Variants of (s, t)-Wythoff's game

Haiyan Li ${ }^{\text {a,* }}$, Sanyang Liu ${ }^{\text {a }}$, Aviezri S. Fraenkel ${ }^{\text {b }}$, Wen An Liu ${ }^{\text {c }}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Xidian University, Xi'an, 710126, China
${ }^{\mathrm{b}}$ Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
${ }^{\text {c }}$ College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China

ARTICLE INFO

Article history:

Received 15 January 2015
Received in revised form 13 March 2017
Accepted 19 April 2017
Available online 15 May 2017

Keywords:

P-position
(s, t)-Wythoff's game
Restriction
Normal play convention

Abstract

In this paper, we study four games, they are all restrictions of (s, t)-Wythoff's game which was introduced by A.S. Fraenkel. The first one is a modular type restriction of (s, t)-Wythoff's game, where a player is restricted to remove a multiple of K tokens in each move (K is a fixed positive integer). The others we called rook type restrictions of (s, t)-Wythoff's game, including Odd-Arbitrary-Nim (s, t)-Wythoff's Game, Odd-Odd-Nim (s, t)-Wythoff's Game and Odd-Even-Nim (s, t)-Wythoff's Game. In these three games, the restrictions are only made on horizontal and vertical moves, but not on the extended diagonal moves. For any $K, s, t \geq 1$, the sets of P-positions of our games are given in both normal and misère play.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Introduced by A.S. Fraenkel in [6], (s, t)-Wythoff's game is a well-known 2-player combinatorial game involving two piles of finitely many tokens. Given two integers $s, t \geq 1$, a player may either remove any positive number of tokens from a single pile or remove tokens from both piles, $k>0$ from one pile and $\ell>0$ from the other, say $\ell \geq k$, constrained by

$$
\begin{equation*}
0 \leq \ell-k<(s-1) k+t \tag{1}
\end{equation*}
$$

In normal play, the player first unable to move loses; while in misère play that player wins.
The special case $s=t=1$ is the classical Wythoff game, while the case $s=1, t \geq 1$ is Generalized Wythoff [4]. More variants of Wythoff's game and (s, t)-Wythoff's game can be found in [2,3,11,12,14,15]. For more theory of general combinatorial games, see [1,7,8,10].

By (a, b) we denote a game position with the two piles of sizes a and b. A position is called an N-position (known as winning position) from which the Next player can win. Otherwise, it is a P-position (known as losing position) from which the Previous player has a winning strategy. We denote by \mathscr{P} and \mathscr{N} the set of all P-positions of a game and the set of all its N-positions respectively. By \mathbb{Z}^{0} and \mathbb{Z}^{+}we denote the set of nonnegative integers and positive integers respectively.

Given any game, we notice that the set of all its P-positions constitutes an independent set, and the main goal is to find characterizations of the sequence of P positions. For example, in [6], the author gave all P-positions of (s, t)-Wythoff' game in normal play:

$$
\begin{equation*}
\mathscr{P}=\bigcup_{n=0}^{\infty}\left\{\left(A_{n}^{\prime}, B_{n}^{\prime}\right)\right\}, \quad A_{n}^{\prime}=\operatorname{mex}\left\{A_{i}^{\prime}, B_{i}^{\prime} \mid 0 \leq i<n\right\}, B_{n}^{\prime}=s A_{n}^{\prime}+t n \tag{2}
\end{equation*}
$$

[^0]http://dx.doi.org/10.1016/j.dam.2017.04.020 0166-218X/® 2017 Elsevier B.V. All rights reserved.
where $\operatorname{mex} S=\min \left(\mathbb{Z}^{0} \backslash S\right)$. In particular, mex $\emptyset=0$. In misère play, the set of all P-positions of (s, t)-Wythoff's game was determined in [13].

All four games in this paper are 2-player games played on two piles of finitely many tokens. Let

$$
K \in \mathbb{Z}^{+}, \quad \mathcal{M}_{K}=\left\{n K \mid n \in \mathbb{Z}^{0}\right\}
$$

Now we define the first game which is a modular type restriction of (s, t)-Wythoff's game, denoted by Γ_{K} : Let $K, s, t \in \mathbb{Z}^{+}$, a player may either
I. remove k tokens, with $0<k \in \mathcal{M}_{K}$, from a single pile, or
II. remove from both piles, k tokens from one pile with $0<k \in \mathcal{M}_{K}$ and ℓ from the other with $0<\ell \in \mathcal{M}_{K}$, subject to the constraint (1).
Notice that the case $K=1$ is exactly (s, t)-Wythoff's game, while for $K=2$, it is the "Even Even" case studied in [12].
The remaining three games are called Odd-Arbitrary-Nim (s, t)-Wythoff's game, Odd-Odd-Nim (s, t)-Wythoff's game and Odd-Even-Nim (s, t)-Wythoff's game. These games are rook type restrictions of (s, t)-Wythoff's game, which are denoted by $\Gamma_{O A}, \Gamma_{O O}, \Gamma_{O E}$, respectively. Throughout play of each of these three games, one pile is "first pile" and the other "second pile". In general, we denote by (x, y) a game position where x and y are the numbers of tokens in the first and the second pile, respectively.
(1) In $\Gamma_{O A}$, a player may either remove an odd number $k>0$ of tokens from the first pile or an arbitrary number of tokens from the second pile, or move from both piles as in (s, t)-Wythoff's game.
(2) In Γ_{00}, a player may only remove an odd number $k>0$ of tokens when moving from a single pile (either the first or the second), while the move rule when moving from both piles is the same as that of (s, t)-Wythoff's game.
(3) In $\Gamma_{O E}$, a player may either remove an odd number $k>0$ of tokens from the first pile or an even number $\ell>0$ of tokens from the second, or move from both piles as in (s, t)-Wythoff's game.
Notice that in these three games no restriction is imposed on the diagonal move, while for Γ_{K} and the games defined in [12] also the diagonal move is constrained.

Section 2 provides methods for finding the P-positions of a game and its winning strategy. In Section 3, all P-positions of Γ_{K} are given recursively in terms of the mex function in both normal and misère play (Theorems 3 and 6). Moreover, a polytime winning strategy for Γ_{K} in normal play is provided by exhibiting a relationship between Γ_{K} and (s, t)-Wythoff's game (Theorem 4 and Corollary 5), together with a special numeration system. While in misère play, a poly-time winning strategy for Γ_{K} is provided when $s=1$ (Theorem 7 and Corollary 8). All P-positions of $\Gamma_{O A}, \Gamma_{O O}, \Gamma_{O E}$ in both normal and misère play are given in Section 4 (Theorems 9-16), based on algebraic structures, which provide polynomial time strategies. The final Section 5 lists several far-reaching relevant open problems.

2. Preliminaries

It follows from the definition of P - and N-positions that from any N-position there always exists a move to a P-position and from a P-position a player can only move to an N-position (i.e., there can never be a move from a P-position to another P-position). These properties can be used to check whether a given position (a, b) is a P-position or not. By $F(u)$ we denote the followers of u, i.e., all positions that can be reached from u in one legal move. Symmetry of the game rules of Γ_{K} implies that both (a, b) and (b, a) are P-positions (or N-positions). For convenience, however, we agree to write (a, b) with $a \leq b$ throughout.

Example 1. For $K=s=2$ and $t=1$, consider Γ_{K} in normal play. We proceed according to the following steps to determine the first few P - and N-positions:

Step $1 P$-positions: Clearly, $(0,0),(0,1),(1,1) \in \mathscr{P}$, since the next player has no legal move from them and loses, that is, the previous player wins by default.

Step $2 N$-positions: For $(0, m),(1, m),(m, m),(m, m+1),(m, m+2)$ with $m \geq 2$ and $(m, m+3)$ with m positive even, it is easy to check that from each of them a legal move of type I or II can result in a position in $\{(0,0),(0,1),(1,1)\}$, thus they are all N-positions.

Step $3 P$-positions: $F(2,6)=\{(0,2),(0,4),(0,6),(2,2),(2,4)\}$. It follows from Step 2 that each position of $F(2,6)$ is an N-position. Thus $(2,6) \in \mathscr{P}$. In the same manner, we can obtain that $(2,7),(3,6),(3,7) \in \mathscr{P}$.

By repeating Steps 2 and 3, we can get more P-positions and N-positions of Γ_{K}.

3. Modular type restriction of (s, t)-Wythoff's game

We denote by $\lfloor x\rfloor$ the largest integer $\leq x$ and $\lceil x\rceil$ the smallest integer $\geq x$. By $\mathbb{Z}^{\geq m}$ we denote the set of all integers not less than m.

Definition 1. (i) For any set E and any element w, we define $E+w=\{e+w \mid e \in E\}$. In particular, $E=\emptyset \Longrightarrow E+w=\emptyset$. (ii) Let $K, s, t \in \mathbb{Z}^{+}$, and $\Omega_{K}=\{0,1,2, \ldots, K-1\}$. We define two sequences A_{n} and B_{n}, for $n \in \mathbb{Z}^{0}$:

$$
\left\{\begin{array}{l}
A_{n}=\operatorname{mex}\left\{\left\{A_{i} \mid 0 \leq i<n\right\}+\alpha,\left\{B_{i} \mid 0 \leq i<n\right\}+\beta\right\}, \quad \text { where } \alpha, \beta \in \Omega_{K}, \tag{3}\\
B_{n}=s A_{n}+\lceil t / K\rceil \text { Kn. }
\end{array}\right.
$$

Notice that for $K=1, A_{n}=A_{n}^{\prime}, B_{n}=B_{n}^{\prime}$, where $A_{n}^{\prime}, B_{n}^{\prime}$ were defined in Eq. (2).
Lemma 2. Let $\left\{A_{n}\right\}_{n=0}^{\infty}$ and $\left\{B_{n}\right\}_{n=0}^{\infty}$ be defined by Eq. (3). We have the following properties:
(a) $A_{n}, B_{n} \in \mathcal{M}_{K}$, for $n \in \mathbb{Z}^{0}$.
(b) For every m and n, with $n>m \geq 0$, we have $B_{n}>A_{n}>A_{m}$.
(c) Let $A=\bigcup_{n=1}^{\infty}\left\{A_{n}\right\}+\alpha$ and $B=\bigcup_{n=1}^{\infty}\left\{B_{n}\right\}+\beta$, where $\alpha, \beta \in \Omega_{K}$, with Ω_{K} being defined in Definition 1(ii). Then A and B are complementary with respect to $\mathbb{Z}^{\geq K}$, i.e., $A \cup B=\mathbb{Z}^{\geq K}$ and $A \cap B=\emptyset$.
(d) $A_{n}-A_{n-1} \in\{K, 2 K\}$.
(e) $B_{n}-B_{n-1} \in\{s K+\lceil t / K\rceil K, 2 s K+\lceil t / K\rceil K\}$. Moreover, $B_{n}-B_{n-1}=s K+\lceil t / K\rceil K$ if and only if $A_{n}-A_{n-1}=K$; $B_{n}-B_{n-1}=2 s K+\lceil t / K\rceil K$ if and only if $A_{n}-A_{n-1}=2 K$.

Proof. (a) Induction on n. Obviously, $A_{0}=B_{0}=0, A_{1}=K$ and $B_{1}=s A_{1}+\lceil t / K\rceil K \in \mathcal{M}_{K}$. Suppose $A_{j}, B_{j} \in \mathcal{M}_{K}$ holds for all $j<n$. We now show that $A_{n} \in \mathcal{M}_{K}$, and so $B_{n}=s A_{n}+\lceil t / K\rceil K n \in \mathcal{M}_{K}$.

Indeed, suppose that there exists some $q \in \mathbb{Z}^{0}$ such that $A_{n}=q K+\gamma$ with $0<\gamma \in \Omega_{K}$. Let $S=\left\{\left\{A_{i} \mid 0 \leq i<\right.\right.$ $\left.n\}+\alpha,\left\{B_{i} \mid 0 \leq i<n\right\}+\beta\right\}$ with $\alpha, \beta \in \Omega_{K}$. Then we have $q K+\gamma=$ mex S. This implies that $q K+\gamma \notin S$ and $q K=A_{n}-\gamma \in S$. If there exist $i_{0}<n$ and $\alpha, \beta \in \Omega_{K}$ such that $q K=A_{i_{0}}+\alpha$ or $q K=B_{i_{0}}+\beta$, then by assumption $A_{i_{0}}, B_{i_{0}} \in \mathcal{M}_{K}$ implying that $\alpha=\beta=0$. Hence $q K+\gamma=A_{i_{0}}+\gamma \in S$ or $q K+\gamma=B_{i_{0}}+\gamma \in S$, giving a contradiction.
(b) A_{n} and B_{n} are strictly increasing sequences, which is obvious from their definition, and $B_{n}=s A_{n}+\lceil t / K\rceil K n \geq$ $A_{n}+K n>A_{n}>A_{m}$, for any $n>m \geq 0$.
(c) It is easy to see that $A \cup B=\overline{\mathbb{Z}}^{\geq K}$. Suppose $A \cap B \neq \emptyset$. It follows from (a) that $A_{m}+\alpha^{\prime} \neq B_{n}$ and $A_{m} \neq B_{n}+\beta^{\prime}$ with $\alpha^{\prime}>0, \beta^{\prime}>0$, thus the only possibility is $A_{m}=B_{n}$ for some integers $m, n \in \mathbb{Z}^{+}$. If $m>n$, then A_{m} is mex of a set containing $B_{n}=A_{m}$, a contradiction. If $m \leq n$, then by (b) we have $B_{n}=s A_{n}+\lceil t / K\rceil K n \geq s A_{m}+\lceil t / K\rceil K m>A_{m}$, another contradiction.
(d) By (a) and (b), $0<A_{n}-A_{n-1} \in \mathcal{M}_{K}$. Assume that $A_{n}-A_{n-1} \geq 3 K$, then $A_{n-1}<A_{n-1}+K<A_{n-1}+2 K<A_{n-1}+3 K \leq$ A_{n}. By (c), $A_{n-1}+\omega \in S$ with $1 \leq \omega \leq 3 K-1$. Further, the only possibility is that $A_{n-1}+\omega \in B$. Since $A_{n}, B_{n} \in \mathcal{M}_{K}$, there exists some $j<n$ such that $A_{n-1}+K=B_{j}$ and $A_{n-1}+2 K=B_{j+1}$. Hence, we get $K=B_{j+1}-B_{j}=s\left(A_{j+1}-A_{j}\right)+\lceil t / K\rceil K>K$, a contradiction.
(e) Directly from the definition of B_{n} and (d).

Theorem 3. Let $K, s, t \in \mathbb{Z}^{+}$. For Γ_{K} in normal play,

$$
\mathscr{P}=\bigcup_{n=0}^{\infty}\left\{\left(A_{n}+\alpha, B_{n}+\beta\right) \mid \alpha, \beta \in \Omega_{K}\right\}
$$

where A_{n} and B_{n} are defined in Eq. (3) and Ω_{K} in Definition 1(ii).
Proof. It evidently suffices to show two things:
Fact I. (stability property). No followers of a position in \mathscr{P} can be in \mathscr{P}.
Fact II. (absorbing property). From every position not in \mathscr{P} there is a move to a position in \mathscr{P}.
Proof of Fact I. Let (x, y) with $x \leq y$ be a position in \mathscr{P}. Clearly for $(x, y) \in \Omega_{K} \times \Omega_{K}$, with Ω_{K} being defined in Definition 1 . For $x, y \geq K$, it follows from Lemma 2(c) that there exist some $n \in \mathbb{Z}^{+}$and $\alpha, \beta \in \Omega_{K}$ such that (x, y) $=\left(A_{n}+\alpha, B_{n}+\beta\right.$).

It is obvious that a type I move from (x, y) leads to a position not in \mathscr{P}. Suppose that $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right) \in \mathscr{P}$ by a type II move. By Lemma 2(a) and (b), there exists $m(<n)$ such that $k=A_{n}-A_{m} \in \mathcal{M}_{K}$ and $\ell=B_{n}-B_{m} \in \mathcal{M}_{K}$. Note that $\lceil t / K\rceil K \geq t$ for any $K, t \in \mathbb{Z}^{+}$, thus $0<k \leq \ell=s\left(A_{n}-A_{m}\right)+\lceil t / K\rceil K(n-m) \geq s k+t$, which contradicts Eq. (1).
Proof of Fact II. Let (x, y) with $x \leq y$ be a position not in \mathscr{P}. If $x \in \Omega_{K}$, let $y=q K+\beta, q \in \mathbb{Z}^{+}$and $\beta \in \Omega_{K}$, then move $y \rightarrow \beta$. If $x \geq K$, from Lemma 2(c), we have either $x=B_{n}+\beta$ or $x=A_{n}+\alpha$ for some $n \in \mathbb{Z}^{+}$and $\alpha, \beta \in \Omega_{K}$.

Case (i) $x=B_{n}+\beta$. Let $y=q K+\alpha, q \in \mathbb{Z}^{0}$ and $\alpha \in \Omega_{K}$, we move $y \rightarrow A_{n}+\alpha$, since $y \geq x=B_{n}+\beta \geq B_{n}>A_{n}+\alpha$ and $y-A_{n}-\alpha \in \mathcal{M}_{K}$.

Case (ii) $x=A_{n}+\alpha$. In this case, let $y=q K+\beta, q \in \mathbb{Z}^{0}, \beta \in \Omega_{K}$. We proceed by distinguishing three subcases:
(ii.1) $y>B_{n}+K-1$, (ii.2) $x \leq y<s A_{n}+\lceil t / K\rceil K$, (ii.3) $s A_{n}+\lceil t / K\rceil K \leq y<B_{n}$.
(ii.1) $y>B_{n}+K-1$. Then move $y \rightarrow B_{n}+\beta$.
(ii.2) $x \leq y<s A_{n}+\lceil t / K\rceil K$. We move $(x, y) \rightarrow(\alpha, \beta)$. This move is legal: (a) $0<k=A_{n} \in \mathcal{M}_{K}$, (b) $0<\ell=y-\beta \in \mathcal{M}_{K}$,
(c) $\ell-k=y-\beta-A_{n} \leq(s-1) A_{n}+\lceil t / K\rceil K-K<(s-1) k+t$.
(ii.3) $s A_{n}+\lceil t / K\rceil K \leq y<B_{n}$. Put $m=\left\lfloor\left(y-s A_{n}-\beta\right) /(\lceil t / K\rceil K)\right\rfloor$. Then move $(x, y) \rightarrow\left(A_{m}+\alpha, B_{m}+\beta\right)$. This move is legal:

Table 1
The first few P-generators of Γ_{3}.

n	0	1	2	3	4	5	6	7	8	9	10	11	12
A_{n}	0	3	6	9	15	18	21	27	30	33	39	42	45
B_{n}	0	12	24	36	54	66	78	96	108	120	138	150	162

Table 2
The first few P-positions of the associated Γ.

n	0	1	2	3	4	5	6	7	8	9	10	11
12	13											
A_{n}^{\prime}	0	1	2	3	5	6	7	9	10	11	13	14
B_{n}^{\prime}	0	4	8	12	18	22	26	32	36	40	46	50

(a) $0<k \in \mathcal{M}_{K}$. We first prove $0 \leq m<n$. Since $y-s A_{n} \geq\lceil t / K\rceil K \geq K>\beta$, then $\left(y-s A_{n}-\beta\right) /(\lceil t / K\rceil K)>0$, and so $m=\left\lfloor\left(y-s A_{n}-\beta\right) /(\lceil t / K\rceil K)\right\rfloor \geq 0$. On the other hand, $y-s A_{n}-\beta<B_{n}-s A_{n}=\lceil t / K\rceil K n$, thus $m=\left\lfloor\left(y-s A_{n}-\beta\right) /(\lceil t / K\rceil K)\right\rfloor \leq\left(y-s A_{n}-\beta\right) /(\lceil t / K\rceil K)<n$. Hence $k=A_{n}-A_{m}>0$.
(b) $0<\ell \in \mathcal{M}_{K}$. We know $m \leq\left(y-s A_{n}-\beta\right) /(\lceil t / K\rceil K)$, it follows that $y \geq\lceil t / K\rceil K m+s A_{n}+\beta=B_{m}+\beta+s\left(A_{n}-A_{m}\right)>$ $B_{m}+\beta$. Thus $\ell=y-B_{m}-\beta>0$ and clearly $\ell \in \mathcal{M}_{K}$.
(c) $k \leq \ell<s k+t$. By the definition of m, we have $m>\left(y-s A_{n}-\beta\right) /(\lceil t / K\rceil K)-1$, then $y<\lceil t / K\rceil K(m+1)+s A_{n}+\beta$. Thus $y-B_{m}-\beta<s\left(A_{n}-A_{m}\right)+\lceil t / K\rceil K$. Further, $y-B_{m}-\beta \leq s\left(A_{n}-A_{m}\right)+\lceil t / K\rceil K-K<s\left(A_{n}-A_{m}\right)+t$. On the other hand, by (b), $y-B_{m}-\beta \geq s\left(A_{n}-A_{m}\right) \geq A_{n}-A_{m}$.

Theorem 3 provides a recursive winning strategy which is exponential in the input size $\log x y$ of any game position $(x, y) \in \mathbb{Z}^{0} \times \mathbb{Z}^{0}$.

For every $n \in \mathbb{Z}^{0}$, the pair $\left(A_{n}, B_{n}\right)$ is called a P-generator of P-positions, since the pair generates the set $\left\{\left(A_{n}+\alpha, B_{n}+\beta\right) \mid\right.$ $\left.\alpha, \beta \in \Omega_{K}\right\}$ of P-positions, with Ω_{K} being defined in Definition 1(ii).

Now the original (s, t)-Wythoff's game with parameters $s, t \in \mathbb{Z}^{+}$is the case $K=1$ of Γ_{K}. Its P-positions are exactly those in Eq. (2). With $\Gamma_{K}, K>1$, we associate an (s, t^{\prime})-Wythoff game

$$
\Gamma:=\Gamma_{1}
$$

with parameters $s(\Gamma)=s\left(\Gamma_{K}\right), t^{\prime}(\Gamma)=\lceil t / K\rceil, K$ as in Γ_{K}.
In order to provide a poly-time winning strategy for Γ_{K}, we next exhibit a simple relationship between the P-generators of Γ_{K} and the P-positions of the associated Γ, which are those of (2), but with t replaced by t^{\prime} :

Theorem 4. $A_{n}^{\prime}=A_{n} / K, B_{n}^{\prime}=B_{n} / K$, where $\left\{\left(A_{n}, B_{n}\right)\right\}_{n \geq 0}$ and $\left\{\left(A_{n}^{\prime}, B_{n}^{\prime}\right)\right\}_{n \geq 0}$ are the P-generators of Γ_{K} and the P-positions of Γ respectively.

Example 2. For $K=3, s=2, t \in\{4,5,6\}$, we display the first few P-generators of Γ_{3} and the first few P-positions of the associated Γ in Tables 1 and 2. Notice the divisibility enunciated by Theorem 4.

Proof. From Lemma 2, for all $n \geq 0$: (i) $A_{n}, B_{n} \in \mathcal{M}_{K}$, (ii) $A_{n+1}-A_{n} \in\{K, 2 K\}$, (iii) $B_{n+1}-B_{n} \in\{s K+\lceil t / K\rceil K, 2 s K+\lceil t / K\rceil K\}$. We see, in particular, that $A_{n} / K, B_{n} / K$ are nonnegative integers.
From the proof of Theorem 3.1 of [6] we have: (i) ${ }^{\prime} A_{n+1}^{\prime}-A_{n}^{\prime} \in\{1,2\}$, (ii) $B_{n+1}^{\prime}-B_{n}^{\prime} \in\left\{s+t^{\prime}, 2 s+t^{\prime}\right\}$.
(i)', (ii)' follow from (ii), (iii) respectively by dividing by K. But the theorem is not yet proved: it could presumably happen, for example, that for some $n \geq 0, A_{n+1}-A_{n}=2 K$, yet $A_{n+1}^{\prime}-A_{n}^{\prime}=1$ rather than 2 . We now show, however, by induction on n, that

$$
\begin{equation*}
\left(A_{n+1}-A_{n}\right) / K=A_{n+1}^{\prime}-A_{n}^{\prime}, \quad\left(B_{n+1}-B_{n}\right) / K=B_{n+1}^{\prime}-B_{n}^{\prime} \tag{4}
\end{equation*}
$$

for all $n \geq 0$. The theorem's assertion clearly holds for $n=0$. Further, from the definition of A_{n}, B_{n} we get: $A_{1}=K$, $B_{1}=s K+\lceil t / K\rceil K$; and from the definition of $A_{n}^{\prime}, B_{n}^{\prime}: A_{1}^{\prime}=1, B_{1}^{\prime}=s+t^{\prime}$. Thus Eq. (4) holds for $n=0$. Suppose $\left(A_{j+1}-A_{j}\right) / K=A_{j+1}^{\prime}-A_{j}^{\prime},\left(B_{j+1}-B_{j}\right) / K=B_{j+1}^{\prime}-B_{j}^{\prime}$ hold for all $j<n$. If $A_{n+1}=A_{n}+K$, it follows from the mex function and the induction hypothesis that $A_{n+1}^{\prime}=A_{n}^{\prime}+1$. Similarly, $A_{n+1}=A_{n}+2 K$ implies $A_{n+1}^{\prime}=A_{n}^{\prime}+2$. Also $B_{n+1}, B_{n+1}^{\prime}$ are uniquely determined by $A_{n+1}, A_{n+1}^{\prime}$ respectively. Thus, again by the induction hypothesis (on A_{n}, A_{n}^{\prime}), Eq. (4) is established, so the theorem's assertion follows.

Corollary 5. In normal play, (x, y) is a P-position of Γ_{K} if and only if $(\lfloor x / K\rfloor,\lfloor y / K\rfloor)$ is a P-position of Γ.
Proof. If (x, y) is a P-position of Γ_{K} with its P-generator being $\left(A_{i_{0}}, B_{i_{0}}\right), i_{0} \in \mathbb{Z}^{0}$, then by Theorem $4,(\lfloor x / K\rfloor,\lfloor y / K\rfloor)=$ ($A_{i_{0}}^{\prime}, B_{i_{0}}^{\prime}$), and vice versa.

Table 3
Representations $R(N)$ over \mathcal{U}.

14	4	1	N
		1	1
		2	2
	1	3	3
	1	0	4
	1	2	5
	1	3	6
	2	0	7
	2	1	8
	2	2	9
	2	3	10
	3	0	11
1	3	1	12
1	0	1	13
1	0	2	14
1	0	3	15
1	1	0	16
1	1	1	17
1	1	2	18
			19
			20

We now show how Theorem 4 leads to a poly-time winning strategy for Γ_{K}. Let $u_{-1}=1 / \mathrm{s}, u_{0}=1, u_{n}=\left(s+t^{\prime}-\right.$ 1) $u_{n-1}+s u_{n-2}(n \geq 1)$. Denote by u the numeration system with bases u_{0}, u_{1}, \ldots and digits $d_{i} \in\left\{0, \ldots, s+t^{\prime}-1\right\}$ such that $d_{i+1}=s+t^{\prime}-1 \Longrightarrow d_{i}<s(i \geq 0)$. In [6] it was shown (as a special case of a somewhat more general numeration system) that every positive integer N has a unique representation $R(N)$ over U.

The vile numbers are those whose representations $R(N)$ end in an even number of 0 s , and the dopey numbers are those whose representations end in an odd number of 0 s . (For an explanation/etymology of the terms vile, dopey, see [9].) Also, y is a left shift of x, if $R(y)$ is obtained from $R(x)$ by adjoining 0 to the right end of $R(x)$. Thus, in binary, the decimal number 6 is a left shift of the decimal 3 , since $R(6)=110, R(3)=11 ; 3$ is vile since $R(3)$ ends in an even number (zero) of 0 s and 6 is dopey.

In [6] it was proved that $(x, y) \in \Gamma$ with $x \leq y$ is a P-position of Γ if and only if x is vile and y is a left shift of x (so it is dopey). The fact that the u_{i} grow exponentially, together with Theorem 4 clearly provides a poly-time winning strategy for Γ_{K}. For $K=2$ this provides a poly-time winning strategy for the "Even Even" case, which remained elusive in [12].

Notice that if s, t are the parameters of Γ_{K}, then s, t^{\prime} are the parameters of Γ, where $t^{\prime}=\lceil t / K\rceil$.
Example 3. Consider Γ_{3} of Example 2, where $K=3, s=2, t \in\{4,5,6\}$. Then the corresponding game Γ has values $s=t^{\prime}=2$. Thus, $u_{-1}=1 / 2, u_{0}=1, u_{1}=4, u_{2}=14, u_{3}=50, \ldots$. The representations $R(N)$ over U of the first few positive integers N appear in Table 3. Consider the position $(4,17) \in \Gamma_{3}$. By Corollary 5, we check $(\lfloor 4 / 3\rfloor,\lfloor 17 / 3\rfloor)=(1,5)$ and their representations (1,11). Since 11 is not a left shift of 1 (but 1 ends in an even number of 0 s$),(1,5)$ is an N-position in Γ, hence $(4,17)$ is an N-position in Γ_{3}. Now consider $(11,37) \in \Gamma_{3}$, so $(\lfloor 11 / 3\rfloor,\lfloor 37 / 3\rfloor)=(3,12)$, with representations $(3,30)$. Since 3 ends in an even number of 0 s and 30 is a left shift of $3,(3,30)$ is a P-position in Γ, hence $(11,37)$ is a P-position in Γ_{3}.

Theorem 6. Let $K, s, t \in \mathbb{Z}^{+}$. For Γ_{K} in misère play, $\mathscr{P}=\bigcup_{n=0}^{\infty}\left\{\left(E_{n}+\alpha, H_{n}+\beta\right) \mid \alpha, \beta \in \Omega_{K}\right\}$, where Ω_{K} is defined in Definition 1(ii), E_{n} and H_{n} are determined by two cases:
(A) If $s>1$ or $t>K$, then for $n \in \mathbb{Z}^{0}$,

$$
\left\{\begin{array}{l}
E_{n}=\operatorname{mex}\left\{\left\{E_{i} \mid 0 \leq i<n\right\}+\alpha,\left\{H_{i} \mid 0 \leq i<n\right\}+\beta\right\}, \tag{5}\\
H_{n}=s E_{n}+\lceil t / K\rceil K n+K .
\end{array}\right.
$$

(B) If $s=1$ and $t \leq K$, then $E_{0}=H_{0}=2 K$ and for $n \in \mathbb{Z}^{+}$,

$$
\left\{\begin{array}{l}
E_{n}=\operatorname{mex}\left\{\left\{E_{i} \mid 0 \leq i<n\right\}+\alpha,\left\{H_{i} \mid 0 \leq i<n\right\}+\beta\right\}, \tag{6}\\
H_{n}=E_{n}+K n .
\end{array}\right.
$$

Example 4. For $K=3, s=2, t \in\{4,5,6\}$, we display the first few P-generators of Γ_{K} in Table 4, which shows us how to determine \mathscr{P} by using Eq. (5).

Proof. Let $E=\bigcup_{n=0}^{\infty}\left\{E_{n}\right\}+\alpha$ and $H=\bigcup_{n=0}^{\infty}\left\{H_{n}\right\}+\beta$ with $\alpha, \beta \in \Omega_{K}$. We firstly claim the following facts:
Fact A Suppose $s>1$ or $t>K$.
I. Similar to Lemma 2(a) and (b), $E_{n}, H_{n} \in \mathcal{M}_{K}$ and it is easy to see that both E_{n} and H_{n} are strictly increasing sequences, for $n \in \mathbb{Z}^{0}$.

Table 4
The first few P-generators of Γ_{K} for $K=3, s=2, t \in\{4,5,6\}$.

n	0	1	2	3	4	5	6	7	8	9	10
E_{n}	0	6	9	12	15	18	24	27	30	36	39
H_{n}	3	21	33	45	57	69	87	99	111	129	141

II. $E \cup H=\mathbb{Z}^{0}$ and $E \cap H=\emptyset$. In fact, $E \cup H=\mathbb{Z}^{0}$ follows from the definition of mex. Now suppose $E \cap H \neq \emptyset$. It follows Fact A.I that $E_{m}+\alpha^{\prime} \neq H_{n}$ and $E_{m} \neq H_{n}+\beta^{\prime}$ with $\alpha^{\prime}>0, \beta^{\prime}>0$, thus the only possibility is $E_{m}=H_{n}$ for two integers $m, n \in \mathbb{Z}^{+}$. If $m>n$ then $E_{m}=\operatorname{mex}\left\{E_{i}+\alpha, H_{i}+\beta \mid 0 \leq i<m, \alpha, \beta \in \Omega_{K}\right\}$, which contradicts $E_{m}=H_{n}$; if $m \leq n$ then $H_{n} \geq s E_{m}+\lceil t / K\rceil K n+K>E_{m}$, also contradicting $E_{m}=H_{n}$.
Fact B Suppose $s=1$ and $t \leq K$.
I. $E_{n}, H_{n} \in \mathcal{M}_{K}$ for $n \in \mathbb{Z}^{0}$ and E_{n}, H_{n} are strictly increasing sequences for $n \in \mathbb{Z}^{+}$.
II. $E \cup H=\mathbb{Z}^{0}$ and $E \cap H=\{2 K\}$. Its proof is similar to that of Fact A.II.

Proof of Fact I. Let (x, y) with $x \leq y$ be a position in \mathscr{P}. There exist some $n \in \mathbb{Z}^{0}$ and $\alpha, \beta \in \Omega_{K}$ such that $(x, y)=$ $\left(E_{n}+\alpha, H_{n}+\beta\right)$.

It is easy to check that no move of type I from (x, y) can terminate in \mathscr{P}. Then suppose $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right) \in \mathscr{P}$ by a type II move, and there exists some m such that $\left(x^{\prime}, y^{\prime}\right)=\left(E_{m}+\alpha, H_{m}+\beta\right)$. Thus for both cases (A) and (B), we have $k=E_{n}-E_{m}>0$, $\ell=H_{n}-H_{m}$ and $0<k \leq \ell=s\left(E_{n}-E_{m}\right)+\lceil t / K\rceil K(n-m) \geq s k+t$, which contradicts Eq. (1).

Proof of Fact II. Let (x, y) with $x \leq y$ be a position not in \mathscr{P}. By Facts A.II and B.II, we have either $x=H_{n}+\beta$ or $x=E_{n}+\alpha$, for some $n \in \mathbb{Z}^{0}$ and $\alpha, \beta \in \Omega_{K}$.

Case (i) $x=H_{n}+\beta$. Now $y \geq E_{n}+K$. Let $y=q K+\alpha, q \in \mathbb{Z}^{0}$, and $\alpha \in \Omega_{K}$. Then move $y \rightarrow E_{n}+\alpha$, since $0<y-E_{n}-\alpha \in \mathcal{M}_{K}$.

Case (ii) $x=E_{n}+\alpha$. In this case, we have $y>H_{n}+K-1$ or $x \leq y<H_{n}$. Let $y=q K+\beta$, where $q \in \mathbb{Z}^{0}$, and $\beta \in \Omega_{K}$. If $y>H_{n}+K-1$, then move $y \rightarrow H_{n}+\beta$, since $0<y-H_{n}-\beta \in \overline{\mathcal{M}}_{K}$. If $x \leq y<H_{n}$, we consider two subcases: (ii-A) $s>1$ or $t>K$; (ii-B) $s=1$ and $t \leq K$.
(ii-A) $s>1$ or $t>K$.
For $n=0$, we have $x \leq y<K=H_{0}$, the next player wins without doing anything.
For $n \geq 1$. If $x \leq y<s E_{n}+\lceil t / K\rceil K+K$, move $(x, y) \rightarrow(\alpha, K+\beta)$. This is a legal move, since $k=E_{n}, \ell=y-K-\beta$, and $0 \leq \ell-k<s E_{n}+\lceil t / K\rceil K-\beta-E_{n} \leq(s-1) E_{n}+\lceil t / K\rceil K-K<(s-1) k+t$. If $s E_{n}+\lceil t / K\rceil K+K \leq y<H_{n}$, put $m=\left\lfloor\left(y-s E_{n}-K-\beta\right) /(\lceil t / K\rceil K)\right\rfloor$ and move $(x, y) \rightarrow\left(E_{m}+\alpha, H_{m}+\beta\right)$. This move is legal:
(a) $0<k \in \mathcal{M}_{K}$. Clearly $k=E_{n}-E_{m} \in \mathcal{M}_{K}$. It suffices to prove that $0 \leq m<n$. Note that $y-s E_{n}-K \geq\lceil t / K\rceil K \geq K>\beta$, so $\left(y-s E_{n}-K-\beta\right) /(\lceil t / K\rceil K)>0$, thus $m=\left\lfloor\left(y-s E_{n}-K-\beta\right) /(\lceil t / K\rceil K)\right\rfloor \geq 0$. On the other hand, $y-s E_{n}-K-\beta<$ $H_{n}-s E_{n}-K=\lceil t / K\rceil K n$, and so $m=\left\lfloor\left(y-s E_{n}-K-\beta\right) /(\lceil t / K\rceil K)\right\rfloor \leq\left(y-s E_{n}-K-\beta\right) /(\lceil t / K\rceil K)<n$.
(b) $0<\ell \in \mathcal{M}_{K}$. It is obvious that $\ell=y-H_{m}-\beta=q K-H_{m} \in \mathcal{M}_{K}$. Now $m \leq\left(y-s E_{n}-K-\beta\right) /(\lceil t / K\rceil K)$, So $y \geq\lceil t / K\rceil K m+s E_{n}+K+\beta=H_{m}+\beta+s\left(E_{n}-E_{m}\right)>H_{m}+\beta$.
(c) $k \leq \ell<s k+t$. By above, $m>\left(y-s E_{n}-K-\beta\right) /(\lceil t / K\rceil K)-1$, i.e., $y<\lceil t / K\rceil K(m+1)+s E_{n}+K+\beta$. So $y-H_{m}-\beta<s\left(E_{n}-E_{m}\right)+\lceil t / K\rceil K$, thus we have $\ell=y-H_{m}-\beta \leq s\left(E_{n}-E_{m}\right)+\lceil t / K\rceil K-K<s\left(E_{n}-E_{m}\right)+t=s k+t$. On the other hand, by (b), $\ell=y-H_{m}-\beta \geq s\left(E_{n}-E_{m}\right) \geq E_{n}-E_{m}=k$.
(ii-B) $s=1$ and $t \leq K$.
If $n=0$, then $2 K+\alpha=x \leq y<H_{0}=2 K$ is impossible; if $n=1$ then $0 \leq x \leq y \leq K-1$, thus the next player wins without doing anything. It remains to consider the case $n \geq 2$:

Put $m=\left\lfloor\left(y-E_{n}-\beta\right) / K\right\rfloor$ and move $(x, y) \rightarrow\left(E_{m}+\alpha, H_{m}+\beta\right)$. This move is legal: (a) $0<k=E_{n}-E_{m} \in \mathcal{M}_{K}$. As above, we only need to prove that $0 \leq m<n$. Since $y \geq E_{n}+\beta$, then $m=\left\lfloor\left(y-E_{n}-\beta\right) / K\right\rfloor \geq 0$. On the other hand, $y-E_{n}-\beta<H_{n}-E_{n}=K n$, and so $m=\left\lfloor\left(y-E_{n}-\beta\right) / K\right\rfloor \leq\left(y-E_{n}-\beta\right) / K<n$.
(b) $0<\ell \in \mathcal{M}_{K}$. Obviously, $\ell=y-H_{m}-\beta=q K-H_{m} \in \mathcal{M}_{K}$. Now $m \leq\left(y-E_{n}-\beta\right) / K$. Thus we have $y \geq K m+E_{n}+\beta=H_{m}+\beta+E_{n}-E_{m}>H_{m}+\beta$.
(c) $k \leq \ell<k+t$. On the one hand, $m>\left(y-E_{n}-\beta\right) / K-1$, i.e., $y<K(m+1)+E_{n}+\beta$. Thus $\ell=y-H_{m}-\beta<$ $K(m+1)+E_{n}-E_{m}-K m=E_{n}-E_{m}+K$. Note that both $y-H_{m}-\beta$ and $E_{n}-E_{m}+K$ are in \mathcal{M}_{K}, so $\ell=y-H_{m}-\beta \leq E_{n}-E_{m}<k+t$. On the other hand, by (b), $\ell=y-H_{m}-\beta \geq E_{n}-E_{m}=k$.

Theorem 6 provides a recursive winning strategy for Γ_{K} in misère play, which is exponential. We now examine whether Γ_{K} has a poly-time winning strategy or not.

In Section 7 of [5], three characterizations, recursive, algebraic and arithmetic, are given for the P-positions of Generalized Wythoff in misère play, which is the case $K=s=1$ of Γ_{K}. Take the recursive and algebraic characterizations for example, denote by $\left\{\left(E_{n}^{\prime}, H_{n}^{\prime}\right)\right\}_{n \geq 0}$ the P-positions of Generalized Wythoff with parameter $t \in \mathbb{Z}^{+}$, we have
(i) Recursive characterization

For $t=1:\left(E_{0}^{\prime}, H_{0}^{\prime}\right)=(2,2), E_{n}^{\prime}=\operatorname{mex}\left\{E_{i}^{\prime}, H_{i}^{\prime} \mid 0 \leq i<n\right\}, H_{n}^{\prime}=E_{n}^{\prime}+n(n \geq 1)$.
For $t>1: E_{n}^{\prime}=\operatorname{mex}\left\{E_{i}^{\prime}, H_{i}^{\prime} \mid 0 \leq i<n\right\}, H_{n}^{\prime}=E_{n}^{\prime}+t n+1(n \geq 0)$.
(ii) Algebraic characterization

$$
\begin{aligned}
& \text { For } t=1:\left(E_{0}^{\prime}, H_{0}^{\prime}\right)=(2,2),\left(E_{1}^{\prime}, H_{1}^{\prime}\right)=(0,1) \text {, } \\
& E_{n}^{\prime}=\lfloor n \phi\rfloor, \quad H_{n}^{\prime}=\left\lfloor n \phi^{2}\right\rfloor(n \geq 2), \quad \text { where } \phi=(1+\sqrt{5}) / 2 .
\end{aligned}
$$

For $t>1: E_{n}^{\prime}=\lfloor n \alpha+\gamma\rfloor, H_{n}^{\prime}=\lfloor n \beta+\delta\rfloor(n \geq 0)$, where $\alpha=\left(2-t+\sqrt{t^{2}+4}\right) / 2, \beta=\alpha+t, \gamma=1 / \alpha, \delta=\gamma+1$.
For the arithmetic winning strategy, which involves a continued fraction and two numeration systems, p-system and q-system, we refer the reader to Section 7 of [5]. It was pointed out there that the first one strategy is exponential while the last two provide poly-time strategies for Generalized Wythoff. Now there exists a connection between Γ_{K} with parameters $K, s, t \in \mathbb{Z}^{+}$and Generalized Wythoff but with parameter $t^{\prime}=\lceil t / K\rceil, t, K$ as in Γ_{K}.

Theorem 7. Let $s=1$. $E_{n}^{\prime}=E_{n} / K, H_{n}^{\prime}=H_{n} / K$, where $\left\{\left(E_{n}, H_{n}\right)\right\}_{n \geq 0}$ and $\left\{\left(E_{n}^{\prime}, H_{n}^{\prime}\right)\right\}_{n \geq 0}$ the P-generators of Γ_{K} and the P-positions of Generalized Wythoff.
Proof. This follows by the same method as in the proof of Theorem 4.
Corollary 8. In misère play, (x, y) is a P-position of $\Gamma_{K}(s=1)$ if and only if $(\lfloor x / K\rfloor,\lfloor y / K\rfloor)$ is a P-position of Generalized Wythoff.
Proof. Directly follows from Theorem 7.
Now based on this simple connection, together with the poly-time winning strategy for Generalized Wythoff, Γ_{K} has a poly-time winning strategy for $s=1$. However, for $s>1$, there is no poly-time winning strategy yet.

4. Rook type restrictions of (s, t)-Wythoff's game

In this section, let $\mathbb{Z}^{\text {even }}=\left\{2 n \mid n \in \mathbb{Z}^{0}\right\}, \mathbb{Z}^{\text {odd }}=\left\{2 n+1 \mid n \in \mathbb{Z}^{0}\right\}$. Let

$$
\delta_{n}= \begin{cases}0, & \text { if } n \text { is even } \\ 1, & \text { if } n \text { is odd }\end{cases}
$$

4.1. The P-positions of $\Gamma_{O A}$

In $\Gamma_{O A}$, asymmetry of the game rules implies that (a, b) is not necessarily identical to (b, a).
Theorem 9. Let $s, t \in \mathbb{Z}^{+}$. For $\Gamma_{O A}$ in normal play,
(1) If $s=t=1$, then $\mathscr{P}=\bigcup_{n=0}^{\infty}\{(2 n, 0),(2 n+1,2)\}$.
(2) If $s+t>2$, then $\mathscr{P}=\bigcup_{n=0}^{\infty}\left\{\left(A_{n}, B_{n}\right)\right\}$, where $A_{n}=n, B_{n}=\delta_{n}(s n+(n+1) t / 2)$.

Proof. (1) Clearly for the stability property of \mathscr{P}. Suppose (a, b) is a position not in \mathscr{P}. If $a=2 n$ for some $n \in \mathbb{Z}^{0}$, move $(a, b) \rightarrow(2 n, 0)$. If $a=2 n+1$ for some $n \in \mathbb{Z}^{0}$, then $b \in\{0,1\}$ or $b \geq 3$. For the former, we move $(a, b) \rightarrow(2 n, 0)$. Otherwise, move $(a, b) \rightarrow(2 n+1,2)$.
(2)

Proof of Fact I. Given $\left(A_{n}, B_{n}\right) \in \mathscr{P}$. Suppose that $\left(A_{n}, B_{n}\right) \rightarrow\left(A_{m}, B_{m}\right) \in \mathscr{P}$. Then $n \in \mathbb{Z}^{\text {even }}$ cannot happen, since $B_{n}=0<B_{m}$. Thus we have $n \in \mathbb{Z}^{\text {odd }}$. If m is also odd, then $k=n-m \geq 2$, thus $\ell=B_{n}-B_{m}=s(n-m)+(n-m) t / 2 \geq s k+t$, which contradicts the condition $0<k \leq \ell<s k+t$. But if m is even, then we have $k=n-m>0$ and $\ell=B_{n}=s n+(n+1) t / 2 \geq s k+t$, another contradiction.

Proof of Fact II. Let (x, y) be a position not in \mathscr{P}. If x is even, then move $y \rightarrow 0$. If x is odd, there exists some n such that $x=A_{n}=n$ and we have either $y>B_{n}$ or $0 \leq y<B_{n}$. If $y>B_{n}$, then move $y \rightarrow B_{n}$. If $0 \leq y<B_{n}$ we distinguish the following four cases:

- $y=0$. Then move $(x, y) \rightarrow(x-1,0)$.
$\bullet 1 \leq y<x$. We move $(x, y) \rightarrow\left(x-y-\delta_{y}+1,0\right) \in \mathscr{P}$ on account of $x-y-\delta_{y}+1 \in \mathbb{Z}^{\text {even }}$. This move is legal, since $k=y+\delta_{y}-1>0, \ell=y>0$, and $0 \leq \ell-k \leq 1<(s-1) k+t$.
$\bullet x \leq y<s x+t$. Then move $(x, y) \rightarrow(0,0)$, which satisfies the condition Eq. (1) with $k=A_{n}, \ell=y$.
$\bullet s x+t \leq y<B_{n}$. Put $m=2\lfloor(y-s x-t) / t\rfloor+1$ and move $(x, y) \rightarrow\left(A_{m}, B_{m}\right)$. This move is legal, since (a) $m<n$, (b) $y>B_{m}$, (c) $A_{n}-A_{m} \leq y-B_{m}<s\left(A_{n}-A_{m}\right)+t$. Indeed,
(a) $y-s x-t<B_{n}-s x-t=(n-1) t / 2$, so $m \leq 2(y-s x-t) / t+1<n$;
(b) $m \leq 2(y-s x-t) / t+1$, so $y \geq(m-1) t / 2+s x+t=B_{m}+s(n-m)>B_{m}$;
(c) $m>2((y-s x-t) / t-1)+1=2(y-s x-t) / t-1$, so $y<(m+1) t / 2+s x+t=s n+(m+3) t / 2$; by (b), $y-B_{m} \geq n-m=A_{n}-A_{m}$, hence,

$$
A_{n}-A_{m} \leq y-B_{m}<s n+(m+3) t / 2-s m-(m+1) t / 2=s\left(A_{n}-A_{m}\right)+t .
$$

Thus Eq. (1) is satisfied.

Theorem 10. Put $s, t \in \mathbb{Z}^{+}$. For $\Gamma_{O A}$ in misère play,
(1) If $s=t=1$, then $\mathscr{P}=(0,1) \cup \bigcup_{n=0}^{\infty}\{(2 n+1,0),(2 n+2,2)\}$.
(2) If $s+t>2$, then $\mathscr{P}=\bigcup_{n=0}^{\infty}\left\{\left(E_{n}, H_{n}\right)\right\}$, where $E_{n}=n, H_{n}=\left(1-\delta_{n}\right)(s n+t n / 2+1)$.

Proof. (1) Both stability and absorbing properties of \mathscr{P} when $s=t=1$ are simple. The details are left to the reader.
(2)

Proof of Fact I. Suppose a move from $\left(E_{n}, H_{n}\right)$ produces another position of the form $\left(E_{m}, H_{m}\right)$. It is easy to see that the only possibility is that n is even. If m is also even, this implies $k=n-m \geq 2$, then $\ell=H_{n}-H_{m}=s(n-m)+t(n-m) / 2 \geq s k+t$, which contradicts Eq. (1). If n is even but m is odd, then $k=n-m>0$, thus $\ell=H_{n}-H_{m}=s n+t n / 2+1 \geq s(n-m)+t n / 2 \geq$ $s k+t$, another contradiction.
Proof of Fact II. Let (x, y) be a position not in \mathscr{P}. We will show that there exists a legal move such that $(x, y) \rightarrow\left(E_{n}, H_{n}\right)$. Put $x=E_{n}=n$ for some $n \in \mathbb{Z}^{+}$. If $x=0$, then $\left(E_{0}, H_{0}\right)=(0,1)$. For $(0,0)$, the next player wins without doing anything; for $y>1$, we only need to move $y \rightarrow 1$. If x is odd, then move $y \rightarrow 0=H_{n}$. If x is even, this implies $y>H_{n}$ or $0 \leq y<H_{n}$. For the former, we move $y \rightarrow H_{n}$; while for the latter, we distinguish the following four cases:
$\bullet y=0$. Then move $(x, y) \rightarrow\left(E_{n}-1,0\right) \in \mathscr{P}$.
$\bullet 1 \leq y \leq x$. In this case, move $(x, y) \rightarrow\left(x-y-\delta_{y}+1,0\right) \in \mathscr{P}$, since $x-y-\delta_{y}+1>0$ is odd. This move is legal: (a) $k=y-1+\delta_{y}>0$, (b) $\ell=y>0$, (c) $0 \leq \ell-k \leq 1<(s-1) k+t$.
$\bullet x<y<s x+t+1$. we move $(x, y) \rightarrow\left(E_{0}, H_{0}\right)=(0,1)$, which satisfies Eq. (1) with $k=x, \ell=y-1<s x+t$.
$\bullet s x+t+1 \leq y<H_{n}$. Put $m=2\lfloor(y-s x-1) / t\rfloor$ and move $(x, y) \rightarrow\left(E_{m}, H_{m}\right)$. This is a legal move, since (a) $m<n$, (b) $y>H_{m}$, and (c) $E_{n}-E_{m} \leq y-H_{m}<s\left(E_{n}-E_{m}\right)+t$. Indeed,
(a) $y-s x-1<H_{n}-s n-1=n t / 2$, so $m=2\lfloor(y-s x-1) / t\rfloor \leq 2(y-s x-1) / t<n$;
(b) $m \leq 2(y-s x-1) / t$, so $y \geq m t / 2+s x+1=H_{m}+s(n-m)>H_{m}$;
(c) $m>2(y-s x-1) / t-2$, thus $y<s n+(m+2) t / 2+1$; by (b), $y-H_{m} \geq n-m=E_{n}-E_{m}$.

Therefore, $E_{n}-E_{m} \leq y-H_{m}<s n+m t / 2+t+1-s m-m t / 2-1=s\left(E_{n}-E_{m}\right)+t$, thus Eq. (1) is satisfied.

4.2. The P-positions of Γ_{00}

Obviously, the game rules of Γ_{00} are symmetrical, so we say (a, b) is a P-position, meaning that (b, a) is also a P-position.
Theorem 11. Given $s, t \in \mathbb{Z}^{+}$. For Γ_{00} in normal play, $\mathscr{P}=\bigcup_{n=0}^{\infty}\{(0,2 n)\}$.
Proof. A move from $(0,2 n)$ clearly leads to a position not in \mathscr{P}. Let (x, y) with $x \leq y$ be a position not in \mathscr{P}. If $x=0$ and y is odd, only move $y \rightarrow y-1$. Consider $x>0$. If $x, y \in \mathbb{Z}^{\text {odd }}$ or $x, y \in \mathbb{Z}^{\text {even }}$, then move $(x, y) \rightarrow(0, y-x) \in \mathscr{P}$. Otherwise, we take the entire pile with an odd number of tokens.

Theorem 12. Given $s, t \in \mathbb{Z}^{+}$. For Γ_{00} in misère play,

$$
\mathscr{P}= \begin{cases}\left\{(0,2 n+1),(2,2 n) \mid n \in \mathbb{Z}^{+}\right\}, & \text {if } s=t=1, \\ \left\{(0,2 n+1) \mid n \in \mathbb{Z}^{+}\right\}, & \text {if } s+t>2\end{cases}
$$

Proof. The stability property of \mathscr{P} is straightforward. Let (x, y) with $x \leq y$ be a position not in \mathscr{P}. It suffices to show that from (x, y) there is a move terminating in \mathscr{P}. Consider three cases:
$\bullet x=0$. Clearly for $y=0$. If $y>0$, then y is even and move $y \rightarrow y-1$.

- $x=1$. Then move $(1, y) \rightarrow\left(0, y-1+\delta_{y}\right) \in \mathscr{P}$, since $y-1+\delta_{y}$ is odd.
$\bullet x \geq 2$. For $s=t=1$. If $x=2$, then move $(x, y) \rightarrow(2, y-1)$; if $x \geq 3$, we move $(x, y) \rightarrow\left(2-2 \delta_{y-x}, y-x-2 \delta_{y-x}+2\right)$ by taking $x+2 \delta_{y-x}-2>0$ tokens from both piles. Note that if $y-x$ is odd, we have $\left(2-2 \delta_{y-x}, y-x-2 \delta_{y-x}+2\right)=(0, y-x) \in \mathscr{P}$; if $y-x$ is even, then $\left(2-2 \delta_{y-x}, y-x-2 \delta_{y-x}+2\right)=(2, y-x+2) \in \mathscr{P}$.

For $s+t>2$, we move $(x, y) \rightarrow\left(0, y-x-\delta_{y-x}+1\right) \in \mathscr{P}$, since $y-x-\delta_{y-x}+1$ is odd. This is a legal move, since: (a) $k=x-1+\delta_{y-x}>0$, (b) $\ell=x$, and (c) $0 \leq \ell-k=1-\delta_{y-x} \leq 1<s+t-1 \leq(s-1) k+t$.

4.3. The P-positions of $\Gamma_{O E}$

In $\Gamma_{O E},(a, b)$ is not necessarily identical to (b, a) because of asymmetry.
Theorem 13. Let $s=t=1$. For $\Gamma_{O E}$ in normal play,

$$
\mathscr{P}=\bigcup_{n=0}^{\infty}\{(2 n, 0),(2 n, 1),(2 n+1,4 n+3),(2 n+1,4 n+4)\}
$$

Proof. The proof of the stability property of \mathscr{P} is simple, we leave the details to the reader. Now we prove the absorbing property of \mathscr{P}. Let (x, y) be a position not in \mathscr{P}.

If x is even, then move $(x, y) \rightarrow\left(x, \delta_{y}\right)$.

Table 5
The first few P-positions of $\Gamma_{O E}$ for $s=2, t=3$ in normal play.

n	0	1	2	3	4	5	6	7	8	9	10	11	12
A_{n}	0	1	2	3	4	5	6	7	8	9	10	11	12
B_{n}	1	7	13	19	25	31	37	43	49	55	61	67	73
B_{n}^{\prime}	0	6	0	18	0	30	0	42	0	50	0	66	0

If $x=2 n+1$ for $n \in \mathbb{Z}^{0}$. Then $y \geq 4 n+5$ or $0 \leq y \leq 4 n+2$. For the former, we move $(x, y) \rightarrow\left(2 n+1,4 n+4-\delta_{y}\right)$. For the latter, if $y=0$, then move $(x, y) \rightarrow(2 n, 0)$; if $1 \leq y \leq x+1$, then move $(x, y) \rightarrow\left(x-y-\delta_{y}+1,1-\delta_{y}\right)$ by taking $y+\delta_{y}-1>0$ tokens from both piles. Since $x-y-\delta_{y}+1$ is even and $1-\delta_{y} \in\{0,1\}$, thus $\left(x-y-\delta_{y}+1,1-\delta_{y}\right) \in \mathscr{P}$. Finally, if $x+2 \leq y \leq 4 n+2$. Then we move $(x, y) \rightarrow\left(y+\delta_{y}-x-2,2 y+\delta_{y}-2 x-2\right)$ by taking $2 x-y-\delta_{y}+2\left(\geq 2-\delta_{y}>0\right)$ tokens from both piles. The proof is completed by showing that $\left(y+\delta_{y}-x-2,2 y+\delta_{y}-2 x-2\right) \in \mathscr{P}$:

Let $y+\delta_{y}-x-2=\phi$. Then $2 y+\delta_{y}-2 x-2=2 \phi+2-\delta_{y} \in\{2 \phi+1,2 \phi+2\}$. Since $y+\delta_{y}$ is even, x is odd, we get ϕ is odd. It is easy to see that $(\phi, 2 \phi+1),(\phi, 2 \phi+2) \in \mathscr{P}$.

Theorem 14. Let $s+t>2$. For $\Gamma_{O E}$ in normal play, $\mathscr{P}=\bigcup_{n=0}^{\infty}\left\{\left(A_{n}, B_{n}\right),\left(A_{n}, B_{n}^{\prime}\right)\right\}$, where for $n \geq 0$,

$$
\left\{\begin{array}{l}
A_{n}=n \\
B_{n}=(s+t+1) A_{n}+1 \\
B_{n}^{\prime}=\delta_{n}\left(B_{n}-1\right)
\end{array}\right.
$$

Example 5. For $s=2, t=3$, we display the first few P-positions of $\Gamma_{O E}$ in Table 5.
Proof. Proof of Fact I. Given $\left(A_{n}, B_{n}\right) \in \mathscr{P}$. Suppose that $\left(A_{n}, B_{n}\right) \rightarrow\left(A_{m}, B_{m}\right) \in \mathscr{P}$. Then we have $k=n-m>0$, and $\ell=(s+t+1)(n-m)>s k+t$, which contradicts Eq. (1).

Suppose that $\left(A_{n}, B_{n}\right) \rightarrow\left(A_{m}, B_{m}^{\prime}\right) \in \mathscr{P}$. In this case, we have $k=n-m>0$, and

$$
\begin{aligned}
\ell=B_{n}-B_{m}^{\prime} & = \begin{cases}(s+t+1)(n-m)+1 & \text { if } m \in \mathbb{Z}^{\text {odd }} \\
(s+t+1) n+1 & \text { if } m \in \mathbb{Z}^{\text {even }}\end{cases} \\
& >(s+t+1) k>s k+t,
\end{aligned}
$$

also contradicting Eq. (1).
Given $\left(A_{n}, B_{n}^{\prime}\right) \in \mathscr{P}$. Notice that if n is even and so $B_{n}^{\prime}=0$, then any move from $\left(A_{n}, 0\right)$ cannot lead to a position in \mathscr{P}. Now suppose n is odd and so $B_{n}^{\prime}=B_{n}-1$. If $\left(A_{n}, B_{n}^{\prime}\right) \rightarrow\left(A_{m}, B_{m}\right) \in \mathscr{P}$, then we have $k=n-m>0$, and $\ell=B_{n}-B_{m}-1=(s+t+1)(n-m)-1=(s+t+1) k-1 \geq s k+t$, a contradiction; if $\left(A_{n}, B_{n}^{\prime}\right) \rightarrow\left(A_{m}, B_{m}^{\prime}\right) \in \mathscr{P}$, then we get $k=n-m>0$, and

$$
\begin{aligned}
\ell=B_{n}-1-B_{m}^{\prime} & = \begin{cases}(s+t+1)(n-m) & \text { if } m \in \mathbb{Z}^{\text {odd }} \\
(s+t+1) n & \text { if } m \in \mathbb{Z}^{\text {even }}\end{cases} \\
& \geq(s+t+1) k>s k+t
\end{aligned}
$$

another contradiction.
Proof of Fact II. Let (x, y) be a position not in \mathscr{P}. We show that there exists a legal move such that $(x, y) \rightarrow\left(A_{n}, B_{n}\right)$ or $\left(A_{n}, B_{n}^{\prime}\right)$.

Put $x=A_{n}$ for some $n \in \mathbb{Z}^{0}$. We distinguish two cases: (i) x is even; (ii) x is odd.
Case (i) $x=A_{n}=n$ is even.
In this case, note first that $B_{n}=(s+t+1) n+1$ is odd and $B_{n}^{\prime}=0$. The fact $(x, y) \notin \mathscr{P}$ implies that $y>B_{n}$ or $0<y<B_{n}$. For $y>B_{n}$, if y is even, then move $y \rightarrow B_{n}^{\prime}$; if y is odd, we move $y \rightarrow B_{n}$. For $0<y<B_{n}$, we proceed by distinguishing three subcases:

- $1 \leq y<x$. Then move $(x, y) \rightarrow\left(x-y-\delta_{y}, 0\right) \in \mathscr{P}$. This move is legal, since (a) $k=y \geq 1$, (b) $\ell=y+\delta_{y} \geq 2$, (c) $0 \leq \ell-k=\delta_{y} \leq 1<(s-1) k+t$.
$\bullet x \leq y \leq B_{n}-2$. In this subcase, put $m=\lfloor(y-x) /(s+t)\rfloor$ and move $(x, y) \rightarrow\left(A_{m}, B_{m}\right)$. This move is legal:
(a) $0 \leq m<n$. Indeed, $0 \leq y-x \leq B_{n}-x-2=(s+t) n-1<(s+t) n$, so $0 \leq m=\lfloor(y-x) /(s+t)\rfloor \leq(y-x) /(s+t)<n$.
(b) By the definition of m, we have $(y-x) /(s+t)-1<m \leq(y-x) /(s+t)$, i.e.,

$$
\begin{equation*}
(s+t) m \leq y-x<(s+t)(m+1) \tag{7}
\end{equation*}
$$

Thus, $y \geq(s+t) m+x=B_{m}+\left(A_{n}-A_{m}\right)-1 \geq B_{m}$ by virtue of $A_{n}-A_{m} \geq 1$.
If $y=B_{m}$ then $A_{n}-A_{m}=1$. This is a legal move only from the first pile.
If $y-B_{m} \geq 1$, then it follows from Eq. (7) that $\left|\left(y-B_{m}\right)-\left(x-A_{m}\right)\right|=|y-x-(s+t) m-1|<s+t-1 \leq(s-1) \lambda+t$, where $\lambda:=\left\{A_{n}-A_{m}, y-B_{m}\right\} \geq 1$.
$\bullet y=B_{n}-1$. Then move $y \rightarrow 0$ by taking $y \in \mathbb{Z}^{\text {even }}$ tokens from the second pile.

Table 6
The first few P-positions of $\Gamma_{O E}$ for $s=t=3$ in misère play.

n	0	1	2	3	4	5	6	7	8	9	10	11	12
E_{n}	0	1	2	3	4	5	6	7	8	9	10	11	12
H_{n}	2	0	9	15	20	25	30	35	40	45	50	55	60
H_{n}^{\prime}	3	1	10	0	19	0	29	0	39	0	49	0	59

Case (ii) $x=A_{n}=n$ is odd.
In this case, $B_{n}^{\prime}=B_{n}-1$, then $y>B_{n}$ or $0 \leq y \leq B_{n}-2$. For $y>B_{n}$. we see $B_{n}=(s+t+1) n+1$ is odd if $s+t$ is odd, or B_{n} is even if $s+t$ is even. Thus if $\left(y, s+t \in \mathbb{Z}^{\text {odd }}\right)$ or $\left(y, s+t \in \mathbb{Z}^{\text {even }}\right)$, then we move $y \rightarrow B_{n}$; if $\left(y \in \mathbb{Z}^{\text {even }}, s+t \in \mathbb{Z}^{\text {odd }}\right)$ or ($y \in \mathbb{Z}^{\text {odd }}, s+t \in \mathbb{Z}^{\text {even }}$), we move $y \rightarrow B_{n}^{\prime}$. For $0 \leq y \leq B_{n}-2$. We consider the following three subcases:

- $y=0$. We just move $(x, y) \rightarrow\left(A_{n}-1,0\right) \in \mathscr{P}$.
- $1 \leq y<x$. In this subcase, we move $(x, y) \rightarrow\left(x-y-1+\delta_{y}, 0\right) \in \mathscr{P}$. This is a legal move, since (a) $k=y>0$, (b) $\ell=y+1-\delta_{y}>0$, (c) $0 \leq \ell-k=\delta_{y} \leq 1<(s-1) k+t$.
$\bullet x \leq y \leq B_{n}-2$. We move $(x, y) \rightarrow\left(A_{m}, B_{m}\right)$ with $m=\lfloor(y-x) /(s+t)\rfloor$. This follows from the same method as in case (i).

Theorem 15. Let $s=t=1$. For $\Gamma_{O E}$ in misère play,

$$
\mathscr{P}=\{(0,2),(0,3),(2,3),(2,6)\} \cup \bigcup_{n=0}^{\infty}\left\{\begin{array}{l}
(2 n+1,0),(2 n+1,1), \\
(2 n+4,4 n+9),(2 n+4,4 n+10)
\end{array}\right\} .
$$

Proof. The stability property of \mathscr{P} is simple. We are left with the task of proving the absorbing property of \mathscr{P}. It is easy to check that $(0,2),(0,3),(2,3),(2,6)$ are all P-positions by the knowledge of Example 1 in Section 2 . If $x=2 n+1$ for some $n \in \mathbb{Z}^{0}$, then move $(x, y) \rightarrow\left(x, \delta_{y}\right)$. If $x=2 n+4$ for some $n \in \mathbb{Z}^{0}$, then $y>4 n+10$ or $0 \leq y<4 n+9$. For the former, we move $(x, y) \rightarrow(2 n+4,4 n+9)$ (if y is odd) or $(x, y) \rightarrow(2 n+4,4 n+10)$ (if y is even). For the latter, we consider three cases:
$\bullet 0 \leq y \leq x$. If $y=0$, then move $x \rightarrow 2 n+1$, or else, we move $(x, y) \rightarrow\left(x-y-\delta_{y}+1,0\right) \in \mathscr{P}$, which satisfies Eq. (1) with $k=y+\delta_{y}-1$ and $\ell=y$.
$\bullet x<y \leq x+4$. If $y \in\{x+1, x+4\}$, then remove $x-2$ tokens from both piles leading to $(2,3)$ or $(2,6)$; if $y \in\{x+2, x+3\}$, remove x tokens from both piles leading to $(0,2)$ or $(0,3)$.
$\bullet x+5 \leq y<4 n+9$. Then move $(x, y) \rightarrow\left(y-x-2+\delta_{y}, 2 y-2 x-2+\delta_{y}\right)$ by taking $2 x-y+2-\delta_{y}$ tokens from both piles. Let $y-x-2+\delta_{y}=\phi$. Clearly ϕ is even and because of $\phi \geq 3+\delta_{y}$, then $\phi \geq 4$. Thus there exists some $n \in \mathbb{Z}^{0}$ such that $\phi=2 n+4$. Furthermore, $2 y-2 x-2+\delta_{y}=2 \phi+2-\delta_{y} \in\{2 \phi+1,2 \phi+2\}=\{4 n+9,4 n+10\}$. Hence, $\left(y-x-2+\delta_{y}, 2 y-2 x-2+\delta_{y}\right) \in \mathscr{P}$.

Theorem 16. Let $s+t>2$. For $\Gamma_{O E}$ in misère play, $\mathscr{P}=\bigcup_{n=0}^{\infty}\left\{\left(E_{n}, H_{n}\right),\left(E_{n}, H_{n}^{\prime}\right)\right\}$, where for $n \in\{0,1,2\}$,

n	0	1	2
E_{n}	0	1	2
H_{n}	2	0	$2 s+t+3$
H_{n}^{\prime}	3	1	$2 s+t+4$

and for $n \geq 3$,

$$
\left\{\begin{array}{l}
E_{n}=n \tag{8}\\
H_{n}=(s+t+1) E_{n}+2-\delta_{s}-t \\
H_{n}^{\prime}=\left(1-\delta_{n}\right)\left(H_{n}-1\right)
\end{array}\right.
$$

Example 6. For $s=t=3$, we display the first few P-positions of $\Gamma_{O E}$ in Table 6.

Proof. The proof is tedious. We first prove the stability property of \mathscr{P}. Given a position $\left(E_{n}, H_{n}\right)\left(\right.$ or $\left.\left(E_{n}, H_{n}^{\prime}\right)\right)$ in \mathscr{P}, if $n<3$, we leave it to the reader to verify that a legal move from $\left(E_{n}, H_{n}\right)$ (or $\left(E_{n}, H_{n}^{\prime}\right)$) leads to a position not in \mathscr{P}. For $n \geq 3$, it is easy to check that a legal move from $\left(E_{n}, H_{n}\right)$ (or $\left.\left(E_{n}, H_{n}^{\prime}\right)\right)$ cannot land in $\bigcup_{i<3}\left\{\left(E_{i}, H_{i}\right),\left(E_{i}, H_{i}^{\prime}\right)\right\}$. Let $m \geq 3$.

Now suppose $\left(E_{n}, H_{n}\right) \rightarrow\left(E_{m}, H_{m}\right)$, then $k=n-m>0$ and $\ell=H_{n}-H_{m}=(s+t+1)(n-m)>s k+t$, which contradicts Eq. (1).

Suppose that $\left(E_{n}, H_{n}\right) \rightarrow\left(E_{m}, H_{m}^{\prime}\right)$, then $k=n-m>0$. And if m is odd, $\ell=H_{n}-0=(s+t+1) n+2-\delta_{s}-t>$ $(n-m) s+(n-1) t>s k+t$; if m is even, then $\ell=H_{n}-\left(H_{m}-1\right)=(s+t+1)(n-m)+1>s k+t$. Both contradict Eq. (1).

Next suppose $\left(E_{n}, H_{n}^{\prime}\right) \rightarrow\left(E_{m}, H_{m}\right)$. It is impossible that n is odd. Indeed, if so, it follows by the definition of δ_{n} that $H_{n}^{\prime}=0<H_{m}$. If n is even, then we have $H_{n}^{\prime}=H_{n}-1$ and $k=n-m>0$, but $\ell=\left(H_{n}-1\right)-H_{m}=(s+t+1)(n-m)-1 \geq s k+t$, another contradiction.

Finally, suppose that $\left(E_{n}, H_{n}^{\prime}\right) \rightarrow\left(E_{m}, H_{m}^{\prime}\right)$. As above, n is even. If m is also even, then $\ell=\left(H_{n}-1\right)-\left(H_{m}-1\right)=$ $(s+t+1)(n-m)>s k+t$; if n is even but m is odd, then $\ell=H_{n}-1=(s+t+1) n+1-\delta_{s}-t>(n-m) s+(n-1) t>s k+t$. In a word, this move is also illegal.

We next prove the absorbing property of \mathscr{P}. Let (x, y) be a position not in \mathscr{P}. Put $x=E_{n}=n$ for some $n \in \mathbb{Z}^{0}$.
If $x=0$, then $y \in\{0,1\}$ or $y \geq 4$. Obviously, $(0,0)$ and $(0,1)$ are N-positions. For $y \geq 4$, then move $(0, y) \rightarrow\left(0,2+\delta_{y}\right) \in$ \mathscr{P}.

If $x=1$, then $y \geq 2$, move $(1, y) \rightarrow\left(1, \delta_{y}\right) \in \mathscr{P}$.
If $x=2$, we have either $y>2 s+t+4$ or $0 \leq y<2 s+t+3$.
Case (i) $y>2 s+t+4$. If $\left(y \in \mathbb{Z}^{\text {odd }}\right.$ and $\left.t \in \mathbb{Z}^{\text {even }}\right)$ or $\left(y \in \mathbb{Z}^{\text {even }}\right.$ and $\left.t \in \mathbb{Z}^{\text {odd }}\right)$, we move $(2, y) \rightarrow(2,2 s+t+3) \in \mathscr{P}$ since $\ell=y-2 s-t-3>0$ is even; if $\left(y, t \in \mathbb{Z}^{\text {odd }}\right)$ or $\left(y, t \in \mathbb{Z}^{\text {even }}\right)$, then we move $(2, y) \rightarrow(2,2 s+t+4) \in \mathscr{P}$ because $y-2 s-t-4$ is always even.

Case (ii) $0 \leq y<2 s+t+3$. If $y=0$, we move $(2,0) \rightarrow(1,0)$; if $y \in\{1,2,3\}$, we move $(2, y) \rightarrow(1,1)$; if $y=4$, move $(2,4) \rightarrow(0,2)$, if $5 \leq y<2 s+t+3$, then move $(2, y) \rightarrow(0,3)$, which satisfies Eq. (1) with $k=2$ and $\ell=y-3$.

If $x \geq 3$, we proceed by distinguish two cases:
Case (iii) $x=n$ is odd.
In this case, $H_{n}^{\prime}=0$ and so $y>H_{n}$ or $0<y<H_{n}$. For $y>H_{n}$, if y is even, we move $y \rightarrow 0$; if y is odd, then move $y \rightarrow H_{n}$ as $\ell=y-H_{n}=y-(n-1)(s+t)-\left(s-\delta_{s}\right)-n+2$ is even. The case $0<y<H_{n}$ is rebarbative. With patience we proceed by distinguishing seven subcases:
$\bullet 0<y<x$. If y is even, we move $y \rightarrow H_{n}^{\prime}=0$; if y is odd, we move $(x, y) \rightarrow(x-y-1,0)$ since $x-y-1$ is odd. Obviously this move satisfies Eq. (1) with $k=y$ and $\ell=y+1$.
$\bullet y \in\{x, x+1\}$. Then move $(x, y) \rightarrow(1,1)$.
$\bullet x+2 \leq y \leq x+2 s+t$. We move $(x, y) \rightarrow(0,3)$, which is legal, since (a) $k=x>0$, (b) $\ell=y-3 \geq x-1>0$, (c) $|\ell-k| \leq 2 s+t-3<2(s-1)+t \leq(s-1) \lambda+t$, where $\lambda:=\min \{x, y-3\} \geq 2$.

- $y=x+2 s+t+1$. We move $(x, y) \rightarrow(2,2 s+t+3) \in \mathscr{P}$ by removing $x-2>0$ tokens from both piles.
$\bullet x+2 s+t+2 \leq y \leq x+3 s+2 t$. Then move $(x, y) \rightarrow(2,2 s+t+4) \in \mathscr{P}$. This move is legal, since (a) $k=x-2>0$, (b) $\ell=y-(2 s+t+4) \geq x-2>0$, (c) $|\ell-k| \leq s+t-2<s+t-1 \leq(s-1) k+t$.
$\bullet x+3 s+2 t+1 \leq y<H_{n}-1$. Put $m=\left\lfloor\left(y-x+t-1+\delta_{s}\right) /(s+t)\right\rfloor$ and move $(x, y) \rightarrow\left(E_{m}, H_{m}\right)$. This move is also legal, since
(a) $n>m \geq 3$. Indeed, $y-x+t-1+\delta_{s}<H_{n}-x+t-2+\delta_{s}=(s+t) n$, thus we have $m \leq\left(y-x+t-1+\delta_{s}\right) /(s+t)<n$. On the other hand, $y-x+t-1+\delta_{s} \geq x+3 s+2 t+1-\left(x-t+1-\delta_{s}\right) \geq 3(s+t)$. so $m \geq 3$ and $k=n-m>0$.
(b) $y \geq H_{m}$. By the definition of $m,\left(y-x-s-1+\delta_{s}\right) /(s+t)<m \leq\left(y-x+t-1+\delta_{s}\right) /(s+t)$, i.e.,

$$
\begin{equation*}
(s+t) m-t+1-\delta_{s} \leq y-x<(s+t) m+s+1-\delta_{s} . \tag{9}
\end{equation*}
$$

Thus $y \geq(s+t) m+x-t+1-\delta_{s}=H_{m}+\left(E_{n}-E_{m}\right)-1 \geq H_{m}$ by virtue of $E_{n}-E_{m} \geq 1$.
If $y=H_{m}$, then $E_{n}-E_{m}=1$. This is a legal move only from the first pile.
If $y-H_{m} \geq 1$, then it follows from Eq. (9) that $\left|\left(y-H_{m}\right)-\left(x-E_{m}\right)\right|=\left|y-x-(s+t) m-2+t+\delta_{s}\right|<s+t-1 \leq(s-1) \lambda+t$, where $\lambda:=\min \left\{E_{n}-E_{m}, y-H_{m}\right\} \geq 1$.
$\bullet y=H_{n}-1$. Note that $H_{n}-1=(n-1)(s+t)+\left(s-\delta_{s}\right)+n+1$ is even on account of $n \in \mathbb{Z}^{\text {odd }}$ and $s-\delta_{s} \in \mathbb{Z}^{\text {even }}$. Thus we move simply $y \rightarrow H_{n}^{\prime}=0$.

Case (iv) $x=n$ is even.
In this case, $H_{n}^{\prime}=H_{n}-1$ and so we have either $y>H_{n}$ or $0 \leq y \leq H_{n}-2$.
For $y>H_{n}$. It is worth to note that if $s+t$ is odd, then $t+\delta_{s}$ is also odd, thereby $H_{n}=(s+t+1) n+2-t-\delta_{s}$ is odd; if $s+t$ is even, meaning that $t+\delta_{s}$ is also even, and so H_{n} is even. Therefore, if $\left(y, s+t \in \mathbb{Z}^{\text {odd }}\right)$ or $\left(y, s+t \in \mathbb{Z}^{\text {even }}\right)$, then we move $y \rightarrow H_{n}$ since $y-H_{n}$ is even; if ($y \in \mathbb{Z}^{\text {odd }}$ and $s+t \in \mathbb{Z}^{\text {even }}$) or ($y \in \mathbb{Z}^{\text {even }}$ and $s+t \in \mathbb{Z}^{\text {odd }}$), then we move $y \rightarrow H_{n}^{\prime}$ because $y-H_{n}^{\prime}=y-H_{n}+1$ is still even.

For $0 \leq y \leq H_{n}-2$. If $y=0$, we move $(x, 0) \rightarrow(x-1,0)$. If $1 \leq y \leq x-1$, we move $(x, y) \rightarrow\left(x-y-1+\delta_{y}, 0\right) \in \mathscr{P}$ with $x-y-1+\delta_{y}$ being odd, which satisfies Eq. (1) with $k=y$ and $\ell=y+1-\delta_{y}$. Otherwise, analysis for $x \leq y \leq H_{n}-2$ is the same as the proof of case (iii), more details are left to the reader.

Remark 1. Similar to $\Gamma_{O E}$, maybe we can define $\Gamma_{E O}$, Even-Odd-Nim (s, t)-Wythoff's game: A player chooses the first pile and takes even $k>0$ tokens, or chooses the second pile and takes odd $\ell>0$ tokens, the move rules are the same with (s, t)-Wythoff's Game when moving from both piles. The move rules of these two games imply that (x, y) is a P-position of $\Gamma_{E O}$ if and only if (y, x) is a P-position of $\Gamma_{O E}$. Thus the P-positions of $\Gamma_{E O}$ are easily obtained by Theorems 13-16 with (x, y) replaced by (y, x).

5. Conclusion

In this paper, the game Γ_{K} is defined and completely solved for any $K, s, t \in \mathbb{Z}^{+}$in both normal and misère play. It is a generalization of both the original (s, t)-Wythoff's game and EEW investigated in [12]. Both exponential and polynomial winning strategies for Γ_{K} are given in both normal and misère play. However, in misère play, whether Γ_{K} has a polynomial time winning strategy or not is still open for all $s>1$.

Following this, $\Gamma_{O A}, \Gamma_{O O}$, and $\Gamma_{O E}$ are investigated. Under both normal and misère play conventions, the sets of P-positions of these three games are given algebraically for all $s, t \geq 1$. Motivated by these games, we may associate additional interesting games, for instance:

Open problem. Define $\Gamma_{E E}$ (Even-Even-Nim (s, t)-Wythoff's game): a player may only remove an even (>0) number of tokens when moving from a single pile, and the move rules remain unchanged when moving from both piles. This game is also a rook type restriction of (s, t)-Wythoff's game. Determine the P-positions of $\Gamma_{E E}$.

Further, what are the P-positions if a player can remove a multiple of $K\left(\in \mathbb{Z}^{+}\right)$tokens when moving from one pile (a generalization of $\Gamma_{E E}$)? And what if a player is restricted to take k tokens, with $k \in\left\{n K+1: n \in \mathbb{Z}^{+}\right\}$(or $k \in\left\{n K+K-1: n \in \mathbb{Z}^{+}\right\}$), when moving from one pile (a generalization of Γ_{00}, which is precisely the case $K=2$)?

Acknowledgment

The authors are grateful to an anonymous referee for valuable comments and suggestions, which have greatly improved the earlier version of this paper.

References

[1] E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning Ways for Your Mathematical Plays, Vol. 1-4, A K Peters, Wellesley, MA, 2001-2004, 2nd edition: vol. 1 (2001), vols. 2, 3 (2003), vol. 4 (2004).
[2] E. Duchêne, A.S. Fraenkel, R.J. Nowakowski, M. Rigo, Extensions and restrictions of Wythoff's game preserving its P-positions, J. Combin. Theory Ser. A 117 (5) (2010) 545-567.
[3] E. Duchêne, S. Gravier, Geometrical extensions of Wythoff's game, Discrete Math. 309 (11) (2009) 3595-3608.
[4] A.S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly 89 (1982) 353-361.
[5] A.S. Fraenkel, Wythoff games, continued fractions, cedar trees and Fibonacci searches, Theoret. Comput. Sci. 29 (1984) 49-73.
[6] A.S. Fraenkel, Heap games, numeration systems and sequences, Ann. Comb. 2 (3) (1998) 197-210.
[7] A.S. Fraenkel, New games related to old and new sequences, Integers: Electron. J. Combin. Number Theory 4 (2004) \#G6.
[8] A.S. Fraenkel, Euclid and Wythoff games, Discrete Math. 304 (2005) 65-68.
[9] A.S. Fraenkel, The vile, dopey, evil and odious game players, Discrete Math. 312 (2012) 42-46. special volume in honor of the 80th birthday of Gert Sabidussi.
[10] A.S. Fraenkel, M. Lorberbom, Nimhoff games, J. Combin. Theory Ser. A 58 (1) (1991) 1-25.
[11] N.B. Ho, Two variants of Wythoff's game preserving its \mathcal{P}-positions, J. Combin. Theory Ser. A 119 (2012) 1302-1314.
[12] W.A. Liu, H.Y. Li, General restriction of (s, t)-Wythoff's game, Electron. J. Combin. 21 (2) (2014) \#P2.44.
[13] W.A. Liu, Y. Wang, N. Li, The (s, t)-Wythoff's game under misère play convention, in: Fifth International Joint Conference on Computational Sciences and Optimization, Harbin, China, 2012, pp. 419-422.
[14] W.A. Liu, X. Zhao, Adjoining to (s, t)-Wythoff's game its P-positions as moves, Discrete Appl. Math. 179 (2014) 28-43.
[15] X. Sun, D. Zeilberger, On Fraenkel's N-heap Wythoff's conjectures, Ann. Comb. 8 (2004) 225-238.

[^0]: This work was supported by the National Natural Science Foundation of China (Grant No. 61373174).

 * Corresponding author.

 E-mail address: lihaiyan1107@126.com (H. Li).

