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Abstract

A pair of integer sequences that split Z>0 is often—especially in the context

of combinatorial game theory—defined recursively by An =mex {A i,Bi : 0≤ i < n},

Bn = An+Cn (n ≥ 0), where mex (Minimum EXcludant) of a subset S of nonneg-

ative integers is the smallest nonnegative integer not in S, and C : Z≥0 → Z≥0.

Given x, y ∈Z>0, a typical problem is to decide whether x = An, y= Bn. For gen-

eral functions Cn, the best algorithm for this decision problem was until now

exponential in the input size Ω(log x+ log y). We prove constructively that the

problem is actually polynomial for the wide class of approximately linear func-

tions Cn. This solves constructively and efficiently the complexity question of a

number of previously analyzed take-away games of various authors.
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1 Prologue

This paper is about the complexity of combinatorial games. Its main contribution

is showing constructively that a large class of games whose complexity was hith-

erto unknown and its best winning strategy was exponential, is actually solvable in

polynomial time.

For many take-away games on 2 piles, the set of losing positions {(an,bn)} (n ≥ 0),

also called P-positions, is given by recursive formulas of the form:

{
An =mex {A i,Bi : 0≤ i < n}

Bn = An +Cn,
(1)

where mex (Minimum EXcludant) of a subset S of nonnegative integers is the small-

est nonnegative integer not in S, {An}, {Bn} (n ≥ 1) are complementary sets and

C :Z≥0 →Z≥0. (Later on we define precisely notions alluded to here informally.)

A case in point is Wythoff’s game, played on two piles of tokens of sizes (x, y),

where we may assume 0 ≤ x ≤ y. The two players play alternately. There are two

types of moves: (i) taking any positive number of tokens from a single pile (Nim

rule), or (ii) removing the same number of tokens from both piles (Wythoff rule).

In this and all games considered here, the first player unable to move (because the

position is (0,0)) loses and the opponent wins. Its P-positions are given by (1) with

Cn = n. Given a game position (x, y), to decide whether (x, y) = (An,Bn) requires the

computation of A0,B0, A1, . . . ,Bk−1, Ak, where k is the largest index such that Ak ≤ x.

This is an exponential computation, since the input length is O(log x+ log y).

For Wythoff ’s game, however, there is an explicit formula for the P-positions,

namely, An = ⌊
nϕ

⌋
, Bn = ⌊

nϕ2⌋, where ϕ = (
1+

p
5
)
/2 is the golden section. Using

this formula it is possible to efficiently compute An, Bn for any n, and more impor-

tantly, to decide efficiently (in polynomial time) whether a given position (x, y) of

Wythoff ’s game is a P-position. Another efficient winning strategy is based on the

Fibonacci numeration system. There is a generalization of Wythoff ’s game where

the Wythoff move is relaxed: one can take k > 0 from one pile and ` > 0 from the

other, provided |k−`| < p, where p is a fixed integer parameter (p = 1 is Wythoff ’s
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game). The P-positions of this p-Wythoff game are given by (1) for Cn = pn. Also

for this case there is an explicit formula of its P-positions: An = bnαc, Bn = ⌊
nβ

⌋
,

where α= 1− p/2+
√

1+ (p/2)2, β=α+ p, leading to an efficient computation of An,

Bn [Fra82]. For a recent and comprehensive survey on the complexity of combina-

torial games see [DemHea09]. Previous surveys are in [Dem01], [Fra00], [Fra04-1].

There is an extensive literature on Wythoff ’s game; here we just cite two of them:

[Wyt1907], [Fra82].

For other functions Cn, the present state of affairs is that ad hoc methods have to

be devised for each C in order to try and decide whether an efficient winning strategy

exists. For example, for Cn = (s−1)An+ pn where s, p ∈Z>0, it was shown in [Fra98]

that for s > 1, there are no α, β, γ, δ such that An = ⌊
nα+γ⌋

, Bn = ⌊
nβ+δ⌋

. However,

in this case a polynomial winning strategy can still be recovered by means of an

exotic numeration system. If Cn is not an integer, no efficient strategy is known in

general. A case in point is a game considered in [DucGra–], where Cn = 2bn/4c. For

the case where C is a special algebraic number, it was recently shown in [DucRig–]

that an efficient winning strategy exists. But for most cases, nothing is known about

the efficiency of winning.

In conclusion, the present state of affairs is that for each function Cn, the cor-

responding game has to be analyzed and ad hoc methods have to be devised which

might or might not produce an efficient strategy.

The main impact of the present paper is the formulation of a constructive recur-

sive algorithm showing that the strategy is efficient for every approximately linear
function Cn, in particular functions of the form Cn = k bθnc, where k ∈Z>0, θ ∈ R>0.

This solves take-away games considered previously where the complexity analysis

was left open, such as in [Fra04-2], [HegLar06] and [DucGra–]. We also prove sev-

eral approximation results for certain sequences, of independent interest, which we

use for formulating our recursive algorithm.

Many complementary sequences are listed in Sloane’s on-line encyclopedia of in-

teger sequences. They play a prominent role not only in the theory of combinatorial

games, but also in combinatorics of words and spectra of numbers investigations.

See [Kim07] for a survey and also [Kim08].
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2 Formalizations and Overview

Definition 1 (P- and N-positions). (i) A position from which the player moving first

has a winning strategy is called an N-position (Next player to move wins). A position

from which the player moving second has a winning strategy is called a P-position
(Previous player to move wins).

(ii) A take-away game is played on a collection of piles of finitely many tokens. A

move consists of selecting a pile and removing from it any positive number of tokens.

Note that player I, starting from a P-position, is doomed to lose the game, as-

suming player II plays optimally. Hence to find optimal strategies, it suffices to

characterize the P-positions, and this characterization should be as simple as possi-

ble computationally. One might go about characterizing the N-positions instead, but

it’s more economical to characterize the P-positions, since they are rare. Intuitively,

this follows from the fact that a position is a P-position if and only if all its direct

followers are N-positions, whereas a position is an N-position if and only if it has
a direct P-position follower. Formally, this has been proved by Singmaster [Sin81];

see also [Sin82].

Definition 2 (Minimal EXcludant). Let S( Z≥0. Then mex(S) :=min(Z≥0 \ S).

Notice that by the mex definition, the sets {An}n≥1, {Bn}n≥1 in (1) partition the

positive integers into two disjoint sets whenever Cn ≥ 1 (n ≥ 1). The mex function

appears frequently in the study of combinatorial games, hence it is important to

understand its behavior and influence on the sequences which it defines.

The game of q-Blocking p-Wythoff ’s Nim [HegLar06] (p, q ≥ 1 integer constants)

was defined by Hegarty and Larsson. It is p-Wythoff mentioned earlier, with an

additional “Muller twist" (see [SmSt02]), namely, if the current position is (k,`),

then, before the next move is made, the previous player is allowed to choose up to

(q−1) distinct positive integers t1, . . . , tq−1 ≤ min {k, l} and prevent the next player

from moving to any position (k− ti,`− ti). They proved that its P-positions are given

by (1) with Cn = p bn/qc (n ≥ 0).
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Alas, by a result in [BosFra81], there is no representation of the type
⌊
nα+β⌋

for either of the sequences An, Bn in the general case. No numeration system seems

to help, so there appears to be no efficient method for computing the sequences.

Duchêne and Gravier analyzed the following 2-pile extension of Wythoff ’s game

[DucGra–]: remove any number of tokens from a single pile, or remove the same

positive even number of tokens from both piles. They proved that The P-positions

(An,Bn) are given by An = Fn, B4n = G4n, B4n+1 = G4n+1, B4n+2 = G4n+3, B4n+3 =
G4n+2 for all n ≥ 0, where Fn = mex {Pi,Q i : 0≤ i < n}, Gn = Fn +2bn/4c for all n ≥ 0.

So Fn, Gn have the same values as An, Bn respectively of q-Blocking p-Wythoff for

the special case p = 2, q = 4. In fact, the Duchêne and Gravier game was one of our

original motivations for investigating sequences of this type.

Definition 3 (Approximate Linearity). We call the sequence A approximately linear
if there exist constants α, u1, u2 ∈R such that

u1 ≤ an −nα≤ u2 ∀n ≥ 0.

We say that that u1, u2 are approximation bounds, and α is the linearity rate.

Remark. Notice that α is unique since lim
n→∞an/n =α, but u1, u2 are not.

Though there is no known explicit formula for general sequences {An}, {Bn} of (1),

it was conjectured that for the special case Cn = p bn/qc they can be approximated

by linear sequences, namely that An −nα is bounded for some constant α, and sim-

ilarly for Bn. Our first result was proving that indeed this approximation holds, by

finding bounds depending on p, q. Hegarty [Lar07] independently proved the same

approximation for the special case p = 1. We then generalized our result to the case

where Cn is any approximately linear function.

After approximating An, Bn, there still remained the problem of efficiently com-

puting the sequences, which, without an explicit formula, seemed impossible. We

should mention that more often than not, for a general function Cn, there is no ef-

ficient algorithm for computing the elements of the sequences defined by (1) and

deciding whether an arbitrary number belongs to it. The best known algorithms are

exponential.
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But quite surprisingly, after deepening our understanding of partitions created

by the mex function, we indeed found an efficient algorithm. This is our most im-

portant result. The algorithm computes sequences for any approximately linear Cn.

In particular, the algorithm solves efficiently the q-Blocking p-Wythoff ’s game,

and also Duchêne’s game. Moreover, since most of the results presented here are for

general sequences defined by the mex function, and the idea behind the algorithm

is basic, we believe that it can be generalized and implemented with some modi-

fications for other sequences. For example, Fraenkel and Krieger [FraKri04] and

Sun and Zeilberger [SunZei04] [Sun05] investigated the P-positions of Fraenkel’s
N-Heap Wythoff’s game [Fra04-1]. These P-positions are defined similarly to the

sequences {An}, {Bn}, and they share the same essential properties as them. Hence

the results presented here can possibly offer some new insights to understanding

Fraenkel’s N-Heap Wythoff ’s game.

In §3 below we prove Theorem 1, which gives a basic yet important inequal-

ity about partitions. This is followed by Theorem 2, which establishes an important

combinatorial equivalence concerning partitions. Both of these results are then used

to prove the fundamental Bounded Additivity Theorem 3. Using it and Fekete’s

Lemma [Fek23] we prove in §4 our main result, the Approximate Linearity Theo-

rem 4, which leads, in §5, to the efficient algorithm, together with an example and

its complexity analysis. In §6 we wrap-up with an epilogue.

3 Natural Partitions

Unless otherwise specified, any interval of the form [a,b] denotes the set of integers

{k ∈Z : a ≤ k ≤ b}. Analogously for open/half-open intervals.

Definition 4 (Natural Partition). We say that two integer sequences A := {an}n≥0,

B := {bn}n≥0 form a natural partition if they are strictly increasing sequences which

satisfy A∪B =Z≥0, A∩B = {a0 = b0 = 0}. We also define C := B− A.

We begin with a property of natural partitions, which will be used both in the

proof of Theorem 3, and in the efficient algorithm for computing sequences. The idea
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is that given an element in a sequence, we know its position between two consecutive

elements of the complementary sequence.

Theorem 1 (Partition Inequality). Suppose that A, B form a natural partition. Then

bak−k < ak < bak−k+1, abk−k < bk < abk−k+1 ∀k ≥ 1.

Proof. How is the interval I := [1,ak] split between A and B? Since A is increasing,

I contains precisely the first k terms of {an}. Hence the remaining ak − k terms of

I must be the leading terms of the increasing sequence B. Therefore bak−k ≤ ak <
bak−k+1. By complementarity, actually bak−k < ak. The second inequality is derived

the same way by splitting [1,bk] between the two sequences.

Now for simple bounds on the growth of the smaller sequence of a natural parti-

tion.

Corollary 1. Assume that A, B form a natural partition. If an < bn for all n ≥ 1,
then n ≤ an ≤ 2n−1 for all n ≥ 1.

Proof. Since A is increasing, obviously n ≤ an. From Theorem 1 we know that

ban−n < an, and we assumed an < bn, so ban−n < bn. Since B is strictly increasing we

have an −n < n as claimed.

The following very intuitive theorem gives an equivalence between the number

of elements of an increasing sequence in an arbitrary interval of length u, and an

inequality about the increments of this interval. We need it for proving Theorem 3.

Theorem 2 (Min-Max-Equivalence). Assume that B = {bn}n≥0 is an increasing se-
quence, satisfying b0 = 0.

Then the following equivalence holds for any two integers x,u.

min
L≥0

|[L+1,L+u]∩B| ≥ x ⇐⇒ ∀n ≥ 0,bn+x ≤ bn +u.

And similarly also the following equivalence holds

max
L≥0

|[L+1,L+u]∩B| ≤ x ⇐⇒ ∀n ≥ 0,bn +u ≤ bn+x.
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Proof. The implication minL≥0 |[L+1,L+u]∩B| ≥ x =⇒ ∀n ≥ 0,bn+x ≤ bn +u is

obvious, since we can take L = an.

We’ll prove the other direction: given L ≥ 0, take the maximal n such that bn ≤ L.

So since bn+x ≤ bn +u ≤ L+u, we get bn+1,bn+2, . . . ,bn+x ∈ [L+1,L+u] as claimed.

The proof of the second equivalence is similar: for the first implication take L =
bn −1. And for the second direction take minimal n ≥ 0 such that L < bn.

Remark. Notice that the equivalence also holds when either x or u are negative

integers.

The following result enables us to prove Theorem 4. The proof is by induction,

and in order to better understand it, we recommended following the first steps of

m = 1,2,3, . . . with specific sequences {an}, {bn} (e.g., bn = an +
⌊p

2n
⌋
).

Theorem 3 (Bounded Additivity). Let A, B be a natural partition. Suppose that
C = {cn}= {bn −an}n≥0 is a nonnegative sequence which satisfies, for all n,m ≥ 0,

cn+m−r ≤ cn + cm ≤ cn+m+s,

for some integer constants r, s ≥ 0 satisfying r−1≤ s. Then we have for all n,m ≥ 0,

an+m−r −1≤ an +am + s− r ≤ an+m+s.

Proof. We shall prove the inequality by induction on m. For m = 0, the inequality is

an−r −1≤ an+ s− r ≤ an+s for n ≥ 0, which follows from r−1≤ s and an+ s ≤ an+s for

all n ≥ 0 (since an is increasing).

We assume that the following holds for all 0≤ t ≤ m,

an+t−r −1≤ an +at + s− r ≤ an+t+s ∀n ≥ 0,

and we shall prove that it holds for all 0≤ t ≤ m+1.

By the induction assumption we know

an+t−r −1≤ an +at + s− r ∀n ≥ 0,0≤ t ≤ m,
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and by adding cn+t−r ≤ cn + ct we get

bn+t−r −1≤ bn +bt + s− r ∀n ≥ 0,0≤ t ≤ m.

Now, by Corollary 1 we have t+1≤ at+1 ≤ 2(t+1)−1, hence 0≤ at+1−(t+1)≤ t ≤ m,

and we can switch t with at+1− (t+1) in the above inequality to get

bn+at+1−(t+1)−r ≤ bn +bat+1−(t+1) + s− r+1 ∀n ≥ 0,0≤ t ≤ m.

From Theorem 1 we know that bat+1−(t+1) < at+1, meaning bat+1−(t+1) ≤ at+1 − 1,

which, concatenated to the right of the above inequality, gives

bn+at+1−(t+1)−r ≤ bn +at+1 + s− r ∀n ≥ 0,0≤ t ≤ m.

Since this holds for all n ≥ 0, Theorem 2 implies that for every fixed t ≤ m,

min
L≥0

|IL ∩B| ≤ at+1 − (t+1)− r,

where IL = [L+1,L+at+1+ s− r]. Now, since A,B form a partition, and |IL| = at+1+
s− r, we get

max
L≥0

|IL ∩ A| ≤ (at+1+ s− r)− (at+1− (t+1)− r)= t+1+ s.

Again by Theorem 2 we get

an +at+1+ s− r ≤ an+t+1+s ∀n ≥,0≤ t ≤ m.

So we established the right inequality of our goal inequality, namely

an +at + s− r ≤ an+t+s ∀n ≥,0≤ t ≤ m+1.

Now, for the left hand side we use similar arguments. We add cn + ct ≤ cn+t+s to
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the last inequality, to get

bn +bt + s− r ≤ bn+t+s ∀n ≥ 0,0≤ t ≤ m+1.

By Corollary 1 we have t ≤ at ≤ 2t−1, hence 0 ≤ at − t+1 ≤ t ≤ m+1, and we can

switch t with at − t+1 in the above inequality to get

bn +bat−t+1+ s− r ≤ bn+at−t+1+s ∀n ≥ 0,0≤ t ≤ m+1.

From Theorem 1 we know that at < bat−t+1, meaning at +1 ≤ bat−t+1, which, con-

catenated to the left of the above inequality, gives

bn +at +1+ s− r ≤ bn+at−t+1+s ∀n ≥ 0,0≤ t ≤ m+1.

Since this holds for all n ≥ 0, by the Theorem 2 we get for every fixed t ≤ m+1,

max
L≥0

|IL ∩B| ≤ at − t+1+ s,

where IL = [L+1,L+at +1+ s− r]. Now, since A,B form a partition, and |IL| = at +
1+ s− r, we get

min
L≥0

|IL ∩ A| ≥ (at +1+ s− r)− (at − t+1+ s)= t− r.

Again by Theorem 2 we get

an+t−r ≤ an +at +1+ s− r ∀n ≥,0≤ t ≤ m+1.

So we also established the left inequality of our goal inequality, hence the induction

is complete.

Remark. The theorem’s conclusion also holds for the sequence B, i.e., for all n,m ≥ 0

bn+m−r−1≤ bn+bm+s−r ≤ bn+m+s. To see this, just add the inequality assumption

of the sequence C to the inequality conclusion of an.
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We can change the indices in the theorem’s conclusion to get an+m ≤ an +am+r +
s− r+1≤ an+m+α+s +1 for all n,m ≥ 0. But we do not want to be concerned with the

exact indices and constants of such inequalities (though these were essential for the

theorem’s proof), so we state a very simple lemma.

Lemma 1. Assume that {an}n≥0 is a real sequence, which for some constants r, s ∈Z≥0

and u,v ∈R, satisfies

an+m ≤ an +am+r +u ≤ an+m+s +v ∀n,m ≥ 0.

Then there exist constants D,E ∈R, such that

an+m +D ≤ an +am ≤ an+m +E ∀n,m ≥ 0.

Proof. By the left inequality of the assumption we know that at+r ≤ at+a2r+u for all

t ≥ 0, so by taking t = m together with the assumption we get an+m ≤ an+am+r+u ≤
an +am +a2r +2u. We can take D =−a2r −2u to fit our goal.

Now, again by the left inequality of the assumption we know that at+s ≤ at +
as+r +u for all t ≥ 0. By taking t = n+m we can continue the right inequality of the

assumption as an +am+r +u ≤ an+m+s +v ≤ an+m +ar+s +u+v.

By taking n = 0 in the assumption we get am ≤ a0 +am+r +u, and together with

the previous inequality we get an +am −a0 ≤ an +am+r +u ≤ an+m +ar+s +u+ v. So

by both ends of this inequality we can take E = a0+ar+s +u+v, and we’re done.

4 Approximate Linearity

We use a well known lemma of Fekete [Fek23].

Lemma 2 (Fekete’s Lemma). Let {sn}n≥0 be a super-additive sequence of real num-
bers, i.e., sn + sm ≤ sn+m for all n,m ≥ 0. Then lim

n→∞ sn/n exists, and is equal to
sup
n≥1

sn/n ∈ (−∞,∞].

From this lemma we derive the following corollary, which can be applied directly

to the results of Theorem 3.
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Corollary 2 (Fekete’s Corollary). Assume that A is a sequence of real numbers which
satisfies, for some constants u,v ∈R,

u ≤ an +am −an+m ≤ v ∀n,m ≥ 0.

Then A is approximately linear, with approximation bounds u, v.

Proof. We have (an −v)+ (am −v) ≤ an+m − v for n,m ≥ 0, so by applying Fekete’s

Lemma to the sequence an −v we get

sup
n≥1

an −v
n

= lim
an −v

n
=α ∈ (−∞,∞] .

Hence for n ≥ 1 an −v ≤ nα, i.e., an −nα≤ v.

Similarly, (u−an)+ (u−am)≤ u−an+m for n,m ≥ 0, so by Fekete’s Lemma

sup
n≥1

u−an

n
= lim

u−an

n
=α′ ∈ (−∞,∞] .

Hence for n ≥ 1 u−an ≤ nα′, i.e., u ≤ an +nα′.

Lastly, notice that α′ = lim(u−an) /n = − liman/n = − lim(an −v) /n = −α, hence

α ∈R. And in total we get u ≤ an −nα≤ v, as claimed.

Using Theorem 3 together with Fekete’s Lemma and their corollaries, we get

Theorem 4, which is the main theorem of this paper.

Theorem 4 (Approximate Linearity). Let A, B be a natural partition. Then A and
B are both approximately linear if and only if C = B− A is approximately linear.

Proof. Assume that A, B are approximately linear, i.e., u1 ≤ an −nα ≤ u2 and v1 ≤
bn−nβ≤ v2 for suitable constants u1,u2,v1,v2. Then we easily get v1−u2 ≤ (bn −an)−
n

(
β−α) ≤ v2 − u1, which means that C is approximately linear with linearity rate

β−α.

In the other direction, assume that C is approximately linear, i.e., K1 ≤ cn−nγ≤
K2 for constants K1, K2. We would like to use Theorem 3, so we first look for integer

constants r, s ≥ 0. We take an integer r ≥ 0, which satisfies r ≥ (K2 −2K1) /c. Thus,
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cn+m−r ≤ (n+m−r)c+K2 ≤ nc+K1+mc+K1 ≤ cn+cm. We also take some integer s ≥ 0

which satisfies s ≥ (2K2−K1) /c. Then cn+cm ≤ nc+K2+mc+K2 ≤ (n+m+s)c+K1 ≤
cn+m+s. But recall that the theorem also requires s ≥ r−1, so we choose s that also

satisfies this.

In conclusion, cn+m−r ≤ cn + cm ≤ cn+m+s, so by Theorem 3 and Lemma 1 we

get u1 ≤ an +an −an+m ≤ u2 for some constants u1, u2, and similarly for B. Hence

Fekete’s Corollary implies that A, B are approximately linear.

Remark. If we know the approximation bounds K1, K2 and the linearity rate γ =
lim cn/n, then by Theorem 3’s conclusion and the proof of Lemma 1, we can com-

pute approximation bounds for the sequences A and B after choosing — preferably

minimal — r, s. Thus we regard them as known constants.

Also the linearity rates α, β are known. Since A, B form a natural partition,

and since liman/n =α, limbn/n =β, density considerations imply α−1+β−1 = 1. Also

notice that cn = bn − an implies β−α = γ, so we find α,β by solving the quadratic

equation α−1 + (α+γ)−1 = 1. For cn = k bθnc we have c = kθ, so doing so gives a =
(2−kθ+

p
k2θ2 +4)/2, b = (2+kθ+

p
k2θ2+4)/2.

If 0 < θ < 1, then bi = ai = i for 0 ≤ i < 1/θ, thus ai0 = i0, bi0 > i0 for i0 = d1/θe. It

follows that the sequences a′
n = an+i0−1−i0+1, b′

n = bn+i0−1−i0+1 split the integers ≥
i0. The difference c′n = b′

n −a′
n = bn+i0−1 −an+i0−1 = k bθ(n+ i0 −1)c is approximately

linear, so by Theorem 4,
{
a′

n
}
,

{
b′

n
}

are approximately linear. Definition 3 then

implies that also A, B are approximately linear.

5 Efficient Algorithm for Computing Sequences

5.1 Preparation

We deal with sequences A, B which form a natural partition, and assume that C
is approximately linear with known approximating bounds K1, K2, and known lin-

earity rate γ = lim cn/n. Then A, B are also approximately linear by Theorem 4,

and as we demonstrate below, we can compute some integer approximating bounds
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u1,u2,v1,v2, and compute α= liman/n, β= limbn/n by the formula 1±γ/2+
√

1+ (γ/2)2.

Now, given a pair of integers (x, y), we would like to check whether (x, y)= (an,bn)

for some n. If indeed x = an, then (x− u2)/α ≤ n ≤ (x− u1)/α. So we need to check

whether x = an for only a fixed number of n’s (at most (u2−u1)/α such n’s). If x = an

for some n, we are just left to check if y = bn in order solve the decision problem.

Notice that if we know x = an, then checking whether y= bn can be done by checking

whether y− x = cn, thus it depends on the complexity of computing cn.

So, we need to find an efficient method for computing the elements of an given

n. The naïve recursive method for computing the elements of an,bn is very slow and

inefficient: its complexity is O(n), whereas the input size is of complexity O(logn) in

succinct representation. Hence the naïve method is exponential in the input size.

5.2 Idea

The algorithm computes am,am+1, . . . ,an for given m,n, by operating as follows. If

for some r, s we can compute br,br+1 . . . ,bs, where br < am and an < bs. Then since

A, B form a natural partition, we can compute am, . . . ,an by complementing the

interval [br,bs] with elements of {ai}. Notice, however, that the first element of A in

the interval [br,bs] will not be necessarily am, but rather abr−r+1 by Theorem 1. The

last element of A in the interval will be abs−s. So since we know the start and end

indices, namely br−r+1 and bs−s, we can immediately locate the desired am, . . . ,an

inside abr−r+1, . . . ,abs−s.

The problem that remains is to find r, s, which are easy to compute, and that

satisfy br < am,an < bs. Moreover, br, . . . ,bs should be efficiently computable. First

we deal with finding such r. By Theorem 1 we can take any r ≤ am −m, and it will

satisfy br < am. But we have not yet computed am, so how can we find r ≤ am −m?

By the approximate linearity of {ai} we know that m(α−1)+u1 ≤ am −m, so we

can take r = bm(α−1)+u1c to satisfy r ≤ m(α−1)+u1 ≤ am −m, hence br < am. By

similar reasoning, for s = dn(α−1)+u2e+1 we have an −n+1≤ n(α−1)+u2 +1≤ s,

hence αn < bs (Theorem 1).

So we got easy formulas for r, s, which satisfy br < am,an < bs. But how can we
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easily compute br, . . . ,bs?

Notice that it’s enough to know ar,ar+1, . . . ,as, and then we can compute directly

bi = ai + ci. In order to compute ar, . . . ,as, we simply recursively call the main part

of the algorithm, with r, s instead of m, n, and we’re done.

We now turn to formulate the algorithm, afterwards we show how it works on a

specific example, and lastly we analyze its complexity.

Remark. Though the algorithm is written here recursively, it is easy to implement

it only with loops, and without recursion.

5.3 The Algorithm

Algorithm 1 ComputeSequenceA(m,n)
Input: Two indices m,n (integers).

Output: The elements am,am+1, . . . ,an.

1: If m ≤ 0 then

2: For j = 0, . . . ,n do

3: a j ←mex {ai,bi : 0≤ i < j}.
4: b j ← a j + c j.

5: End for

6: Else {m > 0}

7: Calculate r ←bm(α−1)+u1c and s ←dn(α−1)+u2e+1.

8: ar, . . . ,as ← ComputeSequenceA(r, s).

9: For j = r, . . . , s do

10: b j ← a j + c j.

11: End for

12: Calculate abr−r+1, . . . ,abs−s as the complemented elements of br, . . . ,bs in the

interval [br,bs].

13: End if

14: Return am, . . . ,an.
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5.4 Example

We demonstrate the following case: A, B form a natural partition, and bn = an +
b4n/3c, i.e., cn = b4n/3c. Then K1 ≤ cn − nγ ≤ K2 holds for K1 = −1,K2 = 0,γ = 4/3.

In the proof of Theorem 4 we take r = 2, s = 1 to satisfy r ≥ (K2 −2K1)/γ = 3/2 and

s ≥ (2K2 −K1)/γ= 3/4 (also s ≥ r−1). Then we have cn+m−2 ≤ cn + cm ≤ cn+m+1. Note

that usually this general method for finding r, s does not give the best (smallest) r,

s possible, so one might try to look for better r, s if one wanted to; we don’t.

Now, by Theorem 3, an+m−2 −1 ≤ an +am +2−1 ≤ an+m+1, equivalently an+m ≤
an +am+2 +0 ≤ an+m+3 +1. Then in the proof of Lemma 1 we get that an+m +u1 ≤
an + am ≤ an+m + u2 holds for u1 = −a4, u2 = a0 + a5 +1. So we compute the first

element of A, B by the definition.

n 0 1 2 3 4 5 6 7 . . .

cn 0 1 2 4 5 6 8 9 . . .

an 0 1 3 4 6 7 9 10 . . .

bn 0 2 5 8 11 13 17 19 . . .

Thus u1 =−6, u2 = 0+7+1= 8, and by Fekete’s Corollary we have −6≤ an −nα≤ 8,

where α= 1−γ/2+
√

1+ (γ/2)2 = (
1+

p
13

)
/3.

We begin with m = n = 1000. By lines 7, 8, the parameters m, n called in the

recursion steps are

Recursive step # 0 1 2 3 4 5 6 7

m 1000 529 277 142 69 30 10 -1

n 1000 545 301 171 101 64 44 33

The computation of the first elements an, bn begins at the recursion stop (line 2).

a0 a1 a2 · · · a31 a32 a33

0 1 3 · · · 48 49 50

Computing bi = ai + ci (line 9) gives
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b0 a1 b1 a2 a3 · · · b32 a60 a61 b33

0 2 · · · 91 94

By complementing the interval [b0,b33] (line 12) we get a1,a2, . . . ,a61. From these

we extract the desired elements

a10 a11 b6 a12 · · · b23 a43 a44

15 16 18 · · · 66 67

Computing bi = ai + ci

...

b277 a518 b278 a519 a520 · · · b300 a561 a562 b301

794 796 · · · 860 863

Complementing the interval [b277,b301], and extracting desired elements

a529 a530 b284 a531 · · · b291 a544 a545

812 813 815 · · · 835 836

Computing bi = ai + ci:

b529 a989 b530 · · · a1016 b544 a1017 b545

1517 1519 · · · 1560 1562

Complementing the interval [b529,b545], and extracting the wanted element

a1000

1535

5.5 Complexity Analysis and Validity Proof

Due to the variety of multiplication algorithms, we denote by M(k) the complexity

of multiplication of two k-digits numbers. We also denote by T(k) the complexity

of computing ck, and by Y (k) the complexity of computing the multiplication αk to

integer precision.
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For example, we can trivially choose M(k) = k2. Then, if we take ck = b4k/3c, we

get T(k) = O(logk). Since γ = lim cn/n = 4/3, we have α = (
1+

p
13

)
/3. Hence com-

puting αk forces a computation of the square root of a logk-digits integer (plus some

computations with lower complexity). Thus Y (k) = M (logk) = O(log2 k) (complexity

of square root computation is the same as of multiplication).

Now, for the complexity analysis of the algorithm. Denote by mi, ni the pa-

rameters m, n called on the ith step of the recursion. So we have m0 = n0 = n (to

compute an we call ComputeSequenceA(n,n)), and line 7 gives the recursive rela-

tion mi+1 = bmi(α−1)+u1c ,ni+1 = dni(α−1)+u2+1e. From this it’s easy to see that

mi+1 ≤ mi(α−1)+u1 and ni+1−mi+1 ≤ (ni −mi)(α−1)+u2−u1+3, which implies

mi ≤ (α−1)i (n− u1
2−α

)+ u1
2−α

ni −mi ≤−(α−1)i u2−u1+3
2−α + u2−u1+3

2−α .
(2)

Notice from this that mi decreases at least exponentially (1 < α < 2, since α = 1−
γ/2+

√
1+ (

γ/2
)2), and that though the difference ni−mi is increasing, it is bounded

by a constant (namely (u2−u1 +3)/ (2−α)).

Since 0<α−1< 1, and u1 ≤ a0−0= 0, from (2) we see that the recursion stopping

condition of the algorithm m ≤ 0 (line 1), is fulfilled after at most O(logn) steps of

the recursion. In this case, we compute the first elements of ai directly by definition

(line 2). At the stopping condition we know that mi ≤ 0, and since also the difference

ni − mi is bounded by a constant, we see that the number of initial ni elements

computed is bounded by a constant. Hence the complexity of the stopping part of

the algorithm (line 2) is constant O(1).

On line 7 we have complexity Y (n) (mi and ni are at most n). The complexity of

line 9 is just T(n), since the loop index runs from mi to ni, and we saw that ni−mi is

bounded by a constant. We also get from this that in line 12 the size of the interval[
bmi ,bni

]
is bounded by a constant (since bi is approximately linear), hence this

line’s complexity is O(1).

In conclusion, the algorithm has complexity O ((Y (n)+T(n)) logn), which, de-

pending on this complexity, is generally much more efficient then O(n). For the

18



example in §5.4, it is O(log3 n). The arguments in subsections 5.1, 5.2 and 5.5 jointly

also establish the validity of the algorithm.

5.6 Epilogue

It is interesting that the most time consuming part of the algorithm is not the recur-

sion (with complexity O(logn)), but the calculations on lines 7 and 9-10, of complex-

ity O(Y (n)+T(n)).

Another surprising aspect is that even though it seems at first that the mi, ni

are growing apart from each other as the recursion progresses, which would affect

both the time complexity and the space complexity, this effect vanishes eventually,

since the difference ni −mi is bounded by a constant, as shown by (2).

On a fundamental level, we attribute the efficiency of the algorithm to three

properties of the sequences A, B.

• The two sequences partition the positive integers. This enabled use of Theo-

rem 1 to compute the {an} elements as the complement of a {bn}-interval.

• The sequence {an} has a simple approximation by another efficiently com-

putable sequence, namely sn = nα. The sequence S(n) = sn −n, is decreasing

fast when composed onto itself (in our case S(n)≈ (α−1)n, so S(k)(n)≈ (α−1)kn
decreases exponentially).

• The recursive relation between an and bn is simple. That is, knowing an, it is

easy to compute bn by the formula bn = an + cn.

One direction of further research is to extend the results to sequences to which the

idea of the algorithm can be applied. For example, for Cn = ζbnθc, where ζ,θ ∈
R>0. This requires a generalization of the mex function, since the sequences are not

integers anymore. It should not be hard to extend our results to multiple sequences

that split Z≥1.
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