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Aim: To present a systemati development of the theory of ombinatorial

games from the ground up. Approah: Computational omplexity. Combi-

natorial games are ompletely determined; the questions of interest are e�-

ienies of strategies. Methodology: Divide and onquer. Asend from Nim

to Chess and Go in small strides at a gradient that's not too steep. Pre-

sentation: Mostly informal; examples of ombinatorial games sampled from

various strategi viewing points along seni mountain trails illustrate the

theory. Add-on: A taste of onstraint logi, a new tool to prove intratabili-

ties of games.
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1 Motivation and an Anient RomanWar-Game

Strategy

The urrent mainstream of the family of ombinatorial games onsists of

two-person games with perfet information (unlike some ard games where

information is hidden), without hane moves (no die), and outome re-

strited to (lose, win), (tie, tie) and (draw, draw) for the two players who

move alternately (no passing).

Instead of the long terminology �ombinatorial game(s)�, we shall usually

simply write �game(s)�. In normal play, to win a game means to make the

last move in it. This is the main onern of game theory, overed in setions

2-5. But in setion 6, we expose the modern theory of misère play, where the

player making the last move loses. A tie is an end position with no winner

and no loser, as may our in ti-ta-toe, for example. A draw is a �dynami

tie�, i.e., a non-end position suh that neither player an fore a win, but eah

an �nd a next non-losing move. (In �nonombinatorial� game theory, eah

player reeives a payo� at the end of the game. For ombinatorial games it

is natural to assign a payo� of +1 to the winner, −1 to the loser and 0 for

tying or drawing: one play is in a draw yle it is abrogated. Our games

are zero-sum games in this sense.)

The modern theory of ombinatorial games is portrayed in the ground-

breaking work of Conway [Con01℄, the enylopedi ompilation of Berlekamp,

Conway and Guy [BCG04℄, the attrative textbook by Albert, Nowakowski

and Wolfe [ANW07℄, and the authoritative graduate-level book of Siegel

[Sie13℄ that studies the modern theory of partizan games and misère play.

The primeval and simplest ombinatorial game is Nim: Given m piles

of �nitely many tokens, a move onsists of seleting a single non-empty pile

and removing from it a positive number of tokens, that is, at least one, and

up to and inluding the entire pile. The player �rst unable to move loses,

the opponent wins (normal play). For m = 1, player I an win if the pile

is nonempty, simply by removing it entirely. For m = 2, player I an win

if the piles are of unequal size, by a move that equalizes their size, followed

by imitating on one pile what player II does on the other. For m > 2,
the winning strategy, �rst given in [Bou02℄, is quite surprising, yet simple:

ompute the XOR (eXlusive OR) of the binary representation of the pile

sizes. If the resulting binary nim-sum is non-zero, the next player (player I)

has a move making it zero (a winning move). If it is zero, every move will
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make it non-zero (a losing move). This is shown in setion 2 in the more

general setting of �Nim-type� games. Thus for m = 3 and pile sizes 1, 2, 3,
a simple ase analysis shows that the previous player (player II) an win.

Indeed, the nim-sum 1⊕ 2⊕ 3 is 0.

As an exerise, an you win by beginning to play in a game of Nim with

4 piles of sizes 2, 3, 5, 7? If so, do you have a unique winning strategy?

The family of ombinatorial games ontains simple games suh as Nim,

as well as seemingly omplex games suh as Chekers, Chess and Go.

The fundamental question that arises naturally is why some games, suh as

Nim, are easy to solve, whereas others in the family, suh as Go, seem so

omplex? The quest for answers to this problem motivates this survey.

For throwing some light on the question, a Roman Cæsars' motto is

adopted:

DIVIDE AND CONQUER .

There are several mathematial di�erenes between Nim-type and Chess-

type games. After identifying them, a onentrated attak is launhed on

eah of them separately, whih seems to have a better hane of suess than

trying in vain to sale the sheer li� separating Nim from Chess. Thus, we

asend from Nim towards Chess and Go at a moderate gradient, by grad-

ually introduing into Nim more and more ompliations in a natural order

of inreasing omplexity. The adventures ourring on the way omprise the

story of this hapter.

In setion 2 we review the lassial theory of ayli games, sum of games

and the Sprague-Grundy funtion, whih is the main tool for solving ayli

games. We also show that omplexities of games are normally muh higher

than those enountered in optimization problems suh as the Traveling Sales-

person Problem.

An �apparent� di�erene between Nim and Chess is the board whih

exists for the latter but not for the former. However, Figure 1 shows that

also Nim an be onsidered as a board game: ai indiates a nim-heap of size

i, and the direted edges indiate the permissible moves. Thus plaing a

token on eah of the verties a1, a2 and a3 and moving them along direted

edges, where any number of tokens may reside on any vertex, is isomorphi

to Nim with pile sizes 1, 2, 3. Conlusion: this �apparent� di�erene is not

really a mathematial di�erene.

Here are some more substantive di�erenes:
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Figure 1: Nim as a board game.

• Cyles. Nim-type games are �nite and �ayli�, i.e., there is an under-

lying �well-ordering priniple� whih guarantees that no position is assumed

twie. This is not the ase for Chess-type games. Applying the Divide And

Conquer Priniple, we deal with suh �yli� games separately in setion 3,

where it is shown that yles indeed destroy the lassial theory. A general-

ized theory is developed there whih reovers a polynomial strategy for yli

games.

• Token Interations. Another di�erene is that in Nim-type games,

onsidered as board games, tokens oexist peaefully on the same vertex

(board square), whereas they interat in various ways suh as jumping, de-

�eting, apturing, et., in Chess-type games. Many of these interations

ause the games to beome PSPACE-hard (notion explained near the end of

setion 2) even in simpli�ed form, e.g., when played on planar or ayli

or bipartite graphs. However, if both tokens disappear on impat, a �just

barely polynomial� strategy an be given for general yli digraphs (direted

graphs). This topi is studied in setion 4.

• Partizanship. A game is impartial if the set of options (positions

reahed in a single move) of every position is the same for the two players.

If this doesn't neessarily hold, the game is partizan. Nim-type games are

impartial, whereas Chess-type games are partizan (the �blak� player annot

move a white piee and vie versa). Note that the set of impartial games

is a subset of the set of partizan games. It turns out that partizan games,

taken up in setion 5, are in general PSPACE-hard even on ayli digraphs;
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see Yedwab [Yed85℄, Morris [Mor81℄. See also Pultr and Morris [PM84℄.

• Termination Set. Another di�erene onerns the onventions for

ending the play of the game, i.e., the termination set τ . Roughly, the om-

plexity of the strategy seems to inrease with the size |τ | of τ . The simplest

games are those played on a digraph G, where τ is the set of leaves of G (ver-

ties of outdegree 0), followed by those in whih τ onsists of all positions

whose only options are leaves � suh as in misère play: the player making

the last move loses � to ases where τ is even larger, suh as in Chess and

Go. A theory for general τ has yet to be developed, but we treat misère play

in setion 6.

As we progress from the easy games to the more omplex ones, we will

develop some understanding for the poset of tratabilities and e�ienies of

game strategies: in the realm of existential questions, tratabilities and e�-

ienies are, by and large, linearly ordered, from polynomial to exponential.

However, as explained near the end of setion 2, game problems are formu-

lated by an � often unbounded � number of alternating quanti�ers. For suh

problems the notion of a �tratable�, �polynomial� or �e�ient� omputation

� de�ned formally in De�nition 1, setion 2 � is muh more omplex.(Whih

is more tratable: a game that ends after four moves, but it's undeidable

who wins [Rab57℄, or a game requiring an Akermann funtion of moves to

�nish but the winner an play randomly, having to pay attention only near

the end [FLN88℄, [FN85℄ ?) Sine we are onerned with game omplexi-

ties, we present, in setion 7, a modern tool for proving game intratabilities

onveniently and e�iently. In setion 8, the Conlusion, we brie�y illumi-

nate our asent from Nim to Chess and Go, and indiate possible further

diretions of ombinatorial game theory.

2 The Classial Theory, Sum of Games, Com-

plexity

In this setion we will see how to play �arbitrary� �nite ayli games suh

as Beat Doug (Figure 2). (Doug � �DAG�, Direted Ayli Graph.)

Plae one token on eah of the four starred verties. A move onsists

of seleting a token and moving it, along a direted edge, to a neighboring

vertex on this ayli digraph. As usual we onsider normal play, so the

player making the last move wins. Tokens an oexist peaefully on the
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Figure 2: Beat DOUG on this DAG (direted ayli graph).

same vertex. For the given position, how muh time does it take to:

(a) ompute who an win;

(b) ompute an optimal next move;

() onsummate the win, that is, atually make the last move?

Denote by N and N+
the set of all nonnegative integers and the set of all

positive integers respetively. Following the divide and onquer methodology,

let's begin with a more strutured digraph, rather than solving immediately

the �arbitrary� Beat Doug. Given n ∈ N+
(the initial sore) and t ∈ N+

(the maximal step size), a move in the game Soring onsists of seleting

i ∈ {1, . . . , t} and subtrating i from the urrent sore, initially n, to generate
the new sore. Play ends when the sore 0 is reahed. The player reahing 0
wins (normal play). Notie that Nim is the speial ase t = ∞ of Soring.

The digraph G = (V,E) for Soring is shown in Figure 3 for n = 8 and

t = 3: it is an ayli digraph, where V is the set of game positions, and

(u, v) ∈ E if and only if there is a move from u to v (then v is an option

of u). A position (vertex) u ∈ V is labeled N (for Next player win) if the

player moving from u an win; otherwise it's a P -position (Previous player

win). Denote by P the set of all P -positions, by N the set of all N-positions,
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and by F (u) the set of all options of any vertex u. For any ayli game, the

partition of the vertex-set into , N exists uniquely and satis�es,

u ∈ P if and only if F (u) ⊆ N , (1)

u ∈ N if and only if F (u) ∩ P 6= ∅ . (2)

In words: u is a P -position if and only if all its options (diret followers)

are N-positions; and u is an N-position if and only if it has an option in P.
As suggested by Figure 3, we have P = {k(t + 1): k ∈ N+}, so N =

{{0, . . . , n} \P}. The winning strategy onsists of dividing n by t+1. Then
n ∈ P if and only if the remainder r is zero. If r > 0, the unique winning

move is from n to n− r.

013 245678

N N NPN N PNP

Figure 3: The digraph for Soring, with initial sore n = 8 and maximal step

t = 3. Positions marked N are wins and P are losses for the player moving from

those positions.

Is this a tratable strategy? (�Tratable� � see De�nition 1.)

Input size: Θ(logn) (suint input).
Strategy omputation: O(logn) (division of n by t).
Length of play: ⌈n/(t + 1)⌉.

Thus the omputation time is linear in the input size, but the length of

play is exponential!

To the �run-of-the-mill-algorithmiians� the latter fat dooms the game

as intratable. It may be quite a surprise to them that it does not prevent the

strategy from being tratable: whereas we dislike omputing in more than

polynomial time, we observe that at least some members of the human rae

relish to see some of its members being tormented for an exponential length

of time, from before the era of the Spanish matadors and inquisition, through

soer and tennis, to Chess and Go! But there are other requirements for
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making a strategy polynomial as we will see presently, so at present let's say

that the strategy is tratable.

Reapping our story up to now, we have made some progress: we got a

tratable strategy for winning in Soring. But what about the ase when

we have k sores n1, . . . , nk ∈ N+
and t ∈ N+

? A move onsists of seleting

one of the urrent sores and subtrating from it some i ∈ {1, . . . , t}. Play

ends when all the sores are zero. Figure 4 shows an example (k = 4). This
is a sum of Soring games, itself also a Soring game. The notion of sum

often permits us to simplify the strategy analysis, if the omponents of the

game are disjoint. For example, Nim is the sum of its piles. It's easy to see

that the game of Figure 4 is equivalent to the game played on the digraph of

Figure 5, with tokens on verties 5, 6, 7 and 8. A move onsists of seleting a

token and moving it right by not more than t = 3 plaes. Tokens an oexist

on the same vertex. Play ends when all tokens reside on 0. What's a winning

strategy?

0 0

1 1

0 0

1 1

8

7

7 6

6 5

5

4

n2 n3 n4=nkn1

Figure 4: A Soring game onsisting of a sum of four Soring games. Here

k = 4, n1 = 8, n2 = 7, n3 = 6, n4 = 5, and t = 3.

We hit two snags when trying to answer this question:

(i) Though the sum of P -positions is in P, the sum of N-positions is in

P ∪ N . Thus a game of two tokens, one on eah of 5 and 7, is seen to be

an N-position (the move 7 → 5 learly results in a P -position), whereas the
sum of a token on 3 and 7 is seen, by inspetion, to be a P -position. So

the simple P -, N-strategy breaks down for sums, whih arise frequently in

ombinatorial game theory.
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(ii) The game-graph has exponential size in the input size Ω(Σk
i=1 logni)

of the �regular� digraph G = (V,E) (with |V | = n+1, where n = maxi ni) on

whih the game is played with k tokens (Figure 5 in our ase). However, G is

not the game-graph of the game: eah tuple of k tokens on G orresponds to

a single vertex of the game-graph, whose vertex-set thus has size

(

k+n

n

)

� the

number of k-ombinations of n+1 distint objets with at least k repetitions.

For k = n this gives

(

2n

n

)

= Θ(4n/
√
n), whih is doubly exponential in the

input size!

013 245678

0 0 01 12 23

* * **

3

Figure 5: A game on a graph, but not a game-graph.

The main ontribution of the lassial theory is to provide a polynomial

strategy for sums despite the exponential size of the game-graph. On G,
label eah vertex u with the least nonnegative integer not among the labels

of the options of u (see top of Figure 5). These labels are alled the Sprague�
Grundy funtion values of the game onG, or the g-funtion for short [Spr36℄,
[Gru39℄. It is a funtion from the verties of a digraph into the nonnegative

integers, de�ned reursively by

g(u) = mex g(F (u)),

where for any subset S ( N,

mexS = minN \ S

is the least nonnegative integer not in S. Notie that g of the empty set is

0. The funtion g exists uniquely on every �nite ayli digraph.

For u = (u1, . . . , uk), a vertex of the game-graph (whose very onstrution

entails exponential e�ort), we have

g(u) = g(u1)⊕· · ·⊕g(uk) , P = {u : g(u) = 0} , N = {u : g(u) > 0} ,

where ⊕ denotes nim-sum (summation over GF(2), also known as exlusive

or , whih we already met in setion 1). To ompute a winning move from an
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N-position, note that there is some i for whih g(ui) has a 1-bit at the binary
position where g(u) has its leftmost 1-bit. Reduing g(ui) appropriately

makes the Nim-sum 0, and there is a orresponding move with the i-th token.
For the example of Figure 5 we have

g(5)⊕ g(6)⊕ g(7)⊕ g(8) = 1⊕ 2⊕ 3⊕ 0 = 0 ,

a P -position, so every move from this position is losing.

Is this Sprague�Grundy strategy polynomial? For Soring, the remain-

ders r1, . . . , rk of dividing n1, . . . , nk by t+1 are the g-values, as suggested by

Figure 5. The omputation of eah rj has size O(logn), where n = maxni.

Sine k logn < (k + log n)2, the strategy omputation (items (a) and (b) at

the beginning of this setion) is polynomial in the input size (k is a onstant).

The length of play remains exponential.

Sine the strategy for Soring is tratable for a single game as well

as for a sum, we may say that Soring has a polynomial strategy (see

De�nition 1 below).

Now onsider a general nonsuint ayli digraph G = (V,E), that is,
the input size is not logarithmi: If the graph has |V | = n verties and

|E| = m edges, the input size is Θ((m+ n) log n) (eah vertex is represented

by its index of size log n, and eah edge by a pair of indies), and g an be

omputed in O((m+n) logn) steps (by a �depth-�rst� searh; eah g-value is
at most n, of size at most logn). For a sum of k tokens on the input digraph,

the input size is Θ((k +m+ n) logn), and the strategy omputation for the

sum an be arried out in O((k+m+n) logn) steps (nim-adding k summands

of g-values). Note also that for a nonsuint digraph the length of play is

only linear rather than exponential, in ontrast to a suint (logarithmi

input size) digraph.

Our original Beat Doug problem is now also solved with a polynomial

strategy. Figure 6 depits the original digraph of Figure 2 with the g-values
added in (we'll see later how to ompute g). Sine 2 ⊕ 3 ⊕ 3 ⊕ 4 = 6, the
given position is in N . Moving 4 → 2 is a unique winning move. The winner

an onsummate a win in polynomial time. Also notie that the strategy for

Nim is a speial ase of the Sprague-Grundy strategy.

However, the strategy of lassial games is not very robust: slight per-

turbations in various diretions an make the analysis onsiderably more

di�ult. Thus the theory forWelter, whih amounts to Nim with all piles

of distint size, is rather ompliated [Con01℄ (h. 13).
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Figure 6: The beaten Doug.

We point out that there is an important di�erene between the strategies

of Beat Doug and Soring. In both, the g-funtion plays a key role.

But for the latter, some further property is needed to yield a strategy that's

polynomial, sine the input graph is (logarithmially) suint. In this ase

the extra ingredient is the periodiity modulo (t+1) of g, whih was easy to

establish. For other suint games, it may be harder to prove polynomiality,

suh as for general otal games [BCG04℄, Vol. 1.

2.1 Complexity, Hardness and Completeness

What, then, are tratable, polynomial and e�ient games? We abstrat some

of the properties of Nim, sine it has a simple strategy, and it is the sum of

its piles.

De�nition 1. Let c > 1 denote arbitrary onstants and denote by n the

size of a su�iently suint enoding of a digraph G = (V,E). A subset

T of ombinatorial games with a polynomial strategy has the following

properties. For normal play of every G = (V,E) ∈ T , and every position u
of G:

(a) The P -, N-, D- and tie-label of u an be omputed in time O(nc)
(polynomial time; D denotes draw � see next setion).
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(b) An optimal next move from any N- to a P -position and from any D-

to a D-position and from any non-end tie- to a tie-position an be

omputed in time O(nc) (polynomial time).

() The winner an onsummate a win in at mostO(cn)moves (exponential

time).

(d) The subset T is losed under summation, i.e., G1, G2 ∈ T implies G1+
G2 ∈ T . (Thus (a), (b), () hold for G1 + G2 for every independently

hosen position of G1 and for every independently hosen position of

G2.)

A subset T1 ⊆ T for whih (a)�(d) hold also for misère play � the player

making the last move loses � is a subset of games with an e�ient strategy.

A superset T 1 ⊇ T for whih (a)�() hold is a superset of games with a

tratable strategy.

A game in some suh T or T1 or T
1
is alled polynomial or e�ient or

tratable, respetively.

A deidable game

1

whih has no polynomial (tratable) strategy is alled

nonpolynomial (intratable).

Stritly speaking, in view of (), the terminology �polynomial� ought to be

replaed by something else, suh as �adequate�. But �polynomial� is so uni-

versally used for problems that are omputationally reasonable, that �poly-

nomial� is preferred. Rami�ations in several diretions of De�nition 1 are

onsidered in [Fra04℄.

To prove that a problem is tratable, polynomial or e�ient, the normal

proedure is to onstrut an algorithm that has those properties. But how

do we show that, no matter how hard we try, a problem doesn't have a

good solution? We explain brie�y a next best way to do something in this

diretion.

Roughly, NP onsists of all problems whose solution an be veri�ed � not

neessarily found , only veri�ed � using an amount of time that's polynomial

in a suint input size of the problem. It's NP-omplete if it's among the

hardest problems in NP. It's NP-hard if it's NP-omplete, exept that it

needs at least a polynomial amount of time. PSPACE onsists of all problems

1

A problem is deidable if there exists an algorithm to solve all its instanes. Otherwise

it is undeidable.
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that an be solved using a polynomial amount of spae (hene of time), and

EXPTIME � all problems that an be solved in an exponential amount of

time. Hardness and ompleteness are de�ned analogously to the respetive

de�nitions of NP. NP-omplete problems share the following idiosynrasies:

� If any NP-omplete problem will be shown to have a polynomial-time

algorithm, then all of them are polynomial, and if any is shown to have

a lower non-polynomial bound, then all of them are non-polynomial.

� It is widely believed that NP-omplete problems are non-polynomial.

� Completeness results are asymptoti. With any NP-omplete problem

there is assoiated some parameter n, and the result holds for large n.
For games, n is typially the size of a side of the board.

Analogous results hold a-fortiori for PSPACE-omplete problems. But EX-

PTIME-ompleteness is an unonditional provable intratability: any EXP-

TIME-omplete problem has a lower exponential time bound for its solution,

asymptotially.

Optimization problems, suh as TSP (Traveling Salesperson Problem)

are typially NP-omplete, sine there is a single existential quanti�er (does

there exist a tour of ost < C?). In a two-person game, the question whether

player I an win involves an alternating number of existential and universal

quanti�ers: does player I have a move suh that for every move of player II

there exists a move of player I · · · suh that player I wins? If the number of

alternating quanti�ers is bounded, the game tends to be PSPACE-omplete,

suh as Hex [Rei81℄; if their number is unbounded, it is typially EXPTIME-

omplete, suh as Chess [FL81℄.

We do not know of any PSPACE-omplete or EXPTIME-omplete game

problem that has a known polynomial solution for �nite boards as enoun-

tered in pratie, suh as 8 × 8 or 19 × 19. Thus, though ompleteness and

hardness are asymptoti properties, in pratie they seem to say something

also about atual games.

3 Introduing Draws

In this setion we learn how to beat Craig (Cyli dIGRAph) e�iently.

The four starred verties in Figure 7 ontain one token eah. The moves
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are idential to those of Beat Doug; tokens an oexist peaefully on any

vertex. The only di�erene is that now the digraph G = (V,E) may have

yles and loops (the latter orrespond to passing a move), or may be in�nite.

In addition to the P - and N-positions, whih satisfy (1) and (2), we now may

have also Draw-positions, D.

De�nition 2. Given a game Γ, with game-graph G = (V,E), where G may

be �nite or in�nite, ayli or yli. Denote by O the set of all nonnegative

ordinals not exeeding |V |. By reursion on n ∈ O de�ne the multisets,

Pn = {u ∈ V, n = min m : F (u) ⊆
⋃

i<m

Ni},

Nn = {u ∈ V, n = min m : F (u) ∩
(

⋃

i<m

Pi

)

6= ∅}.

Finally, let

P =
⋃

n∈O Pn, N =
⋃

n∈O Nn, D = V \ (P ∪ N ),
where D is the set of all D-positions.

The de�nition implies

u ∈ D if and only if F (u) ∩ P = ∅ and F (u) ∩ D 6= ∅ .

Introduing yles auses several problems:

� Moving a token from an N-position suh as vertex 4 in Figure 8 to a

P -position suh as vertex 5 is a nonlosing move, but doesn't neessarily

lead to a win. A win is ahieved only if the token is moved to the leaf

3. The digraph might be embedded inside a large digraph, and it may

not be lear to whih P -option to move in order to realize a win.

� The partition of V into P,N and D is not unique, as it is for P and

N in the lassial ase. For example, verties 1 and 2 in Figure 8,

if labeled P and N , would still satisfy (1) and (2), and likewise for

verties 8 and 9 (either an be labeled P and the other N).

Both of these shortomings an be remedied by introduing a suitable

ounter funtion J � see [FY86℄.

For handling sums, we would like to use the g-funtion (Sprague-Grundy

funtion), but there are two problems:
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Figure 7: Beat CRAIG in this Cyli dIGRAph.
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Figure 8: P -, N -, D- and γ-values for simple digraphs.

� The question of the existene of g on a digraph G with yles or loops

is NP-omplete, even if G is planar and its degrees are ≤ 3, with eah

indegree ≤ 2 and eah outdegree ≤ 2 [Fra81℄. (NP-ompleteness with-

out these restritions, or less restritions, has been proved in [Chv73℄,

[vL76℄, [FY79℄.)
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� The strategy of a yli game isn't always determined by the g-funtion,
even if it exists.

This is one of those rare ases where two failures are better than one!

The seond failure opens up the possibility that perhaps there's another

tool that always works, and if we are optimisti, we might even hope that

it is also polynomial. There is indeed suh a generalized g-funtion γ. It

was introdued by Smith [Smi66℄; an improved version was (re)disovered in

[FP75℄; see also [Con01℄ (h. 11), [FY86℄.

The γ-funtion is de�ned the same way as the g-funtion, exept that

it an assume not only values in N, but in N ∪ {∞}, where the symbol ∞
denotes a value bigger than every natural number. We also use the notation

γ(u) = ∞(K), where K is the set of �nite γ-values of the options of u. We

have γ(u) = ∞(K), if there is v ∈ F (u) with γ(v) = ∞, and v has no

option w with γ(w) equal to the least nonnegative integer not in K. The

formal de�nition is given in [FY86℄. Figure 8 depits γ-values for some simple

digraphs. Every �nite digraph with n verties and m edges has a unique

γ-funtion that an be omputed in O(mn logn) steps. This is a polynomial-

time omputation, though bigger than the g-values omputation.

To get a strategy for sums, de�ne the generalized nim-sum as the

ordinary nim-sum augmented by:

a⊕∞(L) = ∞(L)⊕ a = ∞(L⊕ a) = ∞(a⊕ L), ∞(K)⊕∞(L) = ∞(∅),

where a ∈ N and L⊕ a = {l⊕ a : l ∈ L}. For a sum of k tokens on a digraph

G = (V,E), let u = (u1, . . . , uk). We then have γ(u) = γ(u1)⊕ · · · ⊕ γ(uk),
and

P = {u : γ(u) = 0} ,
N = {u : 0 < γ(u) < ∞} ∪ {u : γ(u) = ∞(K) and 0 ∈ K} , (3)

D = {u : γ(u) = ∞(K) and 0 /∈ K} .

Thus a sum onsisting of a token on vertex 4 and one on 8 in Figure 8 has

γ-value 1 ⊕ ∞(1) = ∞(1 ⊕ 1) = ∞(0), whih is an N-position (the move

8 → 7 results in a P -position). Also one token on 11 or else on 12 is an

N-position. But a token on both 11 and 12; or on 8 and 12 is a D-position

of their sum, with γ-value ∞(∅). Also a token on 7 and 12 is a D-position,

sine ∞(0)⊕ 1 = ∞(0 ⊕ 1) = ∞(1). A token on 4 and 7 is a P -position of

the sum.
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With k tokens on a digraph, the strategy for the sum an be omputed in

O((k+mn) logn) steps. It is polynomial in the input size Θ((k+m+n) logn),
sine k + mn ≤ (k + m + n)2. Also, for ertain suint �linear� graphs, γ
provides a polynomial strategy. See [FT75℄.

Beat Craig is now also solved with a polynomial strategy. From the γ-
values of Figure 9 we see that the position given in Figure 7 has γ-value
0 ⊕ 1 ⊕ 2 ⊕ ∞(2, 3) = 3 ⊕ ∞(2, 3) = ∞(1, 0), so by (3) it's an N-position,

and the unique winning move is ∞(2, 3) → 3. Again the winner an fore a

win in polynomial time.

0

0

0

1

1

1

2

2

3

∞

∞

∞

∞(2,3)

∞ (1,2)

(2)

*

*

* *

2

Figure 9: Craig has also been beaten.

As an exerise, beat an even bigger Craig: ompute the labels P,N,D for

the digraph of Figure 10 with tokens plaed on verties A−E, or for various
other initial token plaements.

We end this setion with the Fundamental Theorem of Combinatorial

Game Theory for impartial games whih may be yli.

Theorem 1. Let Γ be a two-person yli game with perfet information

whose game-graph may be in�nite, without hane moves and without ties.

Then for every position of Γ there either exists a winning move for preisely

one of the two players, or else, both players an maintain a draw.

Proof. Every position has at least one label from among {P,N ,D}. Indeed,
for any position u whih is neither in P nor in N , De�nition 2 implies u ∈ D.
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Figure 10: Beat an even bigger Craig.

So suppose that there exists u0 ∈ (P ∩N ). Then u0 ∈ (Pm0
∩Nk0) for some

ordinals k0, m0 ∈ O. It then follows that F (u0) ⊆ N , F (u0) ∩ P 6= ∅. By

De�nition 2, there thus is u1 ∈ F (u0) with u1 ∈ (Pm1
∩Nk1), where k1 < m0,

m1 < k0. Hene F (u1) ⊆ N , F (u1) ∩ P 6= ∅. Thus there is u2 ∈ F (u1)
with u2 ∈ (Pm2

∩ Nk2), where k2 < m1, m2 < k1. This leads to two in�nite

sequenes k0 > m1 > k2 > m3 > . . . and m0 > k1 > m2 > k3 > . . . , suh
that ui ∈ (Pmi

∩Nki) for all i ∈ N. This ontradits the well-ordering of the

ordinals. Hene (P ∩ N ) = ∅.
By the de�nition of D in De�nition 2, N∩D = P∩D = ∅. We have shown

that every position of Γ gets a unique label from among {P,N,D}.
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4 Adding Interations between Tokens

Here we learn how to beat Anne (Annihilation). On the �ve-omponent

digraph depited in Figure 11, plae tokens at arbitrary loations, but at

most one token per vertex. A move is de�ned as in the previous games, but

if a token is moved onto an oupied vertex, both tokens are annihilated

(removed). The digraph has yles, and ould also have loops (passing posi-

tions). Note that the three omponents with z-verties are idential, as are
the two y-omponents. The only di�erene between a z- and a y- omponent

is in the orientation of the top horizontal edge. With tokens on the twelve

starred verties, an the �rst player win or at least draw, and if so, what's

an optimal move? How �good� is the strategy? The indiated position may
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*
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Figure 11: Beat Anne in this ANNihilation game.

be a bit ompliated as a starter. So onsider �rst a position onsisting of

four tokens only: one on z0 and the other on z2 in two of the z-omponents.

Seondly, onsider the position also onsisting of four tokens: a single token

on eah of y0 and y2 in eah y-omponent. It's lear that in both of these

games player II an at least draw, simply by imitating on one omponent

what player I does on the other. Can player II atually win in one or both

of these games?

Annihilation games were proposed by John Conway. It's easy to see that

on a �nite ayli digraph, annihilation an a�et the length of play, but the
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strategy is the same as for the lassial games: Sine g(u) ⊕ g(u) = 0, the
winner doesn't need to use annihilation, and the loser annot be helped by it.

But the situation is quite di�erent in the presene of yles. In Figure 12(a),

a token on eah of the verties z1 and z3 is learly a D-position for the

nonannihilation ase, but it's a P -position when played with annihilation

(the seond move is a winning annihilation move). In Figure 12(b), with

annihilation, a token on eah of z1 and z2 is an N-position, whereas a token

on eah of z1 and z3 is a D-position. The theory of annihilation games

is disussed in depth in [FY82℄; see also [Fra74℄, [FY76℄, [FY79℄, [FTY78℄.

Misère annihilation play was analyzed by Ferguson [Fer84℄.

(a) (b)

z0 z0

z1

z1

z2

z2

z3

z4

z3

Figure 12: Annihilation on simple yli digraphs.

The annihilation graph is a ertain game-graph of an annihilation

game. The annihilation graph of the annihilation game played on the digraph

of Figure 12(a) onsists of two omponents. One is depited in Figure 13(b),

namely, the omponent G0 = (V 0, E0) with 8 verties and an even number of

tokens. The �odd� omponent G1
also has 8 verties. In general, a digraph

G = (V,E) with |V | = n verties has an annihilation graph G = (V,E) with
|V | = 2n verties, namely all n-dimensional binary vetors. The γ-funtion
on G determines whether any given position is in P, N orD, aording to (3);

and γ, together with its assoiated ounter funtion, determines an optimal

next move from an N- or D-position.

The only problem is the exponential size of G. We an reover an O(n6)
strategy by omputing an extended γ-funtion σ on an indued subgraph

of G of size O(n4), namely, on all vetors of weight ≤ 4 (at most four 1-bits).

In Figure 14, the numbers inside the verties are the σ-values, omputed by

Gaussian elimination over GF(2) of an n×O(n4) matrix. This omputation
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Figure 13: (b) depits the �even� omponent G0
of the annihilation graph G of

the digraph (a).

also yields the values t = 2 for Figure 14(a) and t = 1 for Figure 14(b): If

σ(u) ≥ 2t, then γ(u) = ∞, whereas σ(u) < 2t implies γ(u) = σ(u).
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Figure 14: The σ-funtion.

Thus for Figure 14(a) we have σ(z0, z2) = 5⊕ 7 = 2 < 4, so γ(z0, z2) = 2.
Hene two suh opies onstitute a P -position (2⊕2 = 0). (How an player II

onsummate a win?) In Figure 14(b) we have σ(y0, y2) = 3 ⊕ 4 = 7 > 2, so
γ(y0, y2) = ∞, in fat, ∞(0, 1), so two suh opies onstitute a D-position.
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(How an the two players maintain the draw?) We have thus answered the

two questions posed in the seond paragraph of the present setion.

The position given in Figure 11 is repeated in Figure 15, together with

the σ-values. From left to right we have: for the z-omponents, γ = 3⊕ 0⊕
2 = 1; and for the y-omponents, ∞(0, 1) ⊕ 0 = ∞(0, 1), so the γ-value is
∞(0, 1)⊕ 1 = ∞(0, 1). Hene the position is an N-position by (3). There is,

in fat, a unique winning move, namely y0 → y2 in the �rst omponent from

the left. Any other move leads to drawing or losing. We have learned how

to beat Anne.
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Figure 15: Poor beaten Anne. (Gray irles show initial token positions.)

For small digraphs, a ounter funtion c is not neessary, but for larger
ones it is needed for onsummating a win. There is a problem in omputing

c: our polynomial algorithm produes γ and c only for an O(n4) portion of

G. Whereas γ an then be extended easily to all of G, this does not seem to

be the ase for c. There is a way out involving a broad strategy.

A strategy is narrow if it uses only the present position u for deiding

whether u is a P -, N-, or D-position, and for omputing a next optimal

move. It is broad [Fra91℄ if the omputation involves any of the possible

predeessors of u, whether atually enountered or not. It is wide if it

uses any anestor that was atually enountered in the play of the game.

Wide strategies were de�ned by Kalmár [Kal28℄ and Smith [Smi66℄, but then
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both authors immediately reverted bak to narrow strategies, sine both

authors remarked that the former do not seem to have any advantage over

the latter. Yet for annihilation games, only a broad strategy was found that

is polynomial. For details see [FY82℄.

For ertain (Chinese) variations of Go, for Chess and some other games,

there are rules that forbid ertain repetitions of positions, or modify the

outome in the presene of suh repetitions. Now if all the history is inluded

in the de�nition of a move, then every strategy is narrow. But the way [Kal28℄

and [Smi66℄ de�ned a move � muh the same as the intuitive meaning �

there is a di�erene between a narrow and wide strategy for these games.

As an exerise, ompute the label ∈ {P,N,D} of the stellar on�guration
marked by letters in �Interstellar enounter with Jupiter� (Figure 16), where

J is Jupiter, the other letters are various fragments of the Shoemaker�Levy

omet, and all the verties are �spae-stations�. A move onsists of seleting

Jupiter or a fragment, and moving it to a neighboring spae-station along a

direted trajetory. Any two bodies olliding on a spae-station explode and

vanish in a loud of interstellar dust. Whereas in �Beat Anne� there is no

leaf, here there are six �blak holes�, where a body is absorbed and annot

esape. Both players are viiously bent on making the �nal move to destroy

this solar subsystem. Is the given position a win for player I or for player II?

Or is it a draw, so that a part of this subsystem will exist forever? And if

so, an it be arranged for Jupiter to survive as well? (An enounter of the

Shoemaker�Levy omet with Jupiter took plae in mid-July, 1994.)

Various impartial and partizan variations of annihilation games were

shown to be NP-hard, PSPACE-omplete or EXPTIME-omplete [GR95℄, [FG87℄,

[GR95℄. We mention here only brie�y an interation related to annihilation.

Eletrons and positrons are positioned on verties of the gameMatter and

Antimatter (Figure 17). A move onsists of moving a partile along a di-

reted trajetory to an adjaent station � if not oupied by a partile of

the same kind, sine two eletrons (and two positrons) repel eah other. If

there is a resident partile, and the inoming partile is of the opposite type,

they annihilate eah other, and both disappear from the play. It is not very

hard to determine the label of any position on the given digraph. But what

an be said about a general digraph? About suint digraphs? Note that

the speial ase where all the partiles are of the same type, is the general-

ization of Welter played on the given digraph. Welter is Nim with the

restrition that no two piles have the same size. It has a polynomial strategy,

but its validity proof is rather intriate [Con01℄ (h. 13).
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Figure 16: Interstellar enounter with Jupiter.

Figure 17: Matter and antimatter.
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5 Partizan Games

In a partizan ombinatorial game there are two players, Left and Right,

who have distint sets of moves available from eah position. A game G is

short if it meets both of the following onditions:

� G is �nite: it has just �nitely many distint subpositions; and

� G is ayli: there is no in�nite sequene of moves proeeding from G.

Formally, a short partizan game G an be represented as an ordered pair

(G L,G R), where G L
and G R

are sets of �simpler� games (that is, games with

stritly fewer subpositions). Elements of G L
(respetively G R

) are alled

Left (respetively Right) options of G. We'll sometimes write

G =
{

G
L
∣

∣ G
R
}

,

though we'll usually list the options of G expliitly:

G =
{

GL
1 , G

L
2 , . . . , G

L
m

∣

∣ GR
1 , G

R
2 , . . . , G

R
n

}

or abuse notation and write simply

G =
{

GL
∣

∣ GR
}

to indiate that GL
and GR

range over all the Left and Right options of G.
The simplest game is the empty game 0, from whih there are no options

for either player:

0 = { | }.
Then we de�ne the set of short games G̃ by

G̃0 = {0}; G̃n+1 =
{

{

G
L
∣

∣ G
R
}

: G
L,G R ⊂ G̃n

}

; G̃ =
⋃

n≥0

G̃n.

The theory of partizan games was introdued by Berlekamp, Conway and

Guy in the 1970s and early 1980s. The lassial textsWinning Ways for Your

Mathematial Plays [BCG04℄ and On Numbers and Games [Con01℄ remain

exellent introdutions.
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(a) (b) ()

Figure 18: (a) A Hakenbush position; (b) A typial opening move for

Left; () The resulting position after Left's move.

5.1 Two Examples: Hakenbush and Domineering

Hakenbush is played on a �nite undireted graph with olored edges,

suh as the one in Figure 18(a). The solid horizontal line in Figure 18(a)

represents a single vertex of the graph, the ground. On her turn, Left may

remove any bLue (soLid) edge; Right may remove any Red (paRallel) one.

GrEen (dottEd) edges may be removed by either player. After eah move,

any edges no longer onneted to the ground are also removed from play.

Hakenbush follows the same normal-play onvention as Nim: whoever

makes the last move wins.

Domineering is played on an m× n hekboard, typially 8× 8. Left and
Right alternately plae dominoes on the board. Eah domino must over ex-

atly two adjaent squares, and dominoes may never overlap. Moreover, Left

must plae vertiaLly-oriented dominoes, and Right must plae hoRizontally-

oriented ones. Eventually, the players will run out of moves (sine the board

will �ll up with dominoes), and whoever makes the last move wins. (Notie

that making the last move oinides with plaing the most dominoes, with

ties broken in favor of the seond player.)

Figure 19(a) shows a typial position after eah player has made one

move: Left made an opening move in the northeast orner of the board,

and Right responded in the southeast. Figure 19(b) shows the �rst fourteen

moves of a game played between David Wolfe and Dan Calistrate, in the

�nals of the �rst (and last) World Domineering Championship. Left 13 was

a fatal mistake, and after Right 14 Calistrate went on to win the math and

the tournament. A desription of the Wolfe�CalistrateDomineering math

an be found in [Wes96℄.
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Figure 19: (a) A typialDomineering opening; (b) The �rst fourteen moves

of Wolfe�Calistrate 1994, Round 3.

Notie that the position in Figure 19(b) an be subdivided into six sepa-

rate territories, and no single move an a�et more than one suh omponent.

Subsequent play on the four omponents labelled +3, +2, −2 and −3 is en-

tirely preditable: Left will plae exatly n dominoes on eah +n omponent,

and Right will plae n dominoes on eah −n omponent. The remaining two

regions are more exiting; their resolutions depend on who plays �rst on

whih territory. Assigning meaningful mathematial values to suh ompo-

nents, and desribing their ombinatorial interations, is a entral goal of the

partizan theory.

5.2 Outomes and Sums

IfG is a short partizan game, thenG belongs to one of four outome lasses:

N �rst player (the N ext player) an fore a win;

P seond player (the Previous player) an fore a win.

L Left an fore a win, no matter who moves �rst;

R Right an fore a win, no matter who moves �rst;

The proof that every game belongs to one of these four lasses is a trivial

generalization of Theorem 1, the Fundamental Theorem for impartial games.
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◦ ◦ ◦

L R N P

Figure 20: Four Hakenbush positions with distint outome lasses.

We denote by o(G) the outome lass of G. Figure 20 gives examples of

Hakenbush positions representing all four lasses.

The disjuntive sum G + H is formed as follows: Plae opies of G
and H side-by-side; on her turn, a player must move in exatly one of the

two omponents. Formally, we may write

G +H =
{

GL +H, G+HL
∣

∣ GR +H, G +HR
}

. (�)

Here GL
ranges over all Left options of G, andHL

ranges over all Left options

of H , so that the Left options of G +H are given by the union

{

X +H : X ∈ G
L
}

∪
{

G+ Y : Y ∈ H
L
}

. (�)

The notation in the equation marked (�) is generally learer and more su-

int than set notation (�), and we'll use it throughout this artile without

further omment.

Eah game G also has a negative −G, obtained by interhanging the

roles of Left and Right:

−G =
{

−GR
∣

∣ −GL
}

We write G−H as shorthand for G+ (−H).
The de�nition of disjuntive sum is motivated by examples suh as Dom-

ineering, in whih endgame positions deompose naturally into sums. The

position in Figure 19(b), for example, an be written as the sum of six inde-

pendent territories. Likewise, positions in Nim and Kayles an be written

as the disjuntive sum of single piles.

This modularity is entral to ombinatorial game theory. Given a sum of

games

G = G1 +G2 + · · ·+Gk,

it is often impratial to undertake a brute-fore analysis of G itself. Instead,

we study the omponents Gi individually, and attempt to extrat information

that an be pieed bak together to determine o(G). In Setion 2, this
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�information� took the form of nim values; in the ontext of partizan games,

a more general notion of game value is needed.

Observe that it's not always su�ient to know the outomes of eah

omponent. For example, let G and H be the following simple Hakenbush

positions:

G =
◦

H =
◦
◦

Then o(G) = o(H) = N : either player an win immediately (on either game,

played in isolation) by hopping the unique green edge, moving to 0. Also

o(G+G) = P, by the obvious symmetry argument. However on the sum

G+H =
◦ ◦

◦

Left an win no matter who moves �rst, sine she an arrange that Right is

always �rst to hop a green edge. So o(G+H) = L , and this shows that G
and H have unequal values.

5.3 Values

If G and H are partizan games, then we write

G = H if o(G+X) = o(H +X) for all X.

Here X ranges over all short partizan games (that is, all elements of G̃). In

partiular, suppose G and H are Hakenbush positions. Then X ranges

over all Hakenbush positions, but also over games that are not neessarily

representable in Hakenbush. This is deliberate: the universal quanti�er

is essential in order to get a good theory, and as we'll see in a moment it

provides a ommon language for identifying shared struture in ombinatorial

games.

The game value of G is its equivalene lass modulo equality. The idea

is that the given an arbitrary sum

G = G1 +G2 + · · ·+Gk,

the value, and hene the outome, of G an be omputed from the values of

eah Gi. The set of game values is denoted by G.
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◦
◦
◦

= .

Figure 21: A nontrivial identity between Hakenbush and Domineering.

Figure 21 gives a nontrivial example of two games with the same value.

The outome lasses are naturally partially-ordered by favorability to Left :

L

P N

R

This indues a partial order of G:

G ≥ H if o(G+X) ≥ o(H +X) for every all X.

If G ≥ H , then Left will be satis�ed to replae the omponent H with G, in
any oneivable sum of games. The basi theorems are as follows:

Theorem 2. o(G) ≥ P if and only if G ≥ 0, for all short games G.

Theorem 3. G is a partially-ordered Abelian group under disjuntive sum,

with identity 0.

Note that o(G) ≥ P if and only if Left an fore a win on G as seond

player. So Theorem 2 implies that every seond-player win is equal to 0.
This diretly generalizes the impartial theory, in whih every seond-player

win has nim value 0.
We'll also writeG ∼= H to mean thatG andH are idential (isomorphi)

games. Certainly G ∼= H implies G = H , but G = H does not imply G ∼= H
(sine in partiular, if G is any seond-player win, then G = 0).
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5.4 Simplest Forms

The entral result of the partizan theory is the Simplest Form Theorem:

every game value has a unique simplest representative. The Simplest Form

Theorem is obtained through the following expliit onstrution.

For a given G, we identify several types of �extraneous� options:

� A Left option GL1
is dominated (by GL2

) if GL2 ≥ GL1
for some other

Left option GL2
.

� A Right option GR1
is dominated (by GR2

) if GR2 ≤ GR1
for some

other Right option GR2
.

� A Left option GL1
is reversible (through GL1R1

) if GL1R1 ≤ G for

some Right option GL1R1
.

� A Right option GR1
is reversible (through GR1L1

) if GR1L1 ≥ G for

some Left option GR1L1
.

Dominated options an be removed from G without a�eting its value: in

any sum G +X from whih Left would like to move to GL1 +X (with GL1

dominated by GL2
), she is equally satis�ed to play GL2 +X instead.

Reversible options are a bit more subtle. IfGL1
is reversible throughGL1R1

,

then GL1
an be replaed with the set of all GL1R1L

, without a�eting the

value of G. Symbolially:

G =
{

GL1R1L, GL′
∣

∣ GR
}

,

with GL′

ranging over all Left options of G exept GL1
. This operation is

known as bypassing the reversible move GL1
(through GL1R1

).

Any game G an be simpli�ed by repeatedly eliminating dominated op-

tions and bypassing reversible ones. Eah suh operation stritly redues the

number of edges in the game tree of G, so this proess neessarily produes

a game K with no dominated or reversible options, and suh that K = G.
Suh K is alled the anonial form or simplest form of G, and the

following theorem shows that it is unique.

Theorem 4 (Simplest Form Theorem). Suppose that G = H, and neither

G nor H has any dominated or reversible options. Then G ∼= H.

The Simplest Form Theorem follows immediately by indutive appliation

of the following lemma:
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Lemma 1. Suppose that G = H, and neither G nor H has any dominated

or reversible options. Then for every HL
, there is a GL

suh that GL = HL
,

and vie versa; and likewise for Right options.

Proof. Consider a Left option HL
. Sine G − H ≥ 0, Left must have a

winning response to Right's opening move G − HL
. In partiular, either

GL − HL ≥ 0 for some GL
, or else G − HLR ≥ 0 for some HLR

. But the

latter would imply

H = G ≥ HLR,

ontraditing the assumption thatH has no reversible options. So neessarily

GL ≥ HL
for some GL

. An idential argument now shows that HL′ ≥ GL

for some HL′

, so that

HL′ ≥ GL ≥ HL.

But H has no dominated options, so none of the inequalities an be strit,

and in partiular GL = HL
. Proofs of the other ases are the same.

5.5 Numbers

Consider a single blue Hakenbush stalk, from whih Left an move to 0,
and Right has no move at all:

◦
=
{

∣

∣

∣

}

= {0 | }

This game is denoted by 1, sine it behaves like one spare move for Left. Sine

1 > 0, it generates a subgroup of G isomorphi to Z, and it is ustomary to

identify this subgroup with Z. In partiular we have

2 = 1 + 1 = {1 | }, 3 = 2 + 1 = {2 | }, . . .

and in general n+ 1 = {n | }, and −(n + 1) = { | −n}.
In Figure 22 we see various other numbers, for example

1

2
=

◦
◦

=

{
∣

∣

∣

∣

◦ }

= {0 | 1}.

The identity

1

2
+ 1

2
= 1 is easily veri�ed by showing that the di�erene game

1

2
+ 1

2
− 1
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◦
◦

◦
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◦
◦

◦ ◦
◦
◦

◦
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◦
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◦
◦

(a) (b) () (d)

Figure 22: Hakenbush positions: (a)

1

2
; (b)

1

2
+ 1

2
− 1; () 1

4
; (d)

1

32
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1

2

3 3
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1

4

−1

− 1

2

−1

4
−3

4

−2

− 3

2
−3

0

1

2

3

Figure 23: The Number Tree (with birthdays labeled on the right).

is a seond-player win. Larger denominators an be similarly onstruted:

1

2n+1
=

{

0

∣

∣

∣

∣

1

2n

}

and suh numbers generate a subgroup of G isomorphi to D, the group of

dyadi rationals:

D =
{

q ∈ Q : 2nq ∈ Z for some n ≥ 0
}

.

The anonial form of m/2n (in lowest terms) is given by

m

2n
=

{

m− 1

2n

∣

∣

∣

∣

m+ 1

2n

}

.

The indutive struture of numbers is neatly visualized in Figure 23. For

eah n ≥ 0, there are 2n numbers with birthday exatly n.
Now if x is a number, then it is a disadvantage to move on x, in the sense

that

xL < x < xR
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for every xL
and xR

. Remarkably, this riterion haraterizes the dyadi

rationals.

Theorem 5. Let x be a short game, and suppose that yL < y < yR for every

subposition y of x and every yL and yR. Then x ∈ D.

This observation has several fundamental onsequenes.

Theorem 6 (Number Avoidane Theorem). Suppose that x is equal to a

number but G is not. If Left (resp. Right) has a winning move on G + x,
then she an win by playing on G.

Theorem 7 (Number Translation Theorem). Suppose that x is equal to a

number but G is not. Then

G + x =
{

GL + x
∣

∣ GR + x
}

.

5.6 In�nitesimals

Numbers provide a natural metri against whih other games an be ali-

brated. In partiular, there is a vast hierarhy of games that are in�nitesi-

mal in the sense that

x > G > −x

for all positive numbers x.
The simplest nonzero in�nitesimal is the game ∗ (pronouned �star�), from

whih either player an move to 0:

∗ = {0 | 0} =
◦

It's easily heked that ∗ is an in�nitesimal, sine on the sum

∗+ 1

2n
=

◦ ◦
◦
◦
◦

Left an win easily by playing preferentially on ∗, independent of the value
of n.
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Note that ∗ is isomorphi to a nim-heap of size 1. In the partizan ontext,
a nim-heap of size m is denoted by ∗m (pronouned �star m�). Symbolially:

∗m = {0, ∗, ∗2, . . . , ∗(m−1) | 0, ∗, ∗2, . . . , ∗(m−1)}.

Eah ∗m (for m ≥ 1) is a �rst-player win, and so is onfused with 0. The
simplest signed in�nitesimals are

↑ = {0 | ∗} (�up�) and ↓ = −↑ = {∗ | 0} (�down�)

Certainly ↑ > 0, sine Left an win no matter who moves �rst. But ↑ is

in�nitesimal, by the same argument used for ∗: on ↓ + 2−n
(say), Left an

win by playing preferentially on ↓.

5.7 Stops and the Mean Value

If G is not a number, then its onfusion interval is given by

C(G) = {x ∈ D : G 6≷ x}.

The reader is invited to hek the following examples:

� C(∗) = {0}, a singleton.

� C(↑) = ∅.

� C({3 | −3}) is the losed interval [−3, 3].

� C({3 + ∗ | −3}) is the half-open interval [−3, 3).

The endpoints of C(G) are fundamental invariants ofG, known as the Left
stop L(G) and Right stop R(G) of G. Between them lies a third invariant,

the mean value m(G), whih has the following remarkable properties:

m(G +H) = m(G) +m(H) for all G and H ;

and for all G, the di�erene
(

n ·G
)

−
(

n ·m(G)
)

is bounded by a onstant independent of n. Therefore m(G) is a number

that losely approximates the limiting behavior of many opies of G.
One an think of G as vibrating between its Left and Right stops in suh

a way that its �enter of gravity� lies at m(G).
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6 Misère Play

We now return to the subjet of impartial games, but onsidered under the

misère play onvention, in whih the player who makes the last move loses.

The misère theory was introdued by Plambek and Siegel [Pla05, PS08℄; see

[Sie13℄ for a onise overview.

The Fundamental Theorem works in misère play too, with the same proof,

so that every impartial gameG has amisère outome (N or P) in addition

to its normal outome. The misère outome of G is denoted by o−(G).
The motivating question in misère impartial games is this: What is the

misère analogue of the Sprague�Grundy Theory? There are several reason-

able answers to this question, eah relevant in a di�erent set of irumstanes.

6.1 Misère Nim Value

LetG be aNim position, with heaps of sizes a1, . . . , ak. Reall that o(G) = P

if and only if a1 ⊕ · · · ⊕ ak = 0. A similar rule works in misère play, but it is

slightly more ompliated.

Theorem 8 (Bouton). The Nim position G with heaps a1, . . . , ak is a misère

P-position if and only if

a1 ⊕ · · · ⊕ ak = 0,

unless every ai = 0 or 1. In that ase, G is a P-position if and only if

a1 ⊕ · · · ⊕ ak = 1.

In partiular, note that ∗ is a misère P-position, but ∗m is an N -position

for all m 6= 1. This motivates the following misère analogue of nim values.

Reall that the (normal) nim value of G is given reursively by

G (G) =

{

0 if G ∼= 0;

mex
G′∈G

G (G′) otherwise.

The misère nim value is similarly de�ned, but with a di�erent base ase:

G
−(G) =

{

1 if G ∼= 0;

mex
G′∈G

G (G′) otherwise.

The misère nim value of G determines its outome. In fat we an say

something slightly stronger:
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Theorem 9. G −(G) is the unique value of m suh that o−(G + ∗m) = P.

In partiular, G is a misère P-position if and only if G −(G) = 0.

The problem with misère nim values is that they're not well-behaved in

sums. For example, let G = ∗ and H = ∗2 + ∗2. Then G and H are both

P-positions (by Theorem 8), so

G
−(G) = G

−(H) = 0.

However it's not hard to show (using Theorem 9, say) that

G
−(G+ ∗2) = 3, but G

−(H + ∗2) = 2.

So the misère nim value of a sum of games an't be determined from the nim

values of its omponents.

6.2 Genus Theory

The genus of G (plural genera), denoted by G
±(G), is obtained by onjoin-

ing its normal and misère nim values:

G
±(G) =

(

G (G),G−(G)
)

.

For brevity it's ustomary to write G ±(G) = ab in plae of G ±(G) = (a, b).
Remarkably, genus values are well-behaved in sums, but only for a par-

tiular lass of games known as tame games. First note that one an easily

lassify all the genera that arise in misère Nim:

� If G has no heaps of size ≥ 2, then G ±(G) = 01 or 10, depending on

the parity of the number of heaps of size 1.

� Otherwise, G
±(G) = aa, where a = G (G). (This follows from Theorems

8 and 9.)

So the only genera in misère Nim are 01, 10, and those of the form aa for
some a ≥ 0. An arbitrary game G is tame if all its subpositions have genus

values drawn from this ensemble.

The nim-addition operator ⊕ extends to tame genera aording to the

following addition table:

01 ⊕ 01 = 01 aa ⊕ 01 = aa

01 ⊕ 10 = 10 aa ⊕ 10 = (a⊕ 1)a⊕1

10 ⊕ 10 = 01 aa ⊕ bb = (a⊕ b)a⊕b

The main theorem is the following:
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Theorem 10 (Conway). If G and H are tame, then so is G + H, and

moreover

G
±(G+H) = G

±(G)⊕ G
±(H).

This provides a reasonably straightforward extension of the theory of

misère Nim to arbitrary tame games. In partiular, any tame game an be

treated as a Nim position in sums involving other tame games.

For example, let G = ∗ and H = ∗2+ ∗2. We noted above that G −(G) =
G

−(H) = 0, but G + ∗2 and H + ∗2 have distint misère nim values. This

is explained by the fat that G±(G) = 10, but G ±(H) = 00. There are two
fundamentally di�erent types of tame games with G −

-value 0, orresponding
to the two ases in the statement of Theorem 8.

Likewise, onsider J = ∗2 and K = ∗2+ ∗2+ ∗2. Here we have G ±(J) =
G

±(K) = 22. Sine J and K have the same genus, Theorem 10 implies that

o−(J +X) = o−(K +X) for any tame X . However, onsider the game

X = {0, ∗2 + ∗3}

whose options are 0 and ∗2 + ∗3. X is not tame (sine its genus is 20), and
indeed it's not hard to hek that

o−(J +X) = N , whereas o−(K +X) = P.

So even though J and K are both tame and have the same genus, they

nonetheless behave di�erently in sums with a suitable wild game. The ques-

tion of how best to extend the genus theory to wild games is an ongoing

researh problem; the rest of this setion will desribe the (onsiderable)

advanes that have been made in this diretion.

6.3 Misère Canonial Form

The most straightforward idea is simply to de�nemisère equality for impartial

games, the same way we de�ned equality for partizan games in Setion 5:

G = H if o−(G+X) = o−(H +X) for all X,

with X ranging over all impartial games. Then the misère game value

of G is its equivalene lass modulo misère equality. This obviously works, in

the sense that misère game value is automatially well-behaved in sums. The
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entral problem with misère nim values (and genus values for wild games) is

therefore de�nitionally irumvented.

But misère game values su�er from a di�erent problem, whih is that

there are rather a lot of them. If G is an impartial game, then an option

G′ ∈ G is said to be (misère) reversible if there is some G′′ ∈ G′
suh that

G′′ = G. Obviously if G is misère reversible, then it is equal to a simpler

game, namely G′′
, so this is a sort of analogue of partizan reversible moves

from Setion 5. The following theorem of Conway is one of the rowning

results of the misère theory.

Theorem 11 (Conway). Suppose that G = H, and neither G nor H has

any reversible moves. Then G ∼= H.

Theorem 11 says that reversible moves are only type of redution available

for impartial games. This is true in both normal and misère play: the �=�
sign in Theorem 11 an be interpreted to mean either normal or misère

equality (provided the orresponding notion of �reversible� is also used). In

normal play, it's essentially a restatement of the Sprague�Grundy Theorem,

so here we have a quite lear analogue of the normal-play theory.

Sadly, reversible moves in misère play are exeedingly rare. Consider the

set of game values with birthday ≤ 6. In normal play, there are just seven of

them:

0, ∗, ∗2, . . . , ∗6.
Conversely, in misère play Conway has shown that there are more than

24171779. In this sense misère game values spetaularly fail to yield a o-

herent theory.

6.4 Misère Quotients

The above results suggest that genus values preserve too little information,

whereas misère game values preserve too muh. The theory of misère quo-

tients o�ers a third approah: rather than aim for a single, fully general

extension of the Sprague�Grundy theory, we instead aept a multipliity of

loal analogues.

Reall the de�nition of misère equality:

G = H if o−(G+X) = o−(H +X) for all X.
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In de�ning misère game values, we allowed X to range over all impartial

games. If instead G, H and X are restrited to range over tame games, then

the resulting equivalene lasses orrespond one-to-one with genus values

(and in fat this is just a restatement of the genus theory). So genus values

an be viewed as the struture obtained when misère equivalene is loalized

to the set of tame games.

Along these lines, let A be any nonempty set of impartial games that is

losed in the following sense:

� If G,H ∈ A , then G+H ∈ A (additive losure); and

� If G ∈ A and G′ ∈ G, then G′ ∈ A (hereditary losure).

Then de�ne

G ≡ H (mod A ) if o−(G+X) = o−(H +X) for all X ∈ A .

Let Q be the orresponding set of equivalene lasses. The losure assump-

tions on A imply that Q is a ommutative monoid, and there is a surjetive

homomorphism

Φ : A → Q.

Denote by P ⊂ Q the subset orresponding to P-positions from A :

P = {Φ(G) : G ∈ A , o−(G) = P}.

The struture (Q,P) is themisère quotient of A , and is denoted by Q(A ).
It serves as a loalized analogue of the Sprague�Grundy theory, in the follow-

ing sense. Suppose that we wish to study a game G ∈ A that deomposes

in A :

G = G1 +G2 + · · ·+Gk, eah Gi ∈ A .

Given the Φ-values of eah Gi, say xi = Φ(Gi), then we an multiply them

out in the arithmeti of Q to determine Φ(G):

Φ(G) = x = x1x2 · · ·xk

and then hek whether x ∈ P. So far we haven't said anything terribly

profound. What's surprising (and what makes misère quotients so powerful)

is that the monoid Q often turns out to be �nite, even when A is in�nite,

and even when A ontains some wild games. In suh ases, the problem
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Q ∼= 〈a, b, c, d, e, f, g | a2 = 1, b3 = b, bc2 = b, c3 = c, bd = bc,
cd = b2, d3 = d, be = bc, ce = b2,
e2 = de, bf = ab, cf = ab2c, d2f = f,
f 2 = b2, b2g = g, c2g = g, dg = cg,
eg = cg, fg = ag, g2 = b2〉

P = {a, b2, ac, ac2, d, ad2, e, ade, adf}

Figure 24: The misère quotient of Kayles.

of determining the outome of the sum G redues to a small number of

operations on the �nite multipliation table Q.

For a simple example, let A onsist of all sums involving ∗ and ∗2. Then
every element of A is tame, so the elements of Q orrespond to genera of

games in A , whih are restrited to the six possibilities

01, 10, 00, 11, 22, 33.

The struture of the orresponding monoid follows diretly from the addition

table for genus values:

Q ∼= 〈a, b : a2 = 1, b3 = b〉,

with P = {a, b2}, orresponding to genera 10 and 00.
A fairly typial misère quotient is shown in Figure 24. It's the quotient of

the set of positions in the game Kayles, and therefore suintly desribes

the winning strategy for misère Kayles. It's worth noting that the original

solution to misèreKayles ran forty-three pages long. A streamlined proof in

Winning Ways redued this to �just� �ve pages. That the entire proof an be

enoded by the suint monoid presentation in Figure 24 niely illustrates

the power of the quotient theory.

7 Constraint Logi

While ombinatorial game theory seeks e�ient algorithms for games, often

no e�ient algorithm exists. Then, we seek instead to show hardness. In re-

ent years a new tool has emerged for proving hardness of games: onstraint

logi [DH08, HD09℄. With onstraint logi, the games we onsider are both
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more speialized and more general than what is traditionally addressed by

lassial game theory. More speialized, beause we are onerned only with

determining the winner of a game, and not with other issues suh as max-

imizing payo�, ooperative strategies, et. More general, beause lassial

game theory is onerned only with the interations of two or more players,

whereas onstraint logi addresses, in addition, games with only one player

(puzzles) and even with no players at all (simulations). Constraint logi of-

fers, for a variety of types of game, a simple path to hardness redutions;

generally a small number of onstraint logi �gadgets� must be built out of

omponents of the target game.

The starting point of onstraint logi is the perspetive that games model

omputation. Di�erent types of game model di�erent types of omputation.

For example, the idea of nondeterministi omputation niely mathes the

feature of puzzles that a player must hoose a sequene of moves or piee

plaements to satisfy some global property. Thus, puzzles are often NP-

omplete (see setion 2.1). Even more striking is the orrespondene between

alternation, the natural extension to nondeterminism, and two-player games.

Constraint logi is a family of games (played on direted graphs) whih model

omputation ranging from that of monotone Boolean iruits (P-omplete)

all the way to unrestrited Turing mahines (undeidable). For any game to

be analyzed, the ategory of game will suggest a potential omplexity, whih

may be proved by a redution from the orresponding type of onstraint

logi. The entire range of onstraint-logi games and omplexities is shown

in Table 1.

The hief advantage in showing a game hard by a redution from on-

straint logi, rather than from a standard problem suh as SAT or QBF, is

that onstraint logi is very similar in nature to many atual games, often

making redutions extremely simple. For example, essentially the entire proof

that sliding-blok puzzles are PSPACE-omplete is ontained in Figure 30

[HD05℄. This problem, originally posed by Martin Gardner [Gar64℄, had

One player

(puzzle)

Two player Team, imperfect

information

Unbounded

length PSPACE

NP

EXPTIME

PSPACE

Undecidable

NEXPTIME

PSPACE

Zero player

(simulation)

PBounded

length

Table 1: Game ategories and their natural omplexities. Constraint Logi

is omplete in eah lass.
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been open for nearly 40 years. Other games and puzzles shown hard via on-

straint logi inlude TipOver [Hea06a℄, sliding tokens (a dynami ver-

sion of Independent Set) [HD05℄, River Crossing [Hea04℄, Triangu-

lar Rush Hour [HD09℄, Push-2-F [DHH02℄, Amazons [Hea09℄, Konane

[Hea09℄, Cross Purposes [Hea09℄, Hitori [HD09℄, and Wriggle puz-

zles [Max07℄. Some games and puzzles with existing hardness proofs have

also been shown hard via onstraint logi, with simpler onstrutions (in some

ases, also strengthening the existing results), inluding Sokoban [HD05℄,

Rush Hour [HD05℄, and the Warehouseman's Problem [HD05℄. Fi-

nally, onstraint logi has also been applied to several problems outside the

domain of games proper, inluding showing undeidability of some deision

problems for multi-port �nite-state mahines [Hie10℄.

7.1 The Constraint-Logi Framework

The general model of games we develop is based on the idea of a onstraint

graph; the rules de�ning legal moves on suh graphs are alled onstraint

logi. In later setions the graphs and the rules will be speialized to produe

one-player, two-player, et. games.

2

A game played on a onstraint graph is

a omputation of a sort, and simultaneously serves as a useful problem to

redue to other games to show their hardness.

A onstraint graph is a direted graph with edge weights among {1, 2}.
An edge is then alled red or blue, respetively. The in�ow at eah vertex

is the sum of the weights on inward-direted edges. Eah vertex has a non-

negative minimum in�ow. A legal on�guration of a onstraint graph

has an in�ow of at least the minimum in�ow at eah vertex; these are the

onstraints. A legal move on a onstraint graph is the reversal of the

diretion of a single edge that results in a legal on�guration. Generally, in

any game, the goal will be to reverse a given edge by exeuting a sequene of

(legal) moves. In multiplayer games, eah edge is ontrolled by an individual

player, and eah player has his own goal edge. In deterministi games, a

unique sequene of moves is fored. For the bounded games, eah edge may

only reverse one.

It is natural to view a game played on a onstraint graph as a om-

putation. Depending on the nature of the game, it an be a deterministi

2

In the interest of spae, we omit some of the de�nitions�and all disussion of zero-

player games (Deterministi Constraint Logi)� and refer the reader to [Hea06b℄,

[DH08℄, or [HD09℄.
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A B

C

(a) AND vertex. Edge C may be direted

outward if and only if edges A and B are

both direted inward.

A B

C

(b) OR vertex. Edge C may be direted

outward if and only if either edge A or

edge B is direted inward.

Figure 25: AND and OR verties. Red (light gray, thinner) edges have weight

1, blue (dark gray, thiker) edges have weight 2, and verties have a minimum

in-�ow onstraint of 2.

omputation, or a nondeterministi omputation, or an alternating ompu-

tation, et. The onstraint graph then aepts the omputation just when

the game an be won.

AND/OR Constraint Graphs; Planarity. Certain vertex on�gurations

in onstraint graphs are of partiular interest. An AND vertex (Figure 25(a))

has minimum in�ow onstraint 2 and inident edge weights of 1, 1, and 2.
It behaves as a logial AND in the following sense: the weight-2 (blue) edge

may be direted outward if and only if both weight-1 (red) edges are direted
inward. Otherwise, the minimum in�ow onstraint of 2 would not be met.

An OR vertex (Figure 25(b)) has minimum in�ow onstraint 2 and inident

edge weights of 2, 2, and 2. It behaves as a logial OR: a given edge may be

direted outward if and only if at least one of the other two edges is direted

inward.

It turns out that for all the game ategories, it will su�e to onsider

onstraint graphs ontaining only AND and OR verties. For some of the

game ategories, there an be many subtypes of AND and OR vertex, be-

ause eah edge may have a distinguishing initial orientation (in the ase of

bounded games), and a distint ontrolling player (when there is more than

one player). In some ases there are alternate vertex �basis sets� that enable

simpler redutions to other problems than do the omplete set of ANDs and

ORs.

For all but the bounded zero-player ase, it also su�es to only onsider

planar onstraint graphs. In pratie this makes for muh easier hardness

redutions; often, rossover gadgets are the most di�ult piees of a redution
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to onstrut. With onstraint logi, we get them for free. The most ommon

problem used to show NP-hardness is 3SAT, but in many instanes this

planarity property makes onstraint logi redutions simpler.

Diretionality; Fanout. As implied above, although it is natural to think

of AND and OR verties as having inputs and outputs, there is nothing enfor-

ing this interpretation. A sequene of edge reversals ould �rst diret both

red edges into an AND vertex, and then diret its blue edge outward; in this

ase, we ould say that its �inputs� have �ativated�, enabling its �output� to

�ativate�. But the reverse sequene ould equally well our. In this ase

we ould view the AND vertex as a splitter, or FANOUT gate: direting the

blue edge inward allows both red edges to be direted outward, e�etively

splitting a signal.

In the ase of OR verties, again, we an speak of an ative input enabling

an output to ativate. However, here the hoie of input and output is entirely

arbitrary, beause OR verties are symmetri.

7.2 One-Player Games

The one-player version of onstraint logi is alledNondeterministi Con-

straint Logi (NCL). The rules are simply that on a turn the player re-

verses a single edge that results in a legal on�guration. The goal is to reverse

a partiular edge.

7.2.1 Bounded Games

Bounded Nondeterministi Constraint Logi (Bounded NCL) is

formally de�ned as follows:

BOUNDED NONDETERMINISTIC CONSTRAINT

LOGIC (BOUNDED NCL)

INSTANCE: Constraint graph G, edge e in G.

QUESTION: Is there a sequene of moves on G that eventually

reverses e, suh that eah edge is reversed at most one?

Bounded NCL is NP-omplete (redution from 3SAT). It remains NP-

omplete when the graph G is required to be a planar graph whih uses
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(a) CHOICE (b) AND () FANOUT (d) OR

Figure 26: Basis verties for Bounded NCL.

only the vertex types shown in Figure 26.

3

It also turns out to be useful

to redue from graphs that have the property that only a single edge an

initially reverse; this problem is also NP-omplete.

A related problem is Constraint Graph Satisfiability:

CONSTRAINT GRAPH SATISFIABILITY

INSTANCE: Unoriented planar onstraint graph G using only AND

and OR verties.

QUESTION: Does G have a on�guration that satis�es all the on-

straints?

Properly, this problem is not a onstraint-logi game, beause the moves

(assignments of edge orientations) are not reversals from one legal on�gu-

ration to another. But it is similar in spirit, and an prove useful for re-

dutions. Constraint Graph Satisfiability is NP-omplete (redution

from 3SAT). Note that for Constraint Graph Satisfiability, unlike

proper Bounded NCL, only two types of vertex are needed.

Sample Appliation: Hitori. Hitori was popularized by Japanese

publisher Nikoli, along with its more-famous sibling Sudoku, and several

other �penil-and-paper� puzzles. In Hitori, we are given a grid with eah

square labeled with an integer, and the goal is to paint a subset of the squares

so that (1) no row or olumn has a repeated unpainted label (similar to Su-

doku), (2) painted squares are never adjaent, and (3) the unpainted squares

are all onneted. A simple Hitori puzzle and its solution are shown in Fig-

ure 27. We give a redution from Constraint Graph Satisfiability

3

Here we show the initial, �inativated� orientation of the edges. In an AND, the blue

edge may reverse if the red edges �rst reverse; in a FANOUT, the red edges may reverse

if the blue edge �rst reverses.
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Figure 27: A simple Hitori puzzle and its solution.

a

b

b

c c d d

a

…

…

(a) Wire, turn

a e b b

c

c

d

d

d

a

…

……

(b) OR, parity

a

b

bc

c

a

…

…

…

() AND

Figure 28: Hitori gadgets.

(Setion 7.2) showing that it is NP-omplete to determine whether a given

n× n Hitori puzzle has a solution [HD09℄.

Wiring. We represent graph edge orientation with wires, or strings of adja-

ent squares, onsisting of integers x1, x1, x2, x2, ..., xn−1, xn−1, xn, xn, where

the xi are distint. If the �rst x1 is unpainted, then the next must be painted

(by rule 1 above), foring the �rst x2 to be unpainted (by rule 2), et.; thus

the last xn must be painted. If the �rst x1 is painted, the last xn may be

painted or unpainted: we ould (for example) have the seond x1 and the

�rst x2 both unpainted without violating the rules.

Wires may be turned, as in Figure 28(a): if the bottom a is unpainted,

then the right d must be painted. (We assume that the unlabeled squares all

ontain distint integers not otherwise used in the gadgets.)

OR Vertex / Parity Gadget. In Figure 28(b), �rst onsider the ds. At
most one an be unpainted, but no two adjaent may be painted. Therefore,
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both the lower and the upper one must be painted, and e must be unpainted.
If both the left a and the right b are unpainted, then the right a and the

left b must be painted. As an unpainted square, e must be onneted to the

other unpainted squares (rule 3); the lower c is the only way out. Therefore,

the lower c is unpainted, and the upper one painted. But if either the left

a or the right b is painted, then the other a or b will be unpainted, allowing
another way out for e. Then the lower c may be painted, and the upper c
unpainted. These are the same onstraints an OR vertex has, again with an

unpainted �port� square (left a, right b, top c) orresponding to an outward-

direted edge, and a painted port square orresponding to an inward-direted

edge.

This gadget an also serve to alter the positional parity in wiring, so that

the various gadgets an be onneted arbitrarily, by using only one input,

and bloking the other one (for example, by adding another b to the right of
the right one).

AND Vertex. Similar but simpler reasoning as above shows that the gadget

in Figure 28() satis�es the same onstraints as an AND vertex, with the lower

a and b (�inputs�) orresponding to the red edges, and the upper c (�output�)
to the blue edge: the output square may be unpainted if and only if both

input squares are painted.

Assembly. Given a planar AND / OR onstraint graph, we onstrut a

Hitori puzzle by onneting together AND and OR vertex gadgets with wires,

adjusting positional parity as needed. If the graph has a legal on�guration,

then every wire an be painted so as to satisfy all the Hitori onstraints, as

desribed. Similarly, if the Hitori puzzle an be solved, then a legal graph

on�guration an be read o� the wires.

7.2.2 Unbounded Games

Nondeterministi Constraint Logi (NCL) is the anonial form of

onstraint logi:

NONDETERMINISTIC CONSTRAINT LOGIC (NCL)

INSTANCE: Constraint graph G, edge e in G.

QUESTION: Is there a sequene of moves on G that eventually

reverses e?
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(a) AND (b) OR

Figure 30: Constraint-logi gadgets showing PSPACE-ompleteness of Slid-

ing Bloks.

NCL is PSPACE-omplete (redution from QBF), and remains PSPACE-

omplete when the graph G is required to be a planar graph whih uses only

AND and OR verties (Figure 25). NCL redutions are often very straightfor-

ward, for two reasons. First, only two gadgets must be onstruted. Seond,

one-player games (puzzles) are generally easier to redue to than multi-player

games. For these reasons, and beause there is a large supply of andidate

puzzles to analyze, NCL redutions form the largest set of existing onstraint-

logi redutions.

Figure 29: Dad's Puzzle.

Sample Appliation: Sliding Bloks. In

the usual kind of sliding-blok puzzle, one is given

a box ontaining a set of retangular piees, and

the goal is to slide the bloks around so that a

partiular piee winds up in a partiular plae. A

popular example is Dad's Puzzle, shown in Fig-

ure 29; it takes 59 moves to slide the large square

to the bottom left. We outline a redution from

Nondeterministi Constraint Logi (Se-

tion 7.2) showing that it is PSPACE-omplete to determine whether a given

sliding-blok puzzle in an n×n box has a solution. For a formal proof (whih

is also stronger, using only 1× 2 bloks), see [HD05℄ or [HD09℄.

AND Vertex. The gadget shown in Figure 30(a) satis�es the same on-

straints as an AND vertex. Assume that the outer, dark-olored �wall� bloks

are �xed. Then, the only way the top �signal� (light-olored) blok may slide
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Figure 31: Sliding-blok gadget assembly.

down is if the left signal blok �rst slides left, and bottom signal blok slides

down. This allows the other signal bloks to move out of the way.

OR Vertex. Similarly, the gadget shown in Figure 30(b) satis�es the same

onstraints as an OR vertex�the top signal blok may slide down if and only

if either the left or the right signal blok �rst slides out.

Assembly. To use these gadgets to represent arbitrary planar AND / OR

onstraint graphs, we assemble them as shown in Figure 31. The wall bloks

are shared between adjaent verties, as are the signal bloks that at as

graph edges. We put a grid of the gadgets inside a box. This keeps the wall

bloks from moving, as required. The goal is to slide the partiular signal

blok that orresponds to the target edge in the input onstraint graph.

Then, the puzzle an be solved just when the onstraint-logi problem is

solvable.

7.3 Two-Player Games

The two-player version of onstraint logi,Two-Player Constraint Logi

(2CL), is de�ned as follows. To reate di�erent moves for the two players,

Blak and White, we label eah onstraint graph edge as either Blak or

White. (This is independent of the red/blue oloration, whih is simply a

shorthand for edge weight.) Blak (White) is allowed to reverse only Blak
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(a) CHOICE (b) AND () FANOUT (d) OR

(e) VARIABLE

Figure 32: Basis verties for Bounded 2CL.

(White) edges. As before, a move must reverse exatly one edge and result in

a valid on�guration. Eah player has a target edge he is trying to reverse.

4

(We omit the formal de�nitions here.)

Bounded games. The bounded ase permits eah edge to reverse at most

one. Bounded 2CL is PSPACE-omplete (redution from Gpos(POS CNF),

a variant of QBF [Sh78℄). It remains PSPACE-omplete when the onstraint

graph is a planar graph using only the vertex types shown in Figure 32.

Indeed, the atual redution showing Bounded 2CL PSPACE-omplete is

almost trivial, and the main bene�t of using Bounded 2CL for game redu-

tions, rather than simply using one of the many QBF variants, is that when

reduing from Bounded 2CL one does not have to build a rossover gad-

get. The omplexity of Amazons remained open for several years, despite

some e�ort by the game-omplexity ommunity; its onstraint-logi redution

showing PSPACE-ompleteness is straightforward [HD09℄.

The vertex set in Figure 32 is atually almost the same as that for

Bounded NCL (Figure 26); the only addition is a single vertex type allowing

for player interation. Most of the gadgets an be single-player onstrutions.

Unbounded games. The unbounded ase simply removes the restrition

of edges reversing at most one. 2CL is EXPTIME-omplete (redution from

G6, one of the several Boolean formula games shown EXPTIME-omplete by

4

In ombinatorial game theory, it is normal to de�ne the loser as the �rst player unable

to move. This de�nition would work perfetly well for 2CL, rather than using target

edges to determine the winner; the hardness redution would not be substantially altered.

However, the given de�nition is more onsistent with the other varieties of onstraint logi:

always, the goal is to reverse a given edge.
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(a) White AND (b) White OR () Blak AND

(d) Multiplayer AND 1 (e) Multiplayer AND 2

(f) Blak-White

Figure 33: Basis verties for 2CL.

[SC79℄). 2CL remains EXPTIME-omplete when the graph is a planar graph

using only the verties shown in Figure 33. In priniple, this should enable

muh simpler redutions to atual games than the standard redutions from

Boolean formula games. The existing Chess [FL81℄, Chekers [Rob84b℄,

and Go [Rob83℄ hardness results are all quite ompliated; there ould be

simpler redutions from 2CL. However, suh redutions have not yet been

found. Enforing the neessary onstraints in a two-player game gadget is

muh more di�ult than in a one-player game.

7.4 Team Games

The natural team private-information onstraint logi (TPCL) assigns to

eah player a set of edges he an reverse, and a set of edges whose orientation

he an see, in addition to the target edge he aims to reverse. There are two

teams, Blak and White; a team wins when a player on that team reverses

his target edge. (We omit the formal de�nitions here.)

Bounded games. As usual for bounded games, with Bounded Team

Private Constraint Logi we allow eah edge to reverse at most one.

Bounded TPCL is NEXPTIME-omplete (redution from theDependeny

QBF problem introdued in [PR79℄). It remains NEXPTIME-omplete, even
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for planar graphs whih use only AND and OR verties, and when there is only

one Blak player and two White players. (Unlike other forms of onstraint

logi, here we don't enumerate a spei� smaller set of basis verties; note

that there are several di�erent types of AND and OR verties, depending on

ontrolling player, initial edge orientation, and edge visibility.)

Unbounded games. To enable a simpler redution to an unbounded form

of team onstraint logi, we allow eah player to reverse up to some given

onstant k edges on his turn, rather than just one, and leave the ase of k = 1
as an open problem. TPCL is undeidable (shown by a series of redutions

beginning with aeptane of a Turing mahine on an empty input). It

remains undeidable even for planar graphs whih use only AND and OR

verties. As with Bounded TPCL, several di�erent AND- and OR-subtypes

are used in the redution, whih we do not enumerate.

The undeidability here is rather striking, given that this is a game played

with a �nite number of positions! Essentially, this means that the games with

a bounded amount of state an simulate any unbounded Turing omputation.

The ability for a player to reverse multiple edges on a turn, and the lak of

a small set of basis verties, would seem to make TPCL a hallenging problem

to redue from to show other problems undeidable. However, TPCL has

already been applied to show some deision problems for multi-port �nite-

state mahines undeidable [Hie10℄.

8 Conlusion

We have now forged a trail from Nim to Chess and Go. In setion 2 we

dealt with lassial ayli impartial games. We then presented a polynomial

theory of yli games in setion 3. In setion 4 we added interations between

tokens. Next we takled partizan games in setion 5, and misère play in

setion 6. All of these � yles, token interations, misère play � are absent

from Nim but very muh present in Chess and Go. This trail is still rather

thin: token interation was restrited to annihilation. Most of the other

interations lead to intratable games. Similarly for partizan games. Misère

play was portrayed in the Introdution as a speial ase of �Termination Set�,

general ases of whih our in Chess and Go. In this sense we listed misère

play as a road step towards Chess and Go.
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Game intratability results, besides their intrinsi value, serve as trail

guides: They indiate the boundary beyond whih polynomial strategies are

unlikely to exist, where we have to resort to analysis of restrited or speial

ases. Setion 7 provides a modern onvenient tool for proving intratabil-

ity, though it doesn't seem to work for all ases. Intratable games, in the

tehnial meaning of intratability, though it's only an asymptoti result �

for n×n boards as n goes to in�nity � are rather unlikely to have a tratable

strategy for a �nite atual board. In fat, we do not know of any suh ase.

Therefore only speial ases are likely to be analysable. For misère play this

was done by restriting the universe of the games. For Chess and Go it was

done by treating endgames.

Thus we have arrived at Chess and Go from two diretions: The for-

mer has been showed to be EXPTIME-omplete [FL81℄, whih is a prov-

able intratability, and the latter even EXPSPACE-omplete, under ertain

game-rules of Go [Rob84a℄; and there are some onstrutive results for their

endgames. Elkies [Elk96℄, [Elk06℄ has some results about Chess endgames,

and Berlekamp and his students have some spetaular results about Go

endgames [Ber91℄, [BW94℄. Go play tends to break up into almost indepen-

dent subgames at the end, so the strong tool of game-sums an be unleashed

to attak them. This is not quite the ase for Chess, partly beause some of

the piees are so strong that they dominate muh of the entire board, rather

than only loally.

How an we broaden this still rather thin trail? One diretion ould be to

extend the misère play theory to more general termination sets, as exist for

Chess and Go. Another is to broaden the �edgling theory of soring games,

where sores are aumulated during play. These were and are indepen-

dently studied by John Milnor, Mark Ettinger, Fraser Stewart, Will Johnson

and Carlos Santos. Related avenues inlude ompetitive autions, inentives

(Elwyn Berlekamp), bidding games (Sam Payne) and, more generally, on-

netions between ombinatorial games and lassial games with appliations

to eonomis. In quite a di�erent diretion, the yearned for emergene of

quantum and biologial omputing are potential brute fore tools to bridge

the omplexity gap between polynomial and non-polynomial games.
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