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Abstract

In a previous book honoring Gardner, a 2-player coin-pushing game
on a directed graph (=digraph) without cycles was solved. The coins are
placed on selected nodes of the “Butler University map”. A move consists
of choosing a coin and pushing it to an adjacent node along a directed edge.
The player making the last move wins. We consider the same game, but
where the digraph may be cyclic. Then there need not be a last move,
in which case the outcome is a (dynamic) draw, that is, no player can
force a win, but both have always a nonlosing next move. We provide an
efficient strategy, consisting of deciding, for every position: (i) who can
win, or (ii) whether both can only draw; and (iii) determining the next
move that guarantees a win (case (i)) or maintains a draw (case (ii)).

Keywords: Cyclic games, loopy games, Generalized Sprague-Grundy
function

In [4], Rebecca Wahl analyzed “The Butler University Game”, created by
Jerry Farrell. This 2-player game is played on a simplified map of the Butler
University campus, see Fig. 1. The labels are the first letters of the various
campus buildings. For example, G stands for Gallahue. Wahl explained that
the roads between the buildings are directed, because a severe snowstorm led
the grounds crews to mark the roads to be one-way only. Thus the map became
a directed graph, also called, for short, digraph.

The game begins by placing coins on some or all of the nodes (buildings). A
move consists of selecting a single coin and pushing it to an adjacent node along
a directed edge, but only in the direction of the arrow. Multiple occupancy on
the nodes is permitted, both in the initial placement and as the result of a move.
The players move alternately. The player making the last move wins, and the
opponent loses. Note that M is a leaf , that is, a node without any outgoing
edge. So if all coins are in M , play ends.

It’s not immediately clear, however, that every play of the game ends in a
finite number of moves. Perhaps a player can cycle through nodes, avoiding
to ever enter M . But Fig. 2, which is a redrawing of Fig. 1, shows that the

1



M1

AA

R

R

R

T

I

N

N
E

9

D

G

Figure 1: A simplified map of the Butler University campus.

digraph is acyclic, i.e., without cycles. So indeed every play ends with a clear
winner and loser. Incidentally, Fig. 2 also shows that the Butler University paid
special tribute to Martin Gardner in his 91st year of life. It is to be hoped that
in at most another 9 years the University will complete its Gardner Building ,
so the digraph can accommodate the number 100. Using the Sprague-Grundy
function, the Butler University game can be solved efficiently, i.e., a winning
strategy can be computed “in polynomial time”, see [1], §2.

The purpose of this note is to extend these results to cyclic digraphs —
digraphs that contain cycles. Then there may indeed be cases where play of the
game doesn’t end: no player can force a win, but each has a always a nonlosing
next move. We then say that the outcome is a draw. Consider for example
the case where the snow begins to thaw just a bit, so the road between E and
N2 is back to 2-way traffic, see Fig. 3. If there is a single coin at E or at N2,
the player venturing out of the cycle (E,N2) — (N2, E) can be beaten by the
opponent. Indeed, if Alice moves E → A1, then Bob moves A1 → M , winning.
If Alice moves N2 → D, then Bob moves to R2, Alice to A2, and Bob chooses
to move to N1. If now Alice moves to I, then Bob wins immediately by going
to M . Otherwise Alice moves to T . Then Bob chooses to move to R1, Alice to
A1, Bob to M , winning.

Question 1. If coins are placed on some other nodes, in addition to a single
coin at E or N2, does the outcome always remain a draw, or may it become a
win for the first player?
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Figure 2: The snowed-in campus map is acyclic.

Every finite cyclic game can be analyzed using the Generalized Sprague-
Grundy function [3]. We demonstrate on the Butler University digraph how to
compute this function.

Label M by 0. Do the same for every unlabeled node that doesn’t have
an (immediate) follower labeled 0, and every unlabeled follower of which has a
follower labeled 0. Therefore R1 is labeled 0. Then N1 is labeled 0, since the
follower I has the follower M labeled 0, and the follower T has the follower R1

labeled 0. Then R2 is labeled 0. The next candidate is N2 since its unlabeled
follower D has the follower R2 already labeled 0. However, it has also the
unlabeled follower E, which doesn’t have any follower labeled 0. Thus N2 cannot
be labeled 0. Also no other unlabeled node can be labeled 0.

At this stage, every unlabeled node that doesn’t have a follower 0 is labeled
with a special symbol ∞, larger than every integer. Therefore we dub it infinity.
This implies that E and N2 are labeled ∞. But the nodes R3, 1 and 9 remain
unlabeled at this stage, since each has a follower labeled 0.

We now label by 1 every unlabeled node that doesn’t have a follower 1, and
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Figure 3: The snow begins to thaw.

every follower that is either unlabeled or labeled ∞ has a follower labeled 1.
Thus A1 is labeled 1, then G and D are labeled 1, so also R3 is labeled 1. Every
unlabeled node has now a follower 1, so no additional ∞ labels are dispensed.

Repeat this procedure with the label 2. Thus T is labeled 2, then A2. Now
node 9 has the follower ∞ (at E) which doesn’t have a follower labeled 2, hence
node 9 is labeled ∞. Then I is labeled 3. Node 1 is a candidate for 4, but it
has a follower ∞ (at N2), which doesn’t have a follower labeled 4, so node 1 is
labeled ∞. Finally, we adjoin to every ∞-label the set of labels of all its finite
followers. The labeled digraph is depicted in Fig. 4.

We now show how to use the labels for playing the game optimally. Suppose
that one coin is placed on each of the nodes E, R2 and I, indicated by stars in
Fig. 4. We use Nim-addition to add the labels of the occupied nodes as follows:

∞(1)⊕ 0⊕ 3 = ∞(1)⊕ 3 := ∞(1⊕ 3) = ∞(2).

We used ⊕ to indicate Nim-addition, which is binary addition without carries.
Thus 1⊕3 (in decimal) = 01⊕11 (in binary) = 10 (in binary) = 2 (in decimal).
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Figure 4: A fully labeled Butler University cyclic digraph.

In fact, there are only 10 types of people in the world: those who understand
binary, and those who don’t. Since the Nim-sum is ∞(2), which doesn’t contain
0, the position is a draw. The way to maintain the draw is by moving in the
cycle. If a player moves from a coin on a node labeled ∞ to a node labeled 1,
then the opponent can win by moving the coin on the node labeled 3 to a node
labeled 1. Then the Nim sum of the resulting position is 0⊕ 1⊕ 1 = 1⊕ 1 = 0.
Every position whose Nim-sum is 0 is a second-player win.

Does this indicate that the answer to Question 1, that placing coins on
other nodes in addition to a coin on a node labeled ∞, implies that the outcome
necessarily remains a draw?

Well, suppose that the initial placement of coins is as above, except that
the coin on the node labeled 0 is shifted one node down, namely, it is placed
initially on the node labeled 2. Then the Nim-sum of the initial position is

∞(1)⊕ 2⊕ 3 = ∞(1)⊕ 1 = ∞(1⊕ 1) = ∞(0).

Since there is a 0 attached to the ∞, the first player can win by moving from

5



the node labeled ∞ to a node labeled 1. Indeed, the resulting Nim-sum is then
1⊕ 2⊕ 3 = 0, which is a second-player win.

In conclusion, the answer to Question 1 is that the positions of the additional
coins determine whether the outcome remains a draw or becomes a win for the
first player.

Now suppose that the snow has melted some more, and a loop around build-
ing A2 (Fig. 3) became passable, in addition to the 2-way road opened up before.
Note that at A2 there is now the option of passing: a player moving around the
loop stays in the same position!

Question 2. Is it true that then every play with a coin on A2, where there
is a loop, is a draw?

Fig. 5 depicts the situation with a coin on A2 and 2 additional coins, indi-
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Figure 5: A fully labeled Butler University cyclic digraph, including a loop.

cated by stars, as well as the new labeling induced by the loop. The Nim-sum
of the occupied nodes is now ∞(0, 1) ⊕ 2 ⊕ 3 = ∞(0, 1) ⊕ 1 = ∞(1, 0). Thus
the first player can win by moving to 1. Indeed, the Nim-sum of this position

6



is 1 ⊕ 2 ⊕ 3 = 0. Note, in fact, that if there is only a single coin at A2, then
the first player can win by moving to the follower labeled 0. However, if the
initial position would have only the coin on A2 and precisely one of the other
2 coins depicted by stars on Fig. 5, then the result would be a draw. Thus also
the answer to Question 2 is that the outcome depends on the placement of the
coins.

The following is a summary of the main steps of the Generalized Sprague-
Grundy function labeling algorithm, for any finite digraph.

1. Put i = 0.
2. As long as there exists an unlabeled node u such that no follower of u

is labeled i and every follower of u that is either unlabeled or labeled ∞ has a
follower labeled i, label u by i.

3. Label every unlabeled node that doesn’t have a follower labeled i by ∞.
4. If there is still an unlabeled node, put i ← i + 1 (i.e., increase i by 1) and

return to 2. Otherwise stop.

A simple short mathematical definition of the Generalized Sprague-Grundy
function can be found in [1], §3. The complete labeling algorithm, also in [2],
§3.

We end with a homework problem about multiple occupancy. Suppose that
finitely many coins are placed on a single node u of a finite digraph, all other
nodes being unoccupied. Denote by `(u) the label at u. Prove that:

(i) If `(u) = 0, then no matter how many coins are placed on u, the outcome
is a second player win.

(ii) If 0 < `(u) < ∞, then the outcome is a second player win if the number
of coins on u is even. Otherwise it’s a first player win.

(iii) If `(u) = ∞, then the outcome is a draw for any number of coins ≥ 2 on
u.
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