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Abstract

Given a vector of finitely many piles of finitely many tokens. In End-
Wythoff, two players alternate in taking a positive number of tokens from
either end-pile, or taking the same positive number of tokens from both
ends. The player first unable to move loses and the opponent wins. We
characterize the P -positions (ai, K, bi) of the game for any vector K of
middle piles, where ai, bi denote the sizes of the end-piles. A more succinct
characterization can be made in the special case where K is a vector such
that, for some n ∈ Z≥0, (K, n) and (n, K) are both P -positions. For this
case the (noisy) initial behavior of the P -positions is described precisely.
Beyond the initial behavior, we have bi − ai = i, as in the normal 2-pile
Wythoff game.

Key Words: Combinatorial games, Wythoff’s game, End-Wythoff’s
game, P -positions

1 Introduction

A position in the (impartial) game End-Nim is a vector of finitely many piles
of finitely many tokens. Two players alternate in taking a positive number of
tokens from either end-pile (“burning-the-candle-at-both-ends”). The player
first unable to move loses and the opponent wins. Albert and Nowakowski
[1] gave a winning strategy for End-Nim, by describing the P -positions of the
game. (Their paper also includes a winning strategy for the partizan version of
End-Nim.)

Wythoff’s game [8] is played on two piles of finitely many tokens. Two
players alternate in taking a positive number of tokens from a single pile, or
taking the same positive number of tokens from both piles. The player first
unable to move loses and the opponent wins. From among the many papers
on this game, we mention just three: [2], [7], [3]. The P -positions (a′i, b

′
i) with

a′i ≤ b′i of Wythoff’s game have the property: b′i − a′i = i for all i ≥ 0.
Richard Nowakowski suggested to one of us (F) the game of End-Wythoff ,

whose positions are the same as those of End-Nim but with Wythoff-like moves
allowed. Two players alternate in taking a positive number of tokens from either
end-pile, or taking the same positive number of tokens from both ends. The
player first unable to move loses and the opponent wins.
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In this paper we charaterize the P -positions of End-Wythoff. Specifically,
in Theorem 1 the P -positions (ai,K, bi) are given recursively for any vector of
piles K.

The rest of the paper deals with values of K, deemed special, such that (n, K)
and (K, n) are both P -positions for some n ∈ Z≥0. Theorem 3 gives a slightly
cleaner recursive characterization than in the general case. In Theorems 4 and
5, the (noisy) initial behavior of the P -positions is described, and Theorem 6
shows that after the initial noisy behavior, we have bi − ai = i as in the normal
Wythoff game. Before all of that we show in Theorem 2 that if K is a P -position
of End-Wythoff, then (a,K, b) is a P -position if and only if (a, b) is a P -position
of Wythoff.

Finally, a polynomial algorithm is given for finding the P -positions (ai,K, bi)
for any given vector of piles K.

2 P -Positions for General End-Wythoff Games

Definition 1. A position in the game of End-Wythoff is the empty game, which
we denote by (0), or an element of

⋃∞
i=1 Zi

≥1, where we consider mirror images
identical; that is, (n1, n2, . . . , nk) and (nk, nk−1, . . . , n1) are the same position.

Notation 1. For convenience of notation, we allow ourselves to insert extrane-
ous 0s when writing a position. For example, (0,K), (K, 0), and (0,K, 0) are
all equivalent to K, and (a, 0, b) is equivalent to (a, b).

Lemma 1. Given any position K, there exist unique lK , rK ∈ Z≥0 such that
(lK ,K) and (K, rK) are P -positions.

Proof. We phrase the proof for lK , but the arguments hold symmetrically for
rK .

Uniqueness is fairly obvious: if (n, K) is a P -position and m 6= n, then
(m,K) is not a P -position because we can move from one to the other.

For existence, if K = (0), then lK = rK = 0, since the empty game is a
P -position. Otherwise, let t be the size of the rightmost pile of K. If any of
(0,K), (1,K), . . . , (2t, K) are P -positions, we are done. Otherwise, they are all
N -positions. In this latter case, the moves that take (1,K), (2,K), . . . , (2t, K)
to P -positions must all involve the rightmost pile. (That is, none of these moves
take tokens only from the leftmost pile. Note that we cannot make this guarantee
for (0,K) because, for example, (0, 2, 2) = (2, 2) can reach the P -position (1, 2)
by taking only from the leftmost pile.)

In general, if L is a position and m < n, then it cannot be that the same
move takes both (m,L) and (n, L) to P -positions: if a move takes (m,L) to a
P -position (m′, L′), then that move takes (n, L) to (m′ + n − m,L′), which is
an N -position because we can move to (m′, L′).

In our case, however, there are only 2t possible moves that involve the right-
most pile: for 1 ≤ i ≤ t, take i from the rightmost pile, or take i from both end-
piles. We conclude that each of these moves takes one of (1,K), (2,K), . . . , (2t, K)
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to a P -position, so no move involving the rightmost pile can take (2t + 1,K)
to a P -position. But also, no move that takes only from the leftmost pile takes
(2t+1,K) to a P -position because (n, K) is an N -position for n < 2t+1. Thus
(2t + 1,K) cannot reach any P -position in one move, so it is a P -position, and
lK = 2t + 1.

We now state some definitions which will enable us to characterize P -positions
as pairs at the 2 ends of a given vector K. For any subset S ⊂ Z≥0, S 6= Z≥0,
let mex S = min(Z≥0 \ S) = least nonnegative integer not in S.

Definition 2. Let K be a position of End-Wythoff, and let l = lK and r = rK

be as in Lemma 1. For n ∈ Z≥1, define

dn = bn − an

An = {0, l} ∪ {ai : 1 ≤ i ≤ n− 1}
Bn = {0, r} ∪ {bi : 1 ≤ i ≤ n− 1}
Dn = {−l, r} ∪ {di : 1 ≤ i ≤ n− 1},

where
an = mex An (1)

and bn is the smallest number x ∈ Z≥1 satisfying both

x /∈ Bn, (2)
x− an /∈ Dn. (3)

Finally, let

A =
∞⋃

i=1

ai and B =
∞⋃

i=1

bi.

Note that the definitions of A and B ultimately depend only on the values
of l and r. Thus, if K and L are positions with lK = lL and rK = rL, then the
pairs (ai, bi) that form P -positions when placed as end-piles around them will
be the same.

Theorem 1.

PK =
∞⋃

i=1

(ai,K, bi)

is the set of P -positions of the form (a,K, b) with a, b ∈ Z≥1.
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Table 1: The first 15 outer piles of P -positions for some values of K.

K = (1, 2) K = (1, 3) K = (2, 3) K = (1, 2, 2)
l = 0 0 l = 4 -4 l = 5 -5 l = 1 -1

r = 0 0 r = 1 1 r = 3 3 r = 1 1
i ai bi di ai bi di ai bi di ai bi di

1 1 2 1 1 3 2 1 1 0 2 2 0
2 2 1 -1 2 2 0 2 4 2 3 5 2
3 3 5 2 3 6 3 3 2 -1 4 7 3
4 4 7 3 5 4 -1 4 5 1 5 3 -2
5 5 3 -2 6 10 4 6 10 4 6 10 4
6 6 10 4 7 5 -2 7 12 5 7 4 -3
7 7 4 -3 8 13 5 8 6 -2 8 13 5
8 8 13 5 9 15 6 9 15 6 9 15 6
9 9 15 6 10 7 -3 10 7 -3 10 6 -4
10 10 6 -4 11 18 7 11 18 7 11 18 7
11 11 18 7 12 20 8 12 8 -4 12 20 8
12 12 20 8 13 8 -5 13 21 8 13 8 -5
13 13 8 -5 14 23 9 14 23 9 14 23 9
14 14 23 9 15 9 -6 15 9 -6 15 9 -6
15 15 9 -6 16 26 10 16 26 10 16 26 10

Proof. Since moves are not allowed to alter the central piles of a position, any
move from (a,K, b) with a, b > 0 will result in (c,K, d) with c, d ≥ 0. Since
(l,K) = (l,K, 0) and (K, r) = (0,K, r) are P -positions, they are the only P -
positions with c = 0 or d = 0. Thus, to prove that PK is the set of P -positions
of the desired form, we must show that, from a position in PK , one cannot reach
(l,K), (K, r), or any position in PK in a single move, and we must also show
that from any (a,K, b) /∈ PK with a, b > 0 there is a single move to at least one
of these positions.

We begin by noting several facts about the sequences A and B.

(a) We see from (1) that an+1 =
{

an + 1, if an + 1 6= l
an + 2, if an + 1 = l

for n ≥ 1, so A is

strictly increasing.

(b) We can also conclude from (1) that A = Z≥1 \ {l}.

(c) It follows from (2) that all elements in B are distinct. The same conclusion
holds for A from (1).

We show first that from (am,K, bm) ∈ PK one cannot reach any element of
PK in one move:

(i) (am− t, K, bm) = (an,K, bn) ∈ PK for some 0 < t ≤ am. Then m 6= n but
bm = bn, contradicting (c).
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(ii) (am,K, bm− t) = (an,K, bn) ∈ PK for some 0 < t ≤ bm. This implies that
am = an, again contradicting (c).

(iii) (am − t,K, bm − t) = (an,K, bn) ∈ PK for some 0 < t ≤ am. Then
bn − an = bm − am, contradicting (3).

It is a simple exercise to check that (am,K, bm) ∈ PK cannot reach (l,K) or
(K, r).

Now we prove that from (a,K, b) /∈ PK with a, b > 0, there is a single move
to (l, K), (K, r), or some (an,K, bn) ∈ PK .

If a = l, we can take all of the right-hand pile and reach (l,K). Similarly, if
b = r, we can move to (K, r) by taking the left-hand pile.

Now assume a 6= l and b 6= r. We know from (b) that a ∈ A, so let a = an.
If b > bn, then we can move to (an,K, bn). Otherwise, b < bn, so b must violate
either (2) or (3).

If b ∈ Bn, then b = bm with m < n (because b 6= r and b > 0). Since
am < an by (a), we can move to (am,K, bm) by drawing from the left pile.

If, on the other hand, b − an ∈ Dn, then there are three possibilities: if
b− an = bm − am for some m < n, then we can move to (am,K, bm) by taking
b−bm = an−am > 0 from both end-piles; if b−an = −l, then drawing b = an−l
from both sides puts us in (l,K); and if b− an = r, then taking an = b− r from
both sides leaves us with (K, r).

3 P -positions for Special Positions

Examining Table 1 reveals a peculiarity that occurs when l = r.

Definition 3. A position K is special if lK = rK .

In such cases, if (ai, bi) occurs in a column, then (bi, ai) also appears in
that column. Examples of special K are P -positions, where l = r = 0, and
palindromes, where (l,K) is the unique P -position of the form (a,K), but
(K, r) = (r, K) is also a P -position, so l = r. However, other values of K
can also be special. We saw (1, 2)—a P -position—and (1, 2, 2) in Table 1; other
examples are (4, 1, 13), (7, 5, 15), and (3, 1, 4, 10), to name a few.

We begin with the special case lK = rK = 0.

Theorem 2. Let K be a P -position of End-Wythoff. Then (a,K, b) is a P -
position of End-Wythoff if and only if (a, b) is a P -position of Wythoff.

Proof. Induction on a + b, where the base a = b = 0 is obvious. Suppose
the assertion holds for a + b < t, where t ∈ Z>0. Let a + b = t. If (a, b)
is an N -position of Wythoff, then there is a move (a, b) → (a′, b′) to a P -
position of Wythoff, so by induction (a′,K, b′) is a P -position hence (a,K, b)
is an N -position. If, on the other hand, (a, b) is a P -position of Wythoff, then
every follower (a′, b′) of (a, b) is an N -position of Wythoff, hence every follower
(a′,K, b′) of (a,K, b) is an N -position, so (a,K, b) is a P -position.
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The remainder of this paper deals with other cases of special K. We will see
that this phenomenon allows us to ignore the distinction between the left and
the right side of K, which will simplify our characterization of the P -positions.
We start this discussion by redefining our main terms accordingly. (Some of
these definitions are not changed, but repeated for ease of reference.)

Definition 4. Let r = rk, as above. For n ∈ Z≥1, define

dn = bn − an,

An = {0, r} ∪ {ai : 1 ≤ i ≤ n− 1},
Bn = {0, r} ∪ {bi : 1 ≤ i ≤ n− 1},
Vn = An ∪Bn,

Dn = {r} ∪ {di : 1 ≤ i ≤ n− 1},

where
an = mex Vn (4)

and bn is the smallest number x ∈ Z≥1 satisfying both

x /∈ Vn, (5)
x− an /∈ Dn. (6)

As before, A =
⋃∞

i=1 ai and B =
⋃∞

i=1 bi.

With these definitions, our facts about the sequences A and B are somewhat
different:

(a) The sequence A is strictly increasing because 1 ≤ m < n =⇒ an =
mexVn > am, since am ∈ Vn.

(b) It follows from (5) that all elements in B are distinct.

(c) Condition (5) also implies that bn ≥ an = mex Vn for all n ≥ 1.

(d) A ∪B = Z≥1 \ {r} due to (4).

(e) A ∩ B is either empty or equal to {a1} = {b1}. First, note that an 6= bm

for n 6= m, because m < n implies that an is the mex of a set containing
bm by (4), and if n < m, then the same conclusion holds by (5). If r = 0,
then bi−ai 6= 0 for all i, so A∩B = ∅. Otherwise r > 0, and for n = 1, the
minimum value satisfying (5) is mex{0, r} = a1, and in this case a1 also
satisfies (6); that is, 0 = a1−a1 /∈ {r}. Therefore, b1 = a1, and bi−ai 6= 0
for i > 1, by (6).

Theorem 3. If K is special, then

PK =
∞⋃

i=1

(ai,K, bi) ∪ (bi,K, ai)

is the set of P -positions of the form (a,K, b) with a, b ∈ Z≥1.
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Table 2: The first 20 outer piles of P -positions for some values of K. Note that B,
while usually strictly increasing, need not always be, as illustrated at K = (8, 6, 23),
i = 9.

K = (0) K = (1, 1, 2) K = (5) K = (8, 6, 23)
r = 0 r = 2 r = 3 r = 14

i ai bi di ai bi di ai bi di ai bi di

1 1 2 1 1 1 0 1 1 0 1 1 0
2 3 5 2 3 4 1 2 4 2 2 3 1
3 4 7 3 5 8 3 5 6 1 4 6 2
4 6 10 4 6 10 4 7 11 4 5 8 3
5 8 13 5 7 12 5 8 13 5 7 11 4
6 9 15 6 9 15 6 9 15 6 9 15 6
7 11 18 7 11 18 7 10 17 7 10 17 7
8 12 20 8 13 21 8 12 20 8 12 20 8
9 14 23 9 14 23 9 14 23 9 13 18 5
10 16 26 10 16 26 10 16 26 10 16 25 9
11 17 28 11 17 28 11 18 29 11 19 29 10
12 19 31 12 19 31 12 19 31 12 21 32 11
13 21 34 13 20 33 13 21 34 13 22 34 12
14 22 36 14 22 36 14 22 36 14 23 36 13
15 24 39 15 24 39 15 24 39 15 24 39 15
16 25 41 16 25 41 16 25 41 16 26 42 16
17 27 44 17 27 44 17 27 44 17 27 44 17
18 29 47 18 29 47 18 28 46 18 28 46 18
19 30 49 19 30 49 19 30 49 19 30 49 19
20 32 52 20 32 52 20 32 52 20 31 51 20

Table 2 lists the first few such (ai, bi) pairs for several special values of K.
Note that the case K = (0) corresponds to Wythoff’s game.

Proof. As in the proof for general K, we need to show two things: from a
position in PK one cannot reach (r, K), (K, r), or any position in PK in a single
move, and from any (a,K, b) /∈ PK with a, b > 0 there is a single move to at
least one of these positions.

It is a simple exercise to see that one can reach neither (r, K) nor (K, r)
from (am,K, bm) ∈ PK , so we show that it is impossible to reach any position
in PK in one move:

(i) (am − t, K, bm) ∈ PK for some 0 < t ≤ am. We cannot have (am −
t, K, bm) = (an,K, bn) because it contradicts (b). If (am − t, K, bm) =
(bn,K, an), then an = bm, so m = n = 1 by (e). But then am − t = bn =
am, a contradiction.

(ii) (am,K, bm − t) ∈ PK for some 0 < t ≤ bm. This case is symmetric to (i).
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(iii) (am − t, K, bm − t) ∈ PK for some 0 < t ≤ am. We cannot have (am −
t, K, bm−t) = (an,K, bn) because it contradicts (6). If (am−t,K, bm−t) =
(bn,K, an), then bm−am = −(bn−an). But (c) tells us that bm−am ≥ 0
and bn − an ≥ 0, so bm − am = bn − an = 0, contradicting (6).

Similar reasoning holds if one were starting from (bm,K, am) ∈ PK .

Now we prove that from (a,K, b) /∈ PK with a, b > 0 there is a single move
to (r, K), to (K, r), to some (an,K, bn) ∈ PK , or to some (bn,K, an) ∈ PK . We
assume that a ≤ b, but the arguments hold symmetrically for b ≤ a.

If a = r, we can move to (r, K) by taking the entire right-hand pile. Other-
wise, by (d), a is in either A or B. If a = bn for some n, then b ≥ a = bn ≥ an.
Since (a,K, b) /∈ PK , we have b > an, so we can move b to an, thereby reaching
(bn,K, an) ∈ PK .

If a = an for some n, then if b > bn, we can move to (an,K, bn) ∈ PK .
Otherwise we have, a = an ≤ b < bn. We consider 2 cases.

I. b − an ∈ Dn. If b − an = r, then we can take b − r = an from both ends
to reach (K, r). Otherwise, b − an = bm − am for some m < n, and b − bm =
an − am > 0 since an > am by (a). Thus we can move to (am,K, bm) ∈ PK by
taking an − am = b− bm from both an and b.

II. b − an /∈ Dn. This shows that b satisfies (6). Since b < bn and bn is the
smallest value satisfying both (5) and (6), we must have b ∈ Vn. By assumption,
b > 0. If b = r, then we can move to (K, r) by taking the entire left-hand pile.
Otherwise, since b ≥ an > am for all m < n, it must be that b = bm with m < n.
We now see from (a) that am < an, so we can draw from the left-hand pile to
obtain (am,K, bm) ∈ PK .

Lemma 2. For m,n ∈ Z≥1, if {0, . . . ,m−1} ⊆ Dn, m /∈ Dn and an +m /∈ Vn,
then bn = an + m and {0, . . . ,m} ⊆ Dn+1.

Proof. We have x < an =⇒ x ∈ Vn, and an ≤ x < an + m =⇒ x− an ∈ Dn, so
no number smaller than an +m satisfies both (5) and (6). The number an +m,
however, satisfies both since, by hypothesis, an + m /∈ Vn and m /∈ Dn, so
bn = an + m. Since bn − an = m, {0, . . . ,m} ⊆ Dn+1.

Lemma 3. For m ∈ Z≥1, if Dm = {0, . . . ,m − 1}, then bn = an + n for all
n ≥ m.

Proof. We see that m /∈ Dm. Also, am + m /∈ Vm: it cannot be in Am because
A is strictly increasing, and it cannot be in Bm because if it were, we would
get m = bi − am < bi − ai ∈ Dm, a contradiction. So Lemma 2 applies, and
bm = am + m.

This shows that Dm+1 = {0, . . . ,m}, so the result follows by induction.

Lemma 4. If 1 ≤ m ≤ r < am + m − 1 and Dm = {r, 0, 1, . . . ,m − 2}, then
dm = m− 1. Thus, for m ≤ n ≤ r, dn = n− 1.
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Proof. For 0 < i < m we have ai < am by (a) and di < m− 1 since we cannot
have di = r. Hence am + m − 1 > ai + di = bi ≥ ai. Also by hypothesis,
am +m−1 > r, so am +m−1 6∈ Vm. Since m−1 6∈ Dm, Lemma 2 (with n = m
and m = m− 1) implies dm = m− 1.

For m ≤ n ≤ r, the condition in the lemma holds inductively, so the conclu-
sion holds, as well.

We will now begin to note further connections between the P -positions in
End-Wythoff and those in standard Wythoff’s Game, to which end we introduce
some useful notation.

Notation 2. The P -positions of Wythoff’s game—i.e., the 2-pile P -positions
of End-Wythoff, along with (0, 0) = (0)—are denoted by

⋃∞
i=0(a

′
i, b

′
i), where

a′n = bnφc and b′n = bnφ2c for all n ∈ Z≥0, and φ = (1 +
√

5)/2 is the golden
ratio. We write A′ =

⋃∞
i=0 a′i and B′ =

⋃∞
i=0 b′i.

An important equivalent definition of A′ and B′ is, for all n ∈ Z≥0 (see [3]),

a′n = mex{a′i, b′i : 0 ≤ i ≤ n− 1},
b′n = a′n + n.

The following is our main lemma for the proof of Theorem 4.

Lemma 5. Let n ∈ Z≥0. If a′n +1 < r, then an+1 = a′n +1. If b′n +1 < r, then
bn+1 = b′n + 1.

Proof. Note that a′0 + 1 = b′0 + 1 = 1. If 1 < r, then a1 = mex{0, r} = 1, and 1
satisfies both (5) and (6), so b1 = 1. So the result is true for n = 0.

Assume that the lemma’s statement is true for 0 ≤ i ≤ n− 1 (n ≥ 1), and
assume further that a′n +1 < r. Then a0 = 0 < a′n +1. Also, a′i +1 < a′n +1 < r
for 0 ≤ i ≤ n − 1 because A′ is strictly increasing. But, ai+1 = a′i + 1 for
0 ≤ i ≤ n− 1 by the induction hypothesis, so ai < a′n + 1 for 1 ≤ i ≤ n. Thus,
we have shown that a′n + 1 /∈ An+1.

Let m be the least index such that b′m +1 ≥ r, and let j = min{m,n}. Then
b′i−1 + 1 < r for 1 ≤ i ≤ j, so bi = b′i−1 + 1 by the induction hypothesis. We
know that b′r = a′s =⇒ r = s = 0, so b′i−1 6= a′n because n ≥ 1. Therefore
bi = b′i−1 + 1 6= a′n + 1, so a′n + 1 /∈ Bj+1.

If j = n, then we have shown that a′n + 1 /∈ Vn+1. Otherwise, j = m. For
i ≥ m+1 we have di ≥ m by (6), since di = bi−ai = b′i−1+1−(a′i−1+1) = i−1
for 1 ≤ i ≤ m by our induction hypothesis. Also, ai ≥ am+1 for i ≥ m + 1,
by (a). Therefore, for i ≥ m + 1, bi = ai + di ≥ am+1 + m = (a′m + 1) + m =
b′m + 1 ≥ r > a′n + 1. Thus we see that a′n + 1 /∈ {bi : i ≥ m + 1}, and we have
shown that a′n + 1 /∈ Vn+1.

Now, 0 ∈ Vn+1, and if 1 ≤ x < a′n+1, then 0 ≤ x−1 < a′n, so x−1 ∈ {a′i, b′i :
0 ≤ i < n}. Thus, for some i with 0 ≤ i < n, either x = a′i + 1 = ai+1 or x =
b′i+1 = bi+1 by the induction hypothesis, so x ∈ Vn+1. Hence a′n+1 = mexVn+1.
This proves the first statement of the lemma: an+1 = mex Vn+1 = a′n + 1.
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Note that if b′i + 1 < r for some i ∈ Z≥0, then a fortiori a′i + 1 < r. Hence
by the first part of the proof, ai+1 = a′i + 1. Thus,

b′i + 1 < r =⇒ ai+1 = a′i + 1. (7)

For the second statement of the lemma, assume that the result is true for
0 ≤ i ≤ n − 1 (n ≥ 1), and that b′n + 1 < r. Then, for 0 ≤ i ≤ n − 1, we
know ai+1 = a′i + 1 by (7), and bi+1 = b′i + 1 by the induction assumption.
Therefore di = i − 1 for 1 ≤ i ≤ n, so bn+1 cannot be smaller than an+1 + n.
Also an+1 = a′n + 1 by (7).

Consider an+1 + n = a′n + 1 + n = b′n + 1. We have 0 < b′n + 1 < r, and for
1 ≤ i ≤ n, ai ≤ bi = b′i−1 + 1 < b′n + 1. This implies that b′n + 1 /∈ Vn+1, and we
conclude that bn+1 = b′n + 1.

Corollary 1. Let n ∈ Z≥0. If an+1 < r, then an+1 = a′n + 1. If bn+1 < r, then
bn+1 = b′n + 1.

Proof. Note that an+1 > 0. Since A′ ∪ B′ = Z≥0, either an+1 = a′i + 1 or
an+1 = b′i + 1. If a′i + 1 = an+1 < r, then an+1 = a′i + 1 = ai+1 by Lemma 5, so
i = n. If b′i +1 = an+1 < r, then an+1 = b′i +1 = bi+1 by Lemma 5, so i = n = 0
by (e), and a1 = b1 = b′0 + 1 = a′0 + 1. The same argument holds for bn+1.

Corollary 2. For 1 ≤ n ≤ r − 1, n ∈ A if and only if n− 1 ∈ A′ and n ∈ B if
and only if n− 1 ∈ B′.

Proof. This follows from Lemma 5 and Corollary 1.

Theorem 4. If r = a′n + 1, then for 1 ≤ i ≤ r, di = i − 1. Furthermore, for
1 ≤ i ≤ n, ai = a′i−1 + 1 and bi = b′i−1 + 1.

Proof. If r = 1, then n = 0. In this case, note that a1 = b1 = 2, so d1 = 0, and
that the second assertion of the theorem is vacuously true.

Otherwise, r ≥ 2, and we again let m be the least index such that b′m+1 ≥ r.
Note that m ≥ 1 because b′0 + 1 = 1 < r. Thus b′m 6= a′n = r − 1, so in fact
b′m + 1 > r. For 1 ≤ i ≤ m, since a′i−1 ≤ b′i−1 and B′ is increasing, we have
a′i−1 + 1 ≤ b′i−1 + 1 ≤ b′m−1 + 1 < r, so ai = a′i−1 + 1 and bi = b′i−1 + 1 by
Lemma 5. We see that di = i− 1 for 1 ≤ i ≤ m, so Dm+1 = {r, 0, . . . ,m− 1}.

Notice that am+1 + m > r because either am+1 > r and the fact is clear, or
am+1 < r, so am+1 = a′m + 1 by Corollary 1, which implies that am+1 + m =
a′m + 1 + m = b′m + 1 > r. Also, m + 1 ≤ b′m−1 + 2 (because 1 + 1 = b′0 + 2
and B′ is strictly increasing) and b′m−1 + 1 < r, so m + 1 ≤ b′m−1 + 2 ≤ r. We
can now invoke Lemma 4 to see that di = i − 1 for m + 1 ≤ i ≤ r, so we have
di = i− 1 for 1 ≤ i ≤ r.

Since n ≤ a′n < r, in particular di = i − 1 for 1 ≤ i ≤ n. With i in this
range, we know a′i−1 + 1 < a′n + 1 = r, so we get ai = a′i−1 + 1 by Lemma 5,
and since di = i− 1, bi = ai + i− 1 = a′i−1 + 1 + i− 1 = b′i−1 + 1.

Theorem 5. If r = b′n + 1, then for 1 ≤ i ≤ r, di = i− 1 except as follows:

10



• If n = 0, there are no exceptions.

• If a′n + 1 ∈ B′, then dn+1 = n + 1 and dn+2 = n.

• If n = 2, then d3 = 3, d4 = 4 and d5 = 2.

• Otherwise, dn+1 = n + 1, dn+2 = n + 2, dn+3 = n + 3, and dn+4 = n.

Proof. One can easily verify the theorem for 0 ≤ n ≤ 2—that is, when r = 1
(first bullet), 3 (second bullet), or 6 (third bullet). So we assume n ≥ 3.

Lemma 5 tells us that for 1 ≤ i ≤ n, ai = a′i−1 + 1 and bi = b′i−1 + 1
because a′i−1 + 1 ≤ b′i−1 + 1 < b′n + 1 = r. This implies that di = i − 1
for 1 ≤ i ≤ n. This is not the case for dn+1: a′n + 1 < b′n + 1 = r, so
an+1 = a′n +1, but an+1 +n = b′n +1 = r, which cannot be bn+1. We must have
bn+1 ≥ an+1 + n, however, and ai ≤ bi < r = an+1 + n for 1 ≤ i ≤ n, so we see
that an+1 + n + 1 /∈ Vn+1; thus bn+1 = an+1 + n + 1 = a′n + n + 2 = b′n + 2, and
dn+1 = n + 1.

If a′n +1 ∈ B′, then a′n+1 = a′n +2 (because B′ does not contain consecutive
numbers) and a′n+1 +1 = a′n +3 ≤ a′n +n = b′n = r−1, so Lemma 5 tells us that
an+2 = a′n+1 +1 = a′n +3. Now, an+2 +n = a′n +n+3 > a′n +n+2 = bn+1 ≥ bi

for all i ≤ n + 1, so bn+2 = an+2 + n, and we see dn+2 = n. That is, we have
an+1, bi, an+2, . . . , r, bn+1, bn+2.

This gives us Dn+3 = {r, 0, . . . , n + 1}. Also, 5 < b′2 + 1 = 6 so, since B′ is
strictly increasing and n + 3 ≥ 5, we know n + 3 < b′n + 1 = r. Furthermore,
r < bn+1 = an+1 + n + 1 < an+3 + n + 2. Therefore, we can cite Lemma 4 to
assert that di = i− 1 for n + 3 ≤ i ≤ r.

If, on the other hand, a′n + 1 /∈ B′, then a′n + 1 = a′n+1. Note that a′3 + 1 =
5 = b′2 and a′4 + 1 = 7 = b′3, so we can assume n ≥ 5. We have a′n+1 + 1 =
a′n + 2 < a′n + n = b′n < r, so an+2 = a′n+1 + 1 = a′n + 2, and we find that
an+2 +n = a′n +n+2 = bn+1 ∈ Vn+2. Also, a difference of n+1 already exists,
but an+2 +n+2 is not in Vn+2, as it is greater than all of the previous B values.
So we get bn+2 = an+2+n+2, and dn+2 = n+2. We have the following picture:
an+1, an+2, . . . , r, bn+1,−, bn+2.

Now, since a′n + 1 ∈ A′, a′n + 2 must be in B′ because A′ does not contain
three consecutive values. Because a′n + 3 ≤ a′n + n = b′n = r − 1, we have
an+2 + 1 = a′n + 3 ∈ B by Corollary 2. Also, a′n + 3 ∈ A′ because B′ does not
contain consecutive values, and a′n +4 ≤ r−1, so a′n +4 ∈ A. We therefore have
an+1, an+2, bj , an+3, . . . , r, bn+1,−, bn+2. Since an+3 + n = bn+2 and differences
of n+1 and n+2 already occurred, we get bn+3 = an+3+n+3, and dn+3 = n+3,
and the configuration is an+1, an+2, bj , an+3, . . . , r, bn+1,−, bn+2,−,−, bn+3.

If n = 5, then r = b′5 + 1 = 14, and one can check that an+3 = a8 = 12 and
an+4 = a9 = 13 = an+3 +1. If n ≥ 6, then an+3 +2 = an+1 +5 ≤ an+1 +n−1 =
r−1. The sequence B′ does not contain consecutive values, so either an+3 ∈ A′

or an+3 + 1 ∈ A′, and therefore either an+3 + 1 ∈ A or an+3 + 2 ∈ A. So
regardless of the circumstances, either an+4 = an+3 + 1 or an+4 = an+3 + 2.

This means that either an+4 + n = an+3 + n + 1 = bn+2 + 1 or an+4 + n =
an+3 + n + 2 = bn+2 + 2. In either case, this spot is not taken by an earlier bi,
so bn+4 = an+4 + n, and dn+4 = n.
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A few moments of reflection reveal that 4 ≤ a3. Since A is strictly increasing,
this gives us that 5 ≤ a4 and, in general, n + 5 ≤ an+4. We now have n + 5 ≤
an+4 < r < bn+1 = an+1 + n + 1 < an+5 + n + 4, and Dn+5 = {r, 0, . . . , n + 3},
so Lemma 4 completes the proof.

Theorem 6. If n ≥ r + 1, then dn = n.

Proof. The smallest n which fall under each of the bullets of Theorem 5 are
n = 0, n = 1, n = 2, and n = 5, respectively. (n = 3 and n = 4 fall under the
second bullet.) Notice that n + 2 ≤ b′n + 1 when n ≥ 1 since 1 + 2 ≤ b′1 + 1 = 3
and B′ is strictly increasing. Similarly, n + 3 ≤ b′n + 1 when n ≥ 2 since
2 + 3 ≤ b′2 + 1 = 6, and n + 4 ≤ b′n + 1 when n ≥ 3 because 3 + 4 ≤ b′3 + 1 = 8.
Therefore, we see that all of the exceptions mentioned in Theorem 5 occur before
index r + 1 = b′n + 2.

Theorems 4 and 5, combined with this observation, reveal that Dr+1 =
{0, . . . , r}, whether r = a′n + 1 or r = b′n + 1. Thus, by Lemma 3, dn = n for
n ≥ r + 1.

4 Generating P -positions in Polynomial Time

Any position of End-Wythoff is specified by a vector whose components are the
pile sizes. We consider K to be a constant. The input size of a position (a,K, b)
is thus O(log a + log b). We seek an algorithm polynomial in this size.

Theorem 6 shows that we can express A and B beyond r as

an = mex(X ∪ {ai, bi : r + 1 ≤ i < n}), n ≥ r + 1,
bn = an + n, n ≥ r + 1,

where X = Vr+1. This characterization demonstrates that the sequences gen-
erated from special End-Wythoff positions are a special case of those studied
in [4], [5], [6]. In [4] it is proved that a′n − an is eventually constant except
for certain “subsequences of irregular shifts”, each of which obeys a Fibonacci
recurrence. That is, if i and j are consecutive indices within one of these subse-
quences of irregular shifts, then the next index in the subsequence is i+ j. This
is demonstrated in Figure 1.

Relating our sequences to those of [4] is useful because that paper’s proofs
give rise to a polynomial algorithm for computing the values of the A and B
sequences in the general case dealt with there. For the sake of self-containment,
we begin by introducing some of the notation used there and mention some of
the important theorems and lemmas.

Definition 5. Let c ∈ Z≥1. (For Wythoff’s game, c = 1.)

a′n = mex{a′i, b′i : 1 ≤ i < n}, n ≥ 1;
b′n = a′n + cn, n ≥ 1;

m0 = min{m : am > max(X)};

12



Figure 1: With r = 6, the distance between consecutive indices of P -positions which

differ from Wythoff’s game’s P -positions. (That is, ni is the subsequence of indices

where (an, bn) 6= (a′n, b′n).) Note that every third point can be connected to form a

Fibonacci sequence.

sn = a′n − an, n ≥ m0;
αn = an+1 − an, n ≥ m0;
α′n = a′n+1 − a′n, n ≥ 1;
W = {αn}∞n=m0

;
W ′ = {α′n}∞n=1.

F : {1, 2}∗ → {1, 2}∗ is the non-erasing morphism

F :
2 → 1c2
1 → 1c−12 .

A generator for W (W ′) is a word of the form u = αt · · ·αn−1 (u′ =
α′r · · ·α′m−1), where an = bt + 1 (a′m = b′r + 1). We say that W,W ′ are gener-
ated synchronously if there exist generators u, u′, such that u = αt · · ·αn−1, u

′ =
α′t · · ·α′n−1 (same indices t, n), and

∀k ≥ 0, F k(u) = αg · · ·αh−1 ⇐⇒ F k(u′) = α′g · · ·α′h−1,

where ah = bg + 1.

A well-formed string of parentheses is a string ϑ = t1 · · · tn over some alpha-
bet which includes the letters ‘(’, ‘)’, such that for every prefix µ of ϑ, |µ|( ≥ |µ|)
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(never close more parentheses than were opened), and |ϑ|( = |ϑ|) (don’t leave
opened parentheses).

The nesting level N(ϑ) of such a string is the maximal number of opened
parentheses: let p1, . . . , pn satisfy

pi =

 1 if ti = (
−1 if ti = )
0 otherwise

,

then

N(ϑ) = max1≤k≤n

{
k∑

i=1

pi

}
.

With these definitions in mind, we cite the theorems, lemmas, and corollaries
necessary to explain our polynomial algorithm.

Theorem 7. There exist p ∈ Z≥1, γ ∈ Z, such that, either for all n ≥ p, sn = γ;
or else, for all n ≥ p, sn ∈ {γ − 1, γ, γ + 1}. If the second case holds, then:

1. sn assumes each of the three values infinitely often.

2. If sn 6= γ then sn−1 = sn+1 = γ.

3. There exists M ∈ Z≥1, such that the indices n ≥ p with sn 6= γ can be
partitioned into M disjoint sequences, {n(i)

j }∞j=1, i = 1, . . . ,M . For each
of these sequences, the shift value alternates between γ − 1 and γ + 1:

s
n

(i)
j

= γ + 1 =⇒ s
n

(i)
j+1

= γ − 1;

s
n

(i)
j

= γ − 1 =⇒ s
n

(i)
j+1

= γ + 1.

Theorem 8. Let {nj}∞j=1 be one of these subsequences of irregular shifts. Then
it satisfies the following recurrence:

∀j ≥ 3, nj = cnj−1 + nj−2.

Corollary 3. If for some t ≥ m0, bt + 1 = an and b′t + 1 = a′n, then the words

u = αt · · ·αn−1,

u′ = α′t · · ·α′n−1,

are permutations of each other.

Lemma 6 (Synchronization Lemma). Let m1 be such that am1 = bm0 +1. Then
there exists an integer t ∈ [m0,m1], such that bt + 1 = an and b′t + 1 = a′n.

Corollary 4. If for some t ≥ m0, bt + 1 = an and b′t + 1 = a′n, then W,W ′ are
generated synchronously by u, u′, respectively.
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In comparing u and u′, it will be useful to write them in the following form:[
u
u′

]
=

[
αt · · ·αn−1

α′t · · ·α′n−1

]
,

and we will apply F to these pairs: F

([
u
u′

])
:=

[
F (u)
F (u′)

]
. Since u, u′ are

permutations of each other by Corollary 3, if we write them out in this form,

then the columns
[
1
2

]
and

[
2
1

]
occur the same number of times. Thus we can

regard
[

u
u′

]
as a well-formed string of parentheses: put ‘•’ for

[
1
1

]
or

[
2
2

]
, and

put ‘(’,‘)’ for
[
1
2

]
,

[
2
1

]
alternately such that the string remains well-formed.

That is, if the first non-equal pair we encounter is
[
1
2

]
, then ‘(’ stands for

[
1
2

]
and ‘)’ stands for

[
2
1

]
until all opened parentheses are closed. Then we start

again, by placing ‘(’ for the first occurrence different from
[
1
1

]
,

[
2
2

]
.

Example 1.[
122
221

]
−→ (•),

[
1221
2112

]
−→ ()(),

[
22211211
21112122

]
−→ •((•)()).

Lemma 7 (Nesting Lemma). Let u(0) ∈ {1, 2}∗, and let u′(0) be a permutation
of u(0). If c = 1 and u(0) or u′(0) contains 11, put u := F (u(0)), u′ := F (u′(0)).
Otherwise, put u := u(0), u′ := u′(0). Let ϑ ∈ {•, (, )}∗ be the parentheses

string of
[

u
u′

]
. Then successive applications of F decrease the nesting level to

1. Specifially,

(I) If c > 1, then N(ϑ) > 1 =⇒ N(F (ϑ)) < N(ϑ).

(II) If c = 1,

(a) N(ϑ) > 2 =⇒ N(F (ϑ)) < N(ϑ);

(b) N(ϑ) = 2 =⇒ N(F 2(ϑ)) = 1.

Lemma 8. Under the hypotheses of the previous lemma, if N(ϑ) = 1, then
F 2(ϑ) has the form

· · · () · · · () · · · () · · · , (8)

where the dot strings consist of ‘•’ letters and might be empty. Further applica-
tions of F preserve this form, with the same number of parentheses pairs; the
only change is that the dot strings grow longer.
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We now have the machinery necessary to sketch the polynomial algorithm
for generating the sequences A and B. There is a significant amount of initial
computation, but then we can use the Fibonacci recurrences from Theorem 8
to obtain any later values for sn, and thus for an and bn as well. Here are the
initial computations:

• Compute the values of A and B until an = bt + 1 and a′n = b′t + 1.
The Synchronization Lemma assures us that we can find such values with
m0 ≤ t ≤ m1, where m1 is the index such that am1 = bm0 +1. Corollary 4
tells us that W,W ′ are generated synchronously by u = αt . . . αn−1, u

′ =
α′t . . . α′n−1.

• Iteratively apply F to u and u′ until the parentheses string of w = F k(u)
and w′ = F k(u′) is of the form (8). We know this will eventually happen
because of Lemmas 7 and 8.

• Let p and q be the indices such that w = αp . . . αq and w′ = α′p . . . α′q.
Compute A up to index p, and let γ = a′p − ap. At this point, noting
the differences between w and w′ gives us the initial indices for the subse-
quences of irregular shifts. Specifically, if letters i, i+1 of the parentheses

string of
[

w
w′

]
are ‘()’, then i + 1 is an index of irregular shift. Label

these indices of irregular shifts n
(1)
1 , . . . , n

(M)
1 and, for 1 ≤ i ≤ M , let

oi = s
n

(i)
1
− γ ∈ {−1, 1}. (The oi indicate whether the ith subsequence of

irregular shifts begins offset by +1 or by −1 from the regular shift, γ.)

• Apply F once more to w and w′. The resulting sequences will again have
M pairs of indices at which w′ 6= w; label the indices of irregular shifts
n

(1)
2 , . . . , n

(M)
2 .

With this initial computation done, we can determine an and bn for n ≥ n
(1)
1

as follows: for each of the M subsequences of irregular shifts, compute successive
terms of the subsequence according to Theorem 8 until reaching or exceeding n.
That is, for 1 ≤ i ≤ M , compute n

(i)
1 , n

(i)
2 , . . . until n

(i)
j ≥ n. Since the n

(i)
j are

Fibonacci-like sequences, they grow exponentially, so they will reach or exceed
the value n in time polynomial in log n. If we obtain n = n

(i)
j for some i, j, then

sn =
{

γ + oi, if j is odd
γ − oi, if j is even ,

since each subsequence alternates being offset by +1 and by −1, by Theorem 7.
If, on the other hand, every subsequence of irregular shifts passes n without
having a term equal n, then sn = γ. Once we know sn, we have an = a′n − sn

and bn = an+n. This implies bn+1−bn ∈ {2, 3}, hence the mex function implies
an+1 − an ∈ {1, 2}. Therefore an ≤ 2n, and the algorithm is polynomial.

In the case of sequences deriving from special positions of End-Wythoff, we
must compute the value of r before we can begin computing A and B. After
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that, the initial computation can be slightly shorter than in the general case, as
we are about to see.

The only fact about m0 that is needed in [4] is that an+1 − an ∈ {1, 2}
for all n ≥ m0. For the A and B sequences arising from special positions of
End-Wythoff, this condition holds well before m0, as the following proposition
illustrates.

Proposition 1. For all n ≥ r + 1, 1 ≤ an+1 − an ≤ 2.

Proof. n ≥ r+1 implies that bn+1−bn = an+1+n+1−an−n = an+1−an+1 ≥ 2.
That is, from index r + 1 onward, B contains no consecutive values. Therefore,
since we know that r + 1 ≤ ar+1 ≤ an, (d) tells us that if an + 1 /∈ A, then
an + 1 ∈ B, so an + 2 /∈ B, so an + 2 ∈ A, again by (d). This shows that
an+1 − an ≤ 2.

Therefore, in the first step of the initial computation, we are guaranteed to
reach synchronization with r + 1 ≤ t ≤ m, where m is the index such that
am = br+1 + 1. Now, am0 > br because br ∈ Vr+1 = X. Also, br ≥ ar, so
am0 > ar and am0 ≥ ar+1, which implies by (a) that m0 ≥ r + 1. Thus, this
is an improvement over the bounds in the general case. Furthermore, note that
as r grows larger, this shortcut becomes increasingly valuable.

5 Conclusion

We have exposed the structure of the P -positions of End-Wythoff, which is
but a first study of this game. Many tasks remain to be done. For exam-
ple, it would be useful to have an efficient method for computing lK and
rK . The only method apparent from this analysis is unpleasantly recursive:
if K = (n1, . . . , nk), then to find lK , compute the P -positions for (n1, . . . , nk−1)
until reaching (lK , n1, . . . , nk−1, nk), and to find rK , compute P -positions for
(n2, . . . , nk) until reaching (n1, n2, . . . , nk, rK).

Additionally, there are two observations that one can quickly make if one
studies special End-Wythoff positions for different values of r. Proving these
conjectures would be a suitable continuation of this work:

• For r ∈ Z≥0, γ = 0.

• If r ∈ {0, 1}, then M , the number of subsequences of irregular shifts,
equals 0. If r = b′n + 1 and a′n + 1 ∈ B′, then M = 1. Otherwise, M = 3.

Furthermore, evidence suggests that, with the appropriate bounds, Theo-
rem 6 can be applied to any position of End-Wythoff rather than only special
positions. In general, it seems that bn − an = n for n > max{lK , rK}, if we
enumerate only those P -positions with the leftmost pile smaller than or equal
to the rightmost pile. This is another result that would be worth proving.
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