ϕ(ak+1 +Fk−1)� ≤ ak+2 + �ϕFk−1�+1 ≤ ak+2 +Fk +1. Now [12, section 6]
implies that R(a2) ends in 01. By Lemma 1, the same holds for ak and hk for every
k ≥ 3 (but it does not hold for h2). Since R(Fk) ends in 00 for k ≥ 2, R(ak+2 + Fk)
also ends in 01 for k ≥ 2, and so does hk+1 for k ≥ 2. But R(ak+2 + Fk + 1) ends
in 10. Hence hk+1 = ak+2 + Fk.

Proof of Theorem 1(d). From (b) and (c), uk+1 = ak+2 +1 = hk+1 −Fk +1. The
second equality follows once more from (c).

We note that inspection shows that Theorem 1(d) does not hold for k < 1.
Proof of Theorem 1(e1). Subtracting (c) from (c) with k replaced by k + 1 gives

hk+1 − hk = ak+2 − ak+1 + Fk−2. Substituting the value of ak+2 from (b) yields the
desired result.

(e2) The proof follows from (e1), where we replace hk by its value from (c).
(e3) We have

auk+1 = �ϕ�ϕ2ak)�� = �ϕ(ak + ak+1)�
≤ ak+1 + ak+2 + 1 = uk+2 + 1,

where the last equality follows from (b). On the other hand,

�ϕ(ak + ak+1)� ≥ ak+1 + ak+2 = uk+2.
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Hence by disjointness, �ϕuk+1� = uk+2 + 1.
We recall the following special case of Lemma 2 of [8].
Lemma I. For integers i > j ≥ 0 and integer Ni+1 ∈ Z≥ 1, let Ni+1 = Fi +

Fi−2 + · · ·+Fj, where j = 0 if i is even, and j = 1 if i is odd. Then Ni+1 = Fi+1 − 1.
This is the analogue in the Fibonacci numeration system of the decimal 99 . . . 9.
Proof of Theorem 1(f1). For any n ∈ Z≥1, clearly ϕ − 1 < Δa(n) < ϕ + 1, so

Δa(n) ∈ {1, 2} = {F0, F1}. This shows already that S1, S2 split Z≥1. Moreover,
if Δa(n) = 1 for all large n, then, since h(n) is increasing, we would have a(n) ∩
h(n) 
= ∅ for infinitely many n ∈ Z≥1, contradicting the complementarity of the two
sequences. If Δa(n) = 2 for all large n, then also Δh(n) = 2 for all large n by
complementarity. But a direct computation shows that Δa(n) = 2 =⇒ Δh(n) = 3,
another contradiction. Thus each of S1 and S2 is infinite as claimed.

Proof of Theorem 1(f2). We proceed by induction on k. Suppose that for some
k ≥ 1, Δak(n) = Fk−1 for all n ∈ S1, and Δak(n) = Fk for all n ∈ S2. This holds for
k = 1 by (f1). For now let us assume that n ∈ S1. Then

Δak+1(n) = �ϕak(n+ 1)� − �ϕak(n)� < ϕak(n+ 1)− ϕak(n) + 1 = ϕFk−1 + 1

by the induction hypothesis. Also,

Δak+1(n) > ϕak(n+ 1)− ϕak(n)− 1 = ϕFk−1 − 1.

So �ϕFk−1� ≤ Δak+1(n) ≤ �ϕFk−1� + 1. Then Lemma 2 implies that Δak(n) ∈
{Fk − 1, Fk, Fk + 1}.

In the proof of Theorem 1(c), it was mentioned that R(a2(n + 2)) ends in 01.
The same thus holds for R(ak+1(n+ 1)) and R(ak+1(n)) for all k ≥ 1, since Gk+1 is
a subsequence of G2 for all k ≥ 1. Therefore R(Δak+1(n)) ends in 00, the same as
R(Fk). But R(Fk +1) ends in 01, and Lemma I implies that R(Fk − 1) ends in 10, or
in 01, depending on whether k is even or odd. Hence Δak+1(n) = Fk for all n ∈ S1.
The same proof shows that Δak+1(n) = Fk+1 for all n ∈ S2.

Proof of Theorem 1(f3). This follows easily for k = 1 by considering the size of
ϕ. For all k ≥ 1 it follows from Theorem 1(f2).

Proof of Theorem 1(f4). This follows directly from (f1) and (f2).
Note. Part of the proof of (f4) follows directly from (d):

hk+1(n+ 1)− ak+2(n+ 1) = hk+1(n)− ak+2(n) = Fk.

Hence Δhk+1(n) = Δak+2(n). But this establishes the equality part of Theorem 1(f4)
only for k ≥ 3 and does not prove the membership part.

Proof of Theorem 1(f5). (i) The proof follows by induction on k.
(ii) By definition, Δhk(0) = hk(1) − hk(0) = hk(1). The result for hk(1) follows

directly from (i) and Theorem 1(c).
Proof of Theorem 1(g). For k = 1, h2(n) = �ϕh(n)� = a(h(n)). If the assertion

holds for any k ≥ 1, then hk+2(n) = �ϕhk+1(n)� = �ϕak(h(n))� = ak+1(h(n)).
Proof of Theorem 1(h1). ClearlyG2 ⊂ G1, so for every n ∈ Z≥1, a

2(n) = a(m) for
some m ∈ Z≥1. By (c), a2(n) + 1 = h(n) 
∈ G1. But then a2(n) + 2 = a(m+ 1) ∈ G1

by (f4) for k = 1.
The following is a special case of Property 1 of [8, section 5].
Lemma II. The set of numbers {R(N) : N ∈ G1} ends in an even (possibly 0)

number of 0’s; hence the complementary set of numbers {R(N) : N ∈ H1} ends in
an odd number of 0’s.
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Proof of Theorem 1(h2). By (h1), G2 ∪ (G2 + 2) ⊆ G1. Choose any a(n) ∈ G1.
If a(n) ∈ (G2 + 2), we are done. So suppose that a(n) = a2(m) + 2 for no m ∈ Z≥1.
By (c), a2(m) + 1 = h(m) for all m ∈ Z≥1, so by disjointness, a(n) = a2(m) + 1
for no m ∈ Z≥1. But then a(n) = g2(m) for some m ∈ Z≥1 by (f4) for k = 1, so
a(n) ∈ G2.

Proof of Theorem 1(h3). The following is immediately implied by Theorem 1(f3):
(a) if a(n)− 1 
∈ G1, then a(n) − 2 ∈ G1, and, conversely, (b) if a(n)− 1 ∈ G1, then
a(n)− 2 
∈ G1. Consider case (b). Lemma II then implies that R(a(n)− 1) ends in an
even positive number of 0’s, and R(a(n)) ends in 01. By Lemma I, R(a(n)− 2) then
ends in 10. We now show that R(�ϕ2a(n)�) ends in 10 for all n ∈ Z≥1.

Now R(a(n)) ends in F2k−2 for some k ∈ Z≥1. By Lemma 2(ii), �ϕ2F2k−2� =
F2k − 1, and R(F2k − 1) ends in 10 by Lemma I, the same as R(a(n)− 2) for case (b).
This proves that R(�ϕ2a(n)�) ends in 10 for all n ∈ Z≥1 and proves the right-hand
side of (h3). On the other hand, let N ∈ U2. Then R(N) ends in 10, and so N + 1
and N +2 are both in G1. Thus N ∈ G1 − 2, proving the left-hand side of (h3).

Proof of Theorem 1(h4). In the proof of Theorem 1(h3) we showed thatR(�ϕ2a(n)�)
ends in 10 for all n ∈ Z≥1. Since R(h(n)) ends in an odd number of 1’s for all n ∈ Z≥1

by Lemma II, R(v2(n)) ends in an odd number N ≥ 3 of 1’s. Then Lemma I implies
that R(v2(n) − 1) ends in 01. Theorem 3 of [12] states that R(G2) is the set of all
numbers whose representation ends in 01, so (V2 − 1) ⊂ G2.

Remark. Consider the word w = �1�2 . . . �k of length k over the binary alphabet
{a, b}. The number m of occurrences of the letter b is the weight of w. We also put
F−2 = 0. Recently, Kimberling [24] proved the following nice and elegant result.

Theorem I. For k ≥ 2, let w = �1�2 . . . �k of length k be any word over {a, b} of
length k and weight m. Then w = Fk+m−4a+Fk+m−3b−c, where c = Fk+m−1−w(1) ≥
0 is independent of n.

Notice that in the theorem—where w(1) is w evaluated at n = 1—only the weight
m appears, not the locations within w where the b’s appear. Their locations, however,
obviously influence the behavior of w. This influence is hidden in the “constant”
c = ck,m,w(1).

We could have used Theorem I to prove most of the results of Theorem 1 simply
by expressing both sides of an identity as in Theorem I and verifying that they are
identical. This verification, however, seems less satisfactory than the above proofs,
which shed some light on the nature of the identities. In a recent book review it
says, “but it is fair to say that while it is a proof, it is not an explanation” [7,
p. 660]. Hardy [18], writing about seven proofs of the Rogers–Ramanujan identi-
ties, put it this way: “None of these proofs can be called ‘simple’ and ‘straightfor-
ward,’ since the simplest are essentially verifications.” I got the Hardy reference
from opinion 90 on the webpage of my esteemed opinionated friend Doron Zeilberger
(http://www.math.rutgers.edu/∼zeilberg/OPINIONS.html). Moreover, the computa-
tion of c is not, generally, so easy, as acknowledged by Kimberling. For example, we
can show that for w = hk (m = 1) we get w(1) = hk(1) = Fk−1 +1, so ck = Fk−2 − 1.
The proof depends on Lemma 2 and the Fibonacci numeration system.

3. An application: The Flora game. Let G be a take-away game on m piles.
A generalization of G is any game G′ on > m piles such that when G′ is reduced to m
piles, G′ becomes identical to G. An extension of G is defined similarly, except that
when G′ is reduced to m piles, it is not identical to G.

The class of impartial take-away games appears to be partitioned into two disjoint
subclasses:
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• CompGames (composite games) and
• PrimGames (prime games).1

Informally, CompGames are games that are easy to generalize to more than one
or two piles; PrimGames are those for which this seems to be very hard. A well-known
representative of the former is Nim, and of the latter, Wythoff’s game. Some progress
in generalizing Wythoff to multiple piles was recently made. Two three-pile games
that are extensions rather than generalizations of Wythoff were also given recently.
It appears that, largely, a game belongs to class CompGames if it decomposes into a
disjunctive sum of subgames, such as Nim, which is the Nim-sum of its pile sizes, and it
belongs to class PrimGames if it is not decomposable. Hence the names CompGames
(composite games) and PrimGames (not decomposable—prime). Whereas for the
former there are theories both for the impartial as well as for the partisan case, there
is no general theory for the latter yet, and we believe that these “lone wolf” games
should be investigated more seriously.

Here we study an extension of Wythoff to four piles, which appears to be a
PrimGame. The efforts in defining a “right” extension, and particularly in proving the
validity of the winning strategy for this apparent PrimGame, are considerably greater
than those for three-pile extensions. We present four winning strategies: algebraic,
recursive, arithmetic, and word-mapping. The recursive is the easiest to describe,
though it seems to be the hardest computationally. Actually it is also polynomial-
time [17]. The algebraic depends on iterations of the floor function, the arithmetic on
the Fibonacci numeration system, and the word-mapping on a morphism-like map-
ping. All are polynomial-time winning strategies.

The Flora game is a two-player game played on four piles of tokens. We denote
positions of Flora by (a1, a2, a3, a4) with 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4. It goes without
saying that every pile must contain a nonnegative number of tokens at all times.

The end position is T0 := (0, 0, 0, 0). The first player unable to move (because
the present position is T0) loses; the opponent wins.

There are three rules of move:
I. Arbitrary positive numbers of tokens from up to three piles may be removed.
II. From a nonzero position one can move to T0 if any of the following three

conditions holds: (i) Two piles have the same size (possibly empty).
(ii) a3 − a2 = 1.
(iii) a1 = h(n) and a2 < h2(n)− 2 for some n ∈ Z≥1.
III. If 0 < a1 < a2 < a3 < a4, one can remove p > 0 from a3, q > 0 from a4, and

arbitrary nonnegative integers from a1 and a2, subject to
(i) q = p if a4−a3 
∈ V2, except for the proviso that if a3−p is the second smallest

component in the quadruple moved to, then p 
= 5;
(ii) q = p+ 1 if a4 − a3 ∈ V2.
We say that a move in Flora is legal if it is consistent with rules (I)–(III).
Note. If the position moved to under rule III(i) is (b1, b2, b3, b4) (where of course

0 ≤ b1 ≤ b2 ≤ b3 ≤ b4), then a3 − p = bi, a4 − p = bj for some 1 ≤ i < j ≤ 4. Then
a4 − a3 = bj − bi = t for some t ∈ Z≥1, and normally t 
= p.

3.1. Algebraic formulation of the P -positions. The set of P -positions of a
game is the set of game positions from which the second (Previous) player can force
a win. The set of all P -positions of a game is denoted P . In particular, for Flora,
T0 ∈ P .

1This is different from the partition into MathGames and PlayGames defined in [10].
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Let

An = h(n), Bn = a3(n), Cn = h2(n), Dn = h3(n),

A = ∪∞
n=1An, B = ∪∞

n=1Bn, C = ∪∞
n=1Cn, D = ∪∞

n=1Dn,

Tn := (An, Bn, Cn, Dn), T = ∪∞
n=0Tn.

A prefix of T of size 19 is shown in Table 1. We shall presently show that T constitutes
the set of P -positions of Flora. Assuming the truth of this assertion, we illustrate
simple moves in instances of Flora.

Examples. (i) From (6, 7, 9, 14), one can move to (5, 6, 8, 12) ∈ P by rule I.
(ii) From each of the positions (4, 6, 9, 9), (5, 8, 9, 14), (7, 8, 11, 20), one can move

to T0 ∈ P by rule II.
(iii) From (19, 21, 22, 32), one can move as follows: 19 → 9, 21 → 11, 22 → 7,

32 → 17, resulting in (7, 9, 11, 17) ∈ P by rule III(i).
(iv) From (24, 29, 32, 37), one can move to (5, 6, 8, 12) ∈ P by rule III(ii) (since

37− 32 = 5 ∈ V2).

Table 1

P -positions of Flora.

n h(n) a3(n) h2(n) h3(n)
0 0 0 0 0
1 2 1 3 4
2 5 6 8 12
3 7 9 11 17
4 10 14 16 25
5 13 19 21 33
6 15 22 24 38
7 18 27 29 46
8 20 30 32 51
9 23 35 37 59
10 26 40 42 67
11 28 43 45 72
12 31 48 50 80
13 34 53 55 88
14 36 56 58 93
15 39 61 63 101
16 41 64 66 106
17 44 69 71 114
18 47 74 76 122

Notation 3. For n ∈ Z≥1, let ΔDC(n) := h3(n) − h2(n), ΔDB(n) := h3(n) −
a3(n), ΔDA(n) := h3(n)− h(n), ΔCB(n) := h2(n)− a3(n), ΔCA(n) := h2(n) − h(n),
ΔBA(n) := a3(n)−h(n), Δ(n) = ΔDC(n)∪ΔDB(n)∪ΔDA(n)∪ΔCB(n)∪ΔCA(n)∪
ΔBA(n), Δ = ∪∞

n=1Δ(n).
Lemma 4. (i) ΔDC(n) = a2(n).
(ii) ΔDB(n) = a2(n) + 2.
(iii) ΔDA(n) = u2(n).
(iv) ΔCB(n) = 2.
(v) ΔCA(n) = a(n).
(vi) ΔBA(n) = a(n)− 2.
(vii) Δ = Z≥1 \ V2.
(viii) Δ = ∪∞

n=1(ΔDC(n) ∪ΔDB(n) ∪ΔDA(n)).
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Proof. (i) This is Theorem 1(e1) for k = 2.

(ii) This is Theorem 1(e2) for k = 2.

(iii) ΔDA(n) = (h3(n) − h2(n)) + (h2(n) − h(n)) = a2(n) + a(n) = u2(n) by
Theorem 1(e1) and (b).

(iv) This is Theorem 1(c).

(v) This is Theorem 1(e1).

(vi) By Theorem 1(c) and (e1), ΔBA(n) = (a3(n) − h2(n)) + (h2(n) − h(n)) =
a(n)− 2.

(vii) Notice that for every n ∈ Z≥1, a
2(n) ∈ G1, a

2(n) + 2 ∈ G1 (by Theorem
1(h1)), 2 ∈ U2, and a(n) − 2 ∈ G1 ∪ U2 (by Theorem 1(h3)). It then follows from
(iii) and (v) that Δ = G1 ∪ U2. The result follows since the sets G1, U2, V2 clearly
partition Z≥1.

(viii) The proof follows from (i)–(iii), (vii), and Theorem 1(h2).

Lemma 5. For fixed n ∈ Z≥1, let 0 < t < a2(n), t 
∈ V2. Then there exists
0 ≤ m < n such that t ∈ ΔDC(m) ∪ΔDB(m) ∪ΔDA(m).

Proof. We have t < a2(n) = ΔDC(n) < ΔDB(n) < ΔDA(n). It then follows from
Lemma 4(viii) that there must be some m < n for which t ∈ ΔDC(m) ∪ΔDB(m) ∪
ΔDA(m).

Theorem 2. The set T constitutes the set of P -positions of the game Flora.

Proof. To begin with we note the following facts:

• Lemma 1 implies that each of the sequences An, Bn, Cn, Dn is increasing.
• A, B, C, D partition Z≥1 (Theorem 1(a)).

It evidently suffices to prove the following two statements:

(A) Every move from any position in T results in a position outside T .

(B) For every position outside T there is a move into a position in T .

(A) Clearly there is no legal move T1 → T0. Suppose that there are positions
Tn, Tm with m < n, n ≥ 2 such that there is a legal move Tn → Tm. This move
must be of type III, since A,B,C,D partition Z≥1, from which it follows easily, using
Lemma 4, that An < Bn < Cn < Dn for n ≥ 2.

By Lemma 4(vii), ΔDC(n) 
∈ V2, so we have to consider only move III(i). We
first show that Dn − p can only be Dm. It cannot be Am, since then Cn − p < Am

has no place in row m of T . Suppose Dn − p = Bm. Then Cn − p = Am. But
ΔBA(m) < ΔBA(n) = a(n) − 2 < ΔDC(n) = a2(n), contradicting move rule III(i).
Suppose Dn − p = Cm. Since Cn − Bn = 2 for all n ∈ Z≥1, we have Cn − p = Am.
But ΔCA(m) = ΔBA(m) + 2 ≤ ΔBA(n) + 1 = a(n) − 1 < ΔDC(n) = a2(n), again
contradicting move rule III(i). Thus indeed Dn − p = Dm.

Suppose Cn − p = Cm. Subtracting, ΔDC(n) = ΔDC(m), so a2(n) = a2(m),
which is impossible for m < n since the sequence g2(�) is strictly increasing. Suppose
Cn − p = Bm = Cm − 2. Then ΔDC(n) = ΔDB(m) = ΔDC(m) + 2, so a2(n) =
a2(m)+2 by Lemma 4. Hence m = n−1. Since Dn−Dn−1 = p, Theorem 1(f) implies
p = 5. But this case is excluded by the proviso. Finally, suppose that Cn − p = Am.
Then ΔDC(n) = ΔDA(m). By Lemma 4 this is equivalent to a2(n) = u2(m). This is
possible for no m < n by disjointness.

(B) Let (a1, a2, a3, a4) 
∈ T , 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4. If there is equality in
any of these or a3 − a2 = 1, a move of type I or II leads to T0. So we may assume
0 < a1 < a2 < a2 + 1 < a3 < a4. By the complementarity of A,B,C,D, a1 appears
in precisely one component of precisely one Tn, n ≥ 1. If a1 = Dn, move a2 → An,
a3 → Bn, a4 → Cn.

Now suppose that a1 = Cn.
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If a4 ≥ Dn, move a2 → An, a3 → Bn, a4 → Dn. Assume a4 < Dn. Let

t := a4 − a3.

We consider two cases.

(a) t 
∈ V2 and
(b) t ∈ V2.

(a) t 
∈ V2. We have

0 < t = a4 − a3 < Dn − a3 < Dn − a1 = Dn − Cn = ΔDC(n) = a2(n).

By Lemma 5, there existsm < n such that either (i) t = ΔDC(m), or (ii) t = ΔDB(m),
or (iii) t = ΔDA(m).

For case (i), move (a1, a2, a3, a4) → (Am, Bm, Cm, Dm). This is a legal move:
a1 = Cn > An > Am, a2 > a1 = Cn > Bn > Bm, a3 > a1 = Cn > Cm, a4 =
a3 +Dm − Cm > Dm, so this move (as well as in the remainder of this proof) is of
form III.

For case (ii), move a1 → Am, a2 → Cm, a3 → Bm, a4 → Dm. This is a legal
move: a1 = Cn > An > Am, a2 > a1 = Cn > Cm, a3 > a1 = Cn > Cm > Bm,
a4 = a3 +Dm −Bm > Dm.

For case (iii), move a1 → Bm, a2 → Cm, a3 → Am, a4 → Dm. This is a legal
move: a1 = Cn > Bn > Bm, a2 > a1 = Cn > Cm, a3 > a1 = Cn > Cm > Am,
a4 = a3 +Dm −Am > Dm.

(b) t ∈ V2. Thus t > 1. To remind ourselves, t = a4 − a3, and we have a1 = Cn,
a4 < Dn. Now t − 1 ∈ (V2 − 1). Since (V2 − 1) ⊂ G2 (Theorem 1(h4)), we have
t − 1 = a2(m) for suitable m ∈ Z≥1. Also ΔDC(m) = a2(m) (Lemma 4(i)). So we
move (a1, a2, a3, a4) → (Am, Bm, Cm, Dm). This is a legal move:

• m < n, since ΔDC(m) = a4 − a3 − 1 < Dn − a1 = Dn − Cn = ΔDC(n).
• a1 = Cn > An > Am, a2 > a1 = Cn > Bn > Bm, a3 > a1 = Cn > Cm,
a4 = a3 + 1 +Dm − Cm > a1 +Dm − Cm = Cn +Dm − Cm > Dm.

So suppose that a1 = Bn.

If a4 ≥ Dn, then move a2 → An, a3 → Cn, a4 → Dn. This is a legal move, since
a2 > a1 = Bn > An and

a3 ≥ a2 + 1 ≥ a1 + 2 = Bn + 2 = Cn.

Therefore we may assume a4 < Dn. The proof is similar to the above case a1 = Cn.
We have a3 ≥ Cn, and 0 < t − 1 < t = a4 − a3 < Dn − a3 ≤ ΔDC(n). Hence
by Lemma 5 there is m < n such that, for case (a), either (i) t = ΔDC(m), or
(ii) t = ΔDB(m), or (iii) t = ΔDA(m). For case (b) we have t− 1 = a2(m) for some
m ∈ Z≥1.

(a) t 
∈ V2.
For case (i), move a2 → Am, (a3, a4) → (Cm, Dm). This is a legal move: a2 >

a1 = Bn > An > Am, a3 ≥ Cn > Cm,

a4 = a3 +Dm − Cm ≥ Cn +Dm − Cm > Dm.

For case (ii), move a1 → Am, a2 → Cm, a3 → Bm, a4 → Dm. This is a legal move:
a1 = Bn > An > Am, a2 ≥ a1 + 1 = Bn + 1 = Cn − 1 ≥ Cm, a3 > a1 = Bn > Bm,
a4 = a3 +Dm −Bm ≥ Cn +Dm −Bm > Dm.
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For case (iii), move a1 → Bm, a2 → Cm, a3 → Am, a4 → Dm. This is a legal
move: a1 = Bn > Bm, a2 ≥ a1 + 1 = Bn + 1 = Cn − 1 ≥ Cm, a3 > a1 = Bn > Bm >
Am, a4 = a3 +Dm −Am > Dm.

(b) t ∈ V2. We have t = a4 − a3, a1 = Bn, a4 < Dn. As in case (b) above, we
move (a1, a2, a3, a4) → (Am, Bm, Cm, Dm). This is a legal move:

• m < n, since ΔDC(m) = a4−a3−1 < Dn−a3−1 ≤ Dn−Cn−1 < ΔDC(n).
• a1 = Bn > An > Am, a2 > a1 = Bn > Bm, a3 ≥ Cn > Cm, a4 =
a3 + 1 +Dm − Cm ≥ Cn + 1 +Dm − Cm > Dm.

Finally, we consider the case a1 = An = h(n).
If a2 < h2(n) − 2, we can move to T0 (rule II(iii)). Otherwise, a2 ≥ h2(n) − 2 =

Bn. Since a3 − a2 > 1, we have a3 ≥ Bn + 2 = Cn. If a4 ≥ Dn, then at least
one of the inequalities for a2, a3, a4 is strict, since (a1, a2, a3, a4) 
∈ T . Then move
(a1, a2, a3, a4) → (An, Bn, Cn, Dn). If a4 < Dn, then for case (a) there is m < n
such that 0 < t = a4 − a3 < ΔDC(n). Hence by Lemma 5, there is m < n such
that either (i) t = ΔDC(m), or (ii) t = ΔDB(m), or (iii) t = ΔDA(m). For case (b),
0 < t− 1 = a2(m) for some m ∈ Z≥1.

(a) t 
∈ V2. For case (i) move (a1, a2, a3, a4) → (Am, Bm, Cm, Dm). This is a
legal move, since m < n implies a1 = An > Am, a2 ≥ Bn > Bm, a3 ≥ Cn > Cm,
Dn > Dm. For case (ii), move a1 → Am, a2 → Cm, a3 → Bm, a4 → Dm. This is
a legal move: a1 = An > Am, a2 ≥ Bn = Cn − 2 > Cm, where the strict inequality
follows since Cn − Cm ≥ 3 (Theorem 1(f4) for k = 3). Also a3 ≥ Cn > Bn > Bm,
a4 = a3 + Dm − Bm > Dm. For case (iii) move a1 → Bm, a2 → Cm, a3 → Am,
a4 → Dm. We have to prove the legality of this move. We begin by showing that
a1 = An > Bm. Notice that

t = a4 − a3 = ΔDA(m) = u2(m) (Lemma 4)

< ΔDC(n) = a2(n) (Lemma 4)

= h(n)− 1 (Theorem 1(c)).

Thus h(n) > u2(m)+1. But h(n) = An and u2(m) = a3(m)+1 (by Theorem 1(d)) =
Bm + 1, so indeed An > Bm + 2 > Bm. Next,

a2 ≥ Bn = a3(n) = h2(n)− 2 (Theorem 1(d))

> h2(n− 1) (Theorem 1(f4))

= Cn−1 ≥ Cm.

Also a3 ≥ Cn > Cm > Am and a4 = a3 +Dm −Am ≥ Cn +Dm −Am > Dm.
(b) t ∈ V2. We have t = a4 − a3, a1 = An, a4 < Dn, t − 1 = a2(m) = ΔDC(m)

for some m ∈ Z≥1. As above we move (a1, a2, a3, a4) → (Am, Bm, Cm, Dm). This is a
legal move:

• m < n, since ΔDC(m) = a4 − a3 − 1 < Dn − Cn − 1 < ΔDC(n).
• a1 = An > Am, a2 ≥ Bn > Bm, a3 ≥ Cn > Cm, a4 = a3 + 1 +Dm − Cm >
Cn +Dm − Cm > Dm.

Theorem 3. The algebraic winning strategy of Flora precipitates a polynomial-
time algorithm for consummating a win.

Proof. Given a position (a1, a2, a3, a4) of Flora with 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4, its
input size is O(log a1 + log a2 + log a3 + log a4). Whether or not move rules II(i) and
II(ii) apply can be checked trivially. We know (Theorem 1(a)) that a1 is precisely one
of a3(n), h3(n), h2(n), h(n). We have to find out which it is and the corresponding
value of n.
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Suppose first that a1 = a3(n) = �ϕ�ϕ�nϕ���. Using the inequality x− 1 < �x� ≤
x, a straightforward computation shows that �a1ϕ−3� + 1 ≤ n ≤ �(a1 + 1)ϕ−3� + 1.
Computing ϕ to O(log a1) places gives the range for the candidate values of n, and for
each of them (one or two), we have to compute a3(n), comparing it with a1. A similar
computation can be done for h3(n), h2(n), h(n). (Notice that there is not necessarily
an integer candidate n for some of these ranges. For example, if we suppose that
a1 = h3(n), then we get �a1ϕ−4�+1 ≤ n ≤ �a1ϕ−4 +2ϕ−2�.) The same method also
indicates whether or not a4 − a3 ∈ V2, or whether move rule II(iii) applies. All these
computations can be done in linear time in the input size.

Finally, we use a binary search to find m ∈ [0, n] such that if a4 − a3 
∈ V2, then
h3(m) − h2(m) = a4 − a3 or some other difference of the columns in the mth row is
a4 − a3. This is done similarly for the case a4 − a3 ∈ V2.

3.2. Recursive formulation of the P -positions. Let S � Z≥1 and S =
Z≥1 \ S. The “Minimum EXcludant” of S is defined by

mexS = minS = least positive integer not in S.

In particular, the mex of the empty set is 1. (This somewhat nonstandard definition
of the mex function is needed for section 5.)

Let T ′
0 = (0, 0, 0, 0), T ′

1 = (2, 1, 3, 4). If T ′
m := (A′

m, B′
m, C′

m, D′
m) already has

been defined for all m < n (n ≥ 2), then let

A′
n = mex{A′

i, B
′
i, C

′
i, D

′
i : 0 ≤ i < n},

B′
n =

{
B′

n−1 + 3 if A′
n −A′

n−1 = 2,
B′

n−1 + 5 otherwise,

C′
n = B′

n + 2,

D′
n =

{
D′

n−1 + 5 if A′
n −A′

n−1 = 2,
D′

n−1 + 8 otherwise.

Let T ′ := ∪∞
n=0T

′
n.

Theorem 4. The set T ′ constitutes the set of P -positions of the game Flora.
Proof. We show that for all m ∈ Z≥0, A′

m = Am, B′
m = Bm, C′

m = Cm,
D′

m = Dm. Suppose this holds for all m < n (n ≥ 1). Let E = mex{Ai, Bi, Ci, Di :
0 ≤ i < n}. The value E cannot have been assumed in any of the four sequences
for m < n, since A,B,C,D split Z≥1, so E ≥ An. If E > An, then An would
never be assumed since the sequences are strictly increasing, again contradicting the
complementarity of the sequences. Thus An = E = A′

n, and the other three equalities
follow from Theorem 2.

The definition of the set T ′ is straightforward; it does not use the functions h(n),
a(n) used for defining T . Thus the recursive computation of T ′ looks easier than that
of the set T . Moreover, the proof of Theorem 4 is very short, and that of Theorem 2
is long.

However, the proof of Theorem 4 relies heavily on Theorems 2 and 1. If the initial
position of the game is (a1, a2, a3, a4), the input size is O(log a1 + log a2 + log a3 +
log a4). The time needed to compute whether the position is a P -position or not seems
to be proportional to a1 + a2 + a3 + a4, because the unwieldy mex function appears
to require scanning previous entries of the sequences An, Bn, Cn, Dn. However, a
new method [17] shows that actually the algorithm implied by Theorem 4 is also
polynomial.
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3.3. Arithmetic formulation of the P -positions. For N ∈ Z≥1, let R(N) =
(dm, . . . , d0) be the representation of N in the Fibonacci numeration system (recall
Notation 2). Then (dm, . . . , d0, 0) is the left shift of R(N).

Theorem 5. R(A) is the set of all representations that end in an odd number
of 0-bits in the Fibonacci numeration system, R(B) the set of all representations that
end in 001, R(C) the set of all representations that end in a positive even number of
0-bits, and R(D) the set of all representations that end in 101. Moreover, for every
n ∈ Z≥1, R(Cn) is the left shift of R(An).

See Table 2 for an example.

Table 2

Representation of the P -positions in the Fibonacci numeration system.

21 13 8 5 3 2 1 An n Bn 34 21 13 8 5 3 2 1
1 0 2 1 1 1

1 0 0 0 5 2 6 1 0 0 1
1 0 1 0 7 3 9 1 0 0 0 1

1 0 0 1 0 10 4 14 1 0 0 0 0 1
1 0 0 0 0 0 13 5 19 1 0 1 0 0 1
1 0 0 0 1 0 15 6 22 1 0 0 0 0 0 1
1 0 1 0 0 0 18 7 27 1 0 0 1 0 0 1
1 0 1 0 1 0 20 8 30 1 0 1 0 0 0 1

1 0 0 0 0 1 0 23 9 35 1 0 0 0 0 0 0 1
1 0 0 1 0 0 0 26 10 40 1 0 0 0 1 0 0 1

34 21 13 8 5 3 2 1 Cn n Dn 55 34 21 13 8 5 3 2 1
1 0 0 3 1 4 1 0 1

1 0 0 0 0 8 2 12 1 0 1 0 1
1 0 1 0 0 11 3 17 1 0 0 1 0 1

1 0 0 1 0 0 16 4 25 1 0 0 0 1 0 1
1 0 0 0 0 0 0 21 5 33 1 0 1 0 1 0 1
1 0 0 0 1 0 0 24 6 38 1 0 0 0 0 1 0 1
1 0 1 0 0 0 0 29 7 46 1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 32 8 51 1 0 1 0 0 1 0 1

1 0 0 0 0 1 0 0 37 9 59 1 0 0 0 0 0 1 0 1
1 0 0 1 0 0 0 0 42 10 67 1 0 0 0 1 0 1 0 1

Proof. The proof is similar to that of Theorem 3 of [12]. For every m ∈ Z≥1,
R(�mϕ�) ends in an even number of 0-bits (including 0 0-bits), and R(�mϕ2�) ends
in an odd number of 0-bits [8, section 4]. Hence R(A) is the set of all numbers that
end in an odd number of 0-bits in the Fibonacci numeration system, whereas each of
the other three representations ends in an even number of 0-bits. Now R(C) is the
set of all numbers that end in a positive even number of 0-bits [12]; hence R(B) and
R(D) each end in a 1-bit. Recall that Cn = Bn + 2. If R(B) contained a number
with representation ending in 101, then adding 2 to it would end in 1 (since 2+3 = 5
is the next Fibonacci number), contradicting the form of R(Cn). Therefore R(B) is
the set of all numbers ending in 001. By complementarity, R(D) is therefore the set
of all numbers ending in 101.

Since R(A) is the set of all representations ending in an odd number of 0-bits,
and R(C) is the set of all representations ending in a positive even number of 0-bits,
the latter is the left shift of the former. Suppose that R(Cm) is the left shift of R(Am)
for every m < n. If R(Cn) were not the left shift of R(An), then it would be assumed
later on (by complementarity), contradicting the strict increase of C.

This formulation of the P -positions is also easily seen to lead to a polynomial-time
winning strategy.
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4. The word-mapping approach. In this section we show how to construct
Gk recursively by a word-map for every k ∈ Z≥1. Similar methods can be used to
construct other functions defined in section 2. We also present our fourth formulation
of the game Flora, which stems from the word-mapping approach. The length of any
(sub)word w is denoted by |w|.

4.1. Word-mapping for Gk. Define the morphism 1 �→ 10, 0 �→ 1. Its fixed
point is the word F = 1011010110110 . . . , also known as the Fibonacci word. For
k ≥ 1, the characteristic function χk of Gk is defined by

χk(m) =

{
1 if ∃ n such that ak(n) = m,
0 otherwise.

Definition 1. Given a binary word W , a run of 0’s is any (possibly empty)
subword of W consisting solely of 0’s, flanked on the left and right by a 1-bit. A
block is any subword consisting of a 1-bit followed by a run of 0’s.

Theorem 6. For every k ≥ 1, the word-mapping for producing the characteristic
function χk of Gk, beginning with 10Fk−1−1, is

10Fk−1−1 �→ 10Fk−1, 0Fk−2 �→ 10Fk−1−1.

Proof. Notice that for G1, the word-mapping is simply the well-known morphism
1 �→ 10, 0 �→ 1, which produces F . Moreover, χ1 = F . See, e.g., [1, Chap. 9] and [16].

The word-map is well defined. Indeed, the initial block of length Fk−1 is mapped
into a block B1 of length Fk. In the second iteration, the prefix of length Fk−1 of B1

is again mapped into B1. The remaining abutting suffix of B1 consists of Fk−2 0’s,
so it is mapped into a block B2 of length Fk−1. In the third iteration, B1 and B2 are
generated again, and then the block B2 of length Fk−1 generates a block B1. Thus
for all subsequent iterations only blocks of the form B1 and B2 are generated, and
there is never any parsing conflict.

Since χ1 = 1011010110110 . . . , Theorem 1(f) implies that χ2 = 10010100100
1010010100 . . . , where we inserted into χ1 F1 −F0 = 1 zero to each run of F0 − 1 = 0
zeros (i.e., one 0 between every pair of consecutive 1’s), and F2 −F1 = 1 zero to each
run of F1−1 = 1 zeros. Doing this yields distances between consecutive 1’s in χ2 of F1

and F2, precisely at the locations where the distances between consecutive 1’s of χ1 are
F0 and F1, respectively. Similarly, χ3 = 1000010010000100001001000010010000 . . . ,
where we inserted into χ2 F2 − F1 = 1 zero to each run of F1 − 1 = 1 zero, and
F3 − F2 = 2 zeros to each run of F2 − 1 = 2 zeros.

In general, for producing χk+1 from χk, we add to χk Fk − Fk−1 = Fk−2 zeros
to each run of Fk−1 − 1 zeros and Fk+1 − Fk = Fk−1 zeros to each run of Fk zeros.
This yields blocks of sizes Fk and Fk+1, respectively, at the locations specified by
Theorem 1(f).

Assume inductively that the word-mapping

10Fk−1−1 �→ 10Fk−1, 0Fk−2 �→ 10Fk−1−1

produces χk, so it generates distances between consecutive 1’s of Fk−1 and Fk at the
locations specified by Theorem 1(f). Then the word-mapping

10Fk−1 �→ 10Fk+1−1, 0Fk−1 �→ 10Fk−1

produces χk+1, since it adds Fk+1 − Fk to the Fk 0’s of the long 0-runs of χk, and
Fk − Fk−1 0’s to the Fk−1 short 0-runs of χk.
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4.2. Word-mapping formulation of the P -positions. Denote terms of An,
Bn, Cn, Dn by a, b, c, d, respectively.

Theorem 7. The word-mapping

bac �→ bacda, da �→ bac,

beginning with bac, generates the characteristic function of the P -positions of the Flora
game.

Proof. The proof is rather similar to that of Theorem 6, and is therefore omit-
ted.

This theorem also leads to a polynomial-time winning strategy, since induction
shows that for every k ∈ Z≥1, the kth application of the word-mapping generates a
word of length Fk+2.

Notice that if we replace bac by 1 and da by 0, we get back our old morphic friend
1 �→ 10, 0 �→ 1.

4.3. Characterization of the sequences G, H by the Fibonacci numera-
tion system. We know from Lemma II and section 3.3 that R(a(n)) ends in an even
number of 0’s, R(h(n)) in an odd number of 0’s, R(h2(n)) in an even positive number
of 0’s, R(h3(n)) in 101, and R(g3(n)) in 10s1, s ≥ 2. What is the general pattern?

Theorem 8. (i) R(G1) is the set of all representations that end in an even
number of 0’s, R(H1) is the set of all representations that end in an odd number
of 0’s, R(G2) is the set of all representations that end in a 1-bit, and R(H2) is the
set of all representations that end in an even positive number of 0’s.

(ii) For every n ∈ Z≥1, R(h(n)) is the left shift of R(a(n)), and R(h2(n)) is the
left shift of R(h(n)).

(iii) For every k ∈ Z≥3 and all n ∈ Z≥1, R(Gk) is the set of all representations
that end in the word 10s1 for all s ≥ k−1, and R(Hk) is the set of all representations
that end in the word 10k−21 (left 1-bit in position k − 1).

Proof. Items (i) and (ii) are already known from Theorem 5 and Lemma II, and
are included here only for the sake of completeness. We only have to point out the
statement about R(G2), which follows from the fact that G2, H2, H1 split the positive
integers (see also [12, Theorem 3]).

(iii) Induction on k. The base case k = 3 was proved in Theorem 5. For k ≥ 3,
suppose that we already proved that R(Gk) is the set of all representations that end
in 10s1 for all s ≥ k − 1, and that R(Hk) is the set of all representations that end in
10k−21. It clearly remains only to show that R(Gk+1) is the set of all representations
that end in 10s1 for all s ≥ k, and that R(Hk+1) is the set of all representations that
end in the word 10k−11. Recall Theorem 1(c): hk(n) = gk+1(n) + Fk−1. If R(Gk+1)
were to contain a number, say ak+1(n), with representation ending in 10k−11 (with
leftmost 1-bit in position k), then adding Fk−1 to it would result in a word with
representation ending in 0k1 because Fk−1+Fk = Fk+1 is the next Fibonacci number.
But then R(hk(n)) would end in 10s1 for some s ≥ k, contradicting the induction
hypothesis. Thus R(Hk+1) is the set of all representations that end in the word
10k−11. Since Gk+1, Hk+1, Hk, . . . , H2, H1 split the integers, R(Hk+1) is the set of all
representations that end in the word 10k−11.

Notes. (1) The general pattern of the representation of the suffixes of Hk for
k ≥ 3 is quite different from that of H1 and H2, and both of these are different from
each other. The same holds for Gk, k ≥ 3, and G1 and G2. Therefore the induction
proof could not have begun with k = 1 or 2.
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(2) The statement in (i) about R(G1) and R(H1) is Theorem 9.1.15 (see also
Corollary 9.1.14) in [1], credited there to [15]. (It is also Lemma II above.) The proof
method of [1] follows that of [3].

Membership problem. Fix some k ∈ Z≥1. Given N ∈ Z≥1, N is in precisely one
of Gk, Hk, Hk−1, . . . , H2, H1 (Theorem 1(a)). Can the following problem be solved
in polynomial time?

Problem. Determine the set in which N lies.
Corollary 1. For every k ∈ Z≥1, the membership problem can be solved in

linear time.
Proof. This can be proved by generalizing the method for computing n in the

proof of Theorem 3 to the case of arbitrary k. But a more “elegant” method is to
compute the Fibonacci representation of N , which can be done in linear time in the
input size Θ(logN). Theorem 8 then implies that the membership problem can be
solved by scanning the suffix of R(N), at most all of its Θ(logN) bits.

5. Infinite complementary arrays. The doubly infinite Stolarsky Array A
with entries A(i, j), i, j ≥ 1 [29], is defined as follows: for every m ≥ 1, A(m, 1) =
mex{A(i, j) : i < m, j ≥ 1}, A(m, 2) = �ϕA(m, 1) + 1/2�, and for all i ≥ 1, j ≥
3, A(i, j), A(i, j) = A(i, j − 1) + A(i, j − 2). Then every positive integer appears
precisely once in A. A beginning portion is exhibited in Table 3. Many variations,
interspersions, and dispersions have since been given; see, e.g., [21], [26]. All are
doubly infinite, limj→∞(A(i, j + 1)−A(i, j)) = ∞ for every i ≥ 1, and every positive
integer appears precisely once in A.

Table 3

The Stolarsky Array.

1 2 3 5 8 13 . . .
4 6 10 16 26 42 . . .
7 11 18 29 47 76 . . .
9 15 24 39 63 102 . . .
...

...
...

...
...

...

For every k ≥ 1, define the Flora Array Lk with the k+1 rowsH1, H2, . . . , Hk, Gk.
This array has a different character. By Theorem 1(a), this singly infinite array
also has the property that every positive integer appears precisely once. Moreover,
A(i, j + 1) − A(i, j) ∈ {Fi, Fi+1} is bounded for every fixed i and all j ≥ 1, but
limi→∞(A(i, j+1)−A(i, j)) = ∞. Table 4 depicts the case k = 6. The last two lines,
below the horizontal line, illustrate the fact that G7, H7 split G6, so replacing G6 by
H7 and G7 constitutes L7.

6. Conclusion. We have generated sequences consisting of nested arbitrary ap-
plications of the floor function to ϕ and ϕ2, established many identities and relation-
ships involving them, and then applied them to formulate an algebraic winning strat-
egy to the game Flora. We also presented recursive, arithmetic, and word-mapping
formulations of the winning strategy. In addition, we characterized the main sequences
by means of the Fibonacci numeration system and generated infinite complementary
arrays of the sequences.

Can some of the relationships of the iterated floor functions be generalized to reals
other than ϕ and ϕ2? As a first step, we could interchange ϕ with ϕ2, studying the
ensuing sequences and the games implied by them. Specifically, define g′(n) = �nϕ2�,
h′(n) = �nϕ�, and, for k ≥ 2, g′k(n) = �ϕ2g′k−1(n)�, h′k(n) = �ϕ2g′k−1(n)�. If we
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Table 4

A complementary Flora Array L6 with seven rows.

n 1 2 3 4 5 6 7 8 9 10 11 12 13
H1 2 5 7 10 13 15 18 20 23 26 28 31 34
H2 3 8 11 16 21 24 29 32 37 42 45 50 55
H3 4 12 17 25 33 38 46 51 59 67 72 80 88
H4 6 19 27 40 53 61 74 82 95 108 116 129 142
H5 9 30 43 64 85 98 119 132 153 174 187 208 229
H6 14 48 69 103 137 158 192 213 247 281 302 336 370
G6 1 22 35 56 77 90 111 124 145 166 179 200 221
H7 22 77 111 166 221 255 310 344 · · ·
G7 1 35 56 90 124 145 179 200 234 268 289 323 · · ·

define G′
i, H

′
i in the obvious way, then it is straightforward to see that the first item of

Theorem 1 is preserved, namely, that G′
k, H

′
k, H

′
k−1, . . . , H

′
2, H

′
1 partition Z≥1. What

games can be spawned from this partition?

More generally, it would be well to investigate which of the above results hold
for which classes of positive reals beyond ϕ. For example, Lemma 1 and Theo-
rem 1(a) clearly hold if we replace ϕ by any irrational α ∈ (1, 2) and ϕ2 by β =
α/(α − 1). Perhaps large parts of Theorem 1 can be generalized for the case where
α = (2− t+

√
t2 + 4)/2, β = α+ t, where t is any given positive integer, since then the

simple continued fraction of α is [1, t, t, t, . . .], so the numeration system arguments
used in the proofs of (c) and (d) of Theorem 1 carry over in a simple way. What
games are induced by these relationships?

The notion of arbitrary iterations of the floor function appeared in [28] and [20].
In the former, the iterations are with rational numbers whose sizes depend on the
iteration depth; in the latter, the aim is to represent the positive integers in the form
of iterated floor functions involving ϕ and ϕ2. These are quite different from our
iterations of the floor function. However, in [24] iterations of the form considered here
were studied, as pointed out at the end of section 2. There is some relationship to
[23], [22].

The Raleigh game [12] is a three-pile extension—not generalization—of Wythoff’s
game. Flora is an extension of Raleigh. Although Flora appears not to be decom-
posable into sums of more elementary games, we were able to formulate for it three
polynomial-time winning strategies. The one based on the Fibonacci numeration sys-
tem is of particular interest. It demonstrates once again that numeration systems
can make strategies of games in PrimGame efficient, similarly to appropriate data
structures; see [27].

We can also define a five-pile extension of Flora, but in the sequence of games with
increasing number of piles, both the definition of the games and the validity proof
of their strategies seem to become more difficult. For example, whereas the union of
the differences Δ between the three columns of the P -positions of Raleigh covers all
of Z≥1, the same union for the four columns of the P -positions of Flora leaves out
V2. But perhaps a pattern for these games will emerge. This possibility may not be
so far-fetched, since, as we saw, e.g., in section 4.3, the general behavior begins only
with k = 3 (corresponding to a game with five piles).

Acknowledgments. Thanks to Herb Wilf, who had written to me that he de-
fined the sequence ak(n) for solving part (a) of [11], and conjectured that Δak(n)
assumes only two values for every fixed k and n ∈ Z≥1. His communication and ear-
lier work of mine—including joint work with Eric Duchêne, Richard Nowakowski, and
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GA, B. Landman, M. Nathanson, J. Nešeťril, R. Nowakowski, and C. Pomerance, eds., de
Gruyter, Berlin, 2007, pp. 199–208; reprinted in Integers, 7(2) (2007), A13.

[13] A. S. Fraenkel, From enmity to amity, Amer. Math. Monthly, to appear.
[14] A. S. Fraenkel and D. Krieger, The structure of complementary sets of integers: A 3-shift

theorem, Int. J. Pure Appl. Math., 10 (2004), pp. 1–49.
[15] A. S. Fraenkel, J. Levitt, and M. Shimshoni, Characterization of the set of values f(n) =

[nα], n = 1, 2, · · · , Discrete Math., 2 (1972), pp. 335–345.
[16] A. S. Fraenkel, M. Mushkin, and U. Tassa, Determination of �nθ� by its sequence of

differences, Canad. Math. Bull., 21 (1978), pp. 441–446.
[17] A. S. Fraenkel and U. Peled, Harnessing the Unwieldy MEX Function, preprint.
[18] G. H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work,

AMS Chelsea Publishing, Providence, RI, 1999 (reprinted with corrections from the 1978
edition).

[19] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Claren-
don Press, Oxford, UK, 1960.

[20] V. E. Hoggatt and M. Bicknell-Johnson, Representations of integers in terms of greatest
integer functions and the golden section ratio, Fibonacci Quart., 17 (1979), pp. 306–318.

[21] C. Kimberling, Interspersions and dispersions, Proc. Amer. Math. Soc., 117 (1993), pp. 313–
321.

[22] C. Kimberling, A self-generating set and the golden mean, J. Integer Seq., 3 (2000), article
00.2.8.

[23] C. Kimberling, Complementary equations, J. Integer Seq., 10 (2007), article 07.1.4.
[24] C. Kimberling, Complementary equations and Wythoff sequences, J. Integer Seq., 11 (2008),

article 08.3.3.
[25] M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia Math. Appl. 90, Cambridge

University Press, Cambridge, UK, 2002.
[26] D. R. Morrison, A Stolarsky array of Wythoff pairs, in A Collection of Manuscripts Related

to the Fibonacci Sequence, Fibonacci Association, Santa Clara, CA, 1980, pp. 134–136.
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