
On the Practical Power of the KMP Automaton

Amihood Amir∗ Ora Amir† Aviezri Fraenkel‡ David Sarne§

Bar-Ilan University Bar-Ilan University Weizmann Institute of Science Bar-Ilan University

and

Georgia Tech

Abstract

The classical pattern matching paradigm is that of seeking occurrences of one string - the pattern,
in another - the text, where both strings are drawn from an alphabet set Σ. Assuming the text length
is n and the pattern length is m, this problem can naively be solved in time O(nm). In Knuth, Morris
and Pratt’s seminal paper of 1977, an automaton, was developed that allows solving the problem in time
O(n) for any alphabet.

This automaton, which we will refer to as the KMP-automaton, has proven useful in solving many
other problems. A notable example is the parameterized pattern matching model. In this model, a
consistent renaming of symbols from Σ is allowed in a match. The parameterized matching paradigm
has proven useful in problems in software engineering, computer vision, and other applications.

It has long been known in the folklore that for texts where the symbols are uniformly random, the
naive algorithm will perform as well as the KMP algorithm. In this paper we examine the practical
efficiency of the KMP algorithm vs. the naive algorithm on a randomly generated text. We analyse the
time under various parameters, such as alphabet size, pattern length, and the distribution of pattern
occurrences in the text. We do this for both the original exact matching problem and parameterized
matching. Surprisingly, the KMP algorithm works significantly faster than the naive in the parameterized
matching case.

1 Introduction

One of the most well-known data structures in Computer science is the Knuth-Morris-Pratt automaton, or
the KMP automaton [19]. It allows solving the exact string matching problem in linear time. The exact
string matching problem has input text T of length n and pattern P of length m, where the strings are
composed of symbols from a given alphabet Σ. The output is all text locations where the pattern occurrs
in the text. The naive way of solving the exact string matching problem takes time O(nm). This is an
extremely simple algorithm that can be assigned to first-year CS students. Using the KMP automaton, this
problem can be solved in time O(n). In fact, analysis of the algorithm shows that at most 2n comparisons
need to be done.

It has long been known in the folklore that if the text is composed of uniformly random alphabet symbols,
the naive algorithm is also linear. In fact its mean number of comparisons for text and pattern over a binary
alphabet is bounded by

n

m∑
i=1

i

2i
which is bounded by 2n comparisons.

∗Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel, +972 3 531-8770; amir@cs.biu.ac.il;
and College of Computing, Georgia Tech, Atlanta, GA 30332. Partly supported by ISF grant 1475/18 and BSF grant 2018141.
†Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel,; oramir70@gmail.com.
‡Dept of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel, +972 8 934-

3545; aviezri.fraenkel@weizmann.ac.il.
§Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel, +972 3 531-8052; sarned@cs.biu.ac.il.

Clearly, because control in the naive algorithm is much simpler, this may be practically quite competitive
with the KMP algorithm.

The last few decades have prompted the evolution of pattern matching from a combinatorial solution of the
exact string matching problem [15, 19] to an area concerned with approximate matching of various rela-
tionships motivated by computational molecular biology, computer vision, and complex searches in digitized
and distributed multimedia libraries [14, 6].

The parameterized matching problem was introduced by Baker [9, 10]. Her main motivation lay in software
maintenance, where program fragments are to be considered “identical” even if variable names are different.
Therefore, strings under this model are comprised of symbols from two disjoint sets Σ and Π containing fixed
symbols and parameter symbols respectively. In this paradigm, one seeks parameterized occurrences, i.e.,
occurrences up to renaming of the parameter symbols of a string in another. This renaming is a bijection
b : Π→ Π. An optimal algorithm for exact parameterized matching appeared in [4]. It makes use of the KMP
automaton for a linear-time solution over fixed finite alphabet Σ. Approximate parameterized matching was
investigated in [9, 16, 7]. Idury and Schäffer [17] considered multiple matching of parameterized patterns.

Parameterized matching has proven useful in other contexts as well. An interesting problem is searching for
color images (e.g. [23, 8, 3]). Assume, for example, that we are seeking a given icon in any possible color map.
If the colors were fixed, then this is exact two-dimensional pattern matching [2]. However, if the color map
is different the exact matching algorithm would not find the pattern. Parameterized two dimensional search
is precisely what is needed. If, in addition, one is also willing to lose resolution, then a two dimensional
function matching search should be used, where the renaming function is not necessarily a bijection [1, 5].

Parameterized matching can also be naively done in time O(nm) and the common thought was that here,
too, the naive algorithm is competitive with the KMP automaton-based algorithm of [4] in a randomly
generated text.

In this paper we investigate the practical efficiency of the automaton-based algorithm vs. the naive algorithm
both in exact and parameterized matching. We consider the following parameters: pattern length, alphabet
size, and distribution of pattern occurrences in the text.

2 Problem Definition

We begin with basic definitions and notation generally following [12].

Let S = s1s2 . . . sn be a string of length |S| = n over an ordered alphabet Σ. By ε we denote an empty
string. For two positions i and j on S, we denote by S[i..j] = si..sj the factor (sometimes called substring)
of S that begins at position i and ends at position j (it equals ε if j < i). A prefix of S is a factor that
begins at position 1 (S[1..j]) and a suffix is a factor that ends at position n (S[i..n]).

The exact string matching problem is defined as follows:

Definition 1 (Exact String Matching) Let Σ be an alphabet set, T = t1 · · · tn the text and P = p1 · · · pm
the pattern, ti, pj ∈ Σ, i = 1, . . . , n; j = 1, . . . ,m. The exact string matching problem is:
input: text T and pattern P .
output: All indices i, i ∈ {1, ..., n−m+ 1} such that

ti+c = pc+1, for c = 0, ...,m− 1

We simplify Baker’s definition of parameterized pattern matching.

Definition 2 (Parameterized-Matching) Let Σ, T and P be as in Definition 1. We say that P parameterize-
matches or simply p-matches T in location j if pi ∼= tj+i−1, i = 1, . . . ,m, where pi ∼= tj if and only if the
following condition holds:

for every k = 1, . . . , i− 1, pi = pi−k if and only if tj = tj−k.

The p-matching problem is to determine all p-matches of P in T . Two strings S1 and S2 of same length are

2

said to parametrize-match or simply p-match if s1i
∼= s2i for all i.

Intuitively, the matching relation∼= captures the notion of one-to-one mapping between the alphabet symbols.
Specifically, the condition in the definition of ∼= ensures that there exists a bijection between the symbols
from Σ in the pattern and those in the overlapping text, when they p-match. The relation ∼= has been defined
by [4] in a manner suitable for computing the bijection.

Example: The string ABABCCBA parameterize matches the string XYXY ZZXY . The reason is that

if we consider the bijection β : {A,B,C} → {X,Y, Z} defined by A
β−→ X, B

β−→ Y, C
β−→ Z, then we get

β(ABABCCAB) = XYXY ZZXY . This explains the requirement in Def. 2, where two sumbols match iff
they also match in all their previous occurrences.

Of course, the alphabet bijection need not be as extreme as bijection β above. String ABABCCAB also

parameterize matches BABACCBA, because of bijection γ : {A,B,A} → {A,B,C} defined as: A
γ−→

B, B
γ−→ A, C

γ−→ C.

For completeness, we define the KMP automaton.

Definition 3 Let P = p1 . . . pm be a string over alphabet Σ. The KMP automaton of P is a 5-tuple
(Q,Σ, δs, δf , q0, qa), where Q = {0, ...,m} is the set of states, Σ is the alphabet, δs : Q → Q is the success
function, δf : Q→ Q is the failure function, q0 = 0 is the start state and qa = m is the accepting state.

The success function is defined as follows:
δs(i) = i+ 1, i = 0, ...,m− 1 and
δs(0) = 0

The failure function is defined as follows:
Denote by `(S) the length of the longest proper prefix of string S (i.e. excluding the entire string S) which
is also a suffix of S.
δf (i) = `(P [1..i]), for i = 1, ..m.

For an example of the KMP automaton see Fig. 1.

0 1 2 3 4

P=AABB
|P|=4
∑={A,B}
δs = all arrows with a symbol above them. δf = all other arrows.

≠A

Figure 1: Automaton example

Theorem 1 [19] The KMP automaton can be constructed in time O(m).

3

3 The Exact String Matching Problem

The Knuth-Morris-Pratt (KMP) search algorithm uses the KMP automaton in the following manner:

Variables:
pointert points to indices in the text. pointerp points to indices in the pattern.

Initialization:
set pointer pointert to 1. set pointer pointerp to 0.

Main Loop:
While pointert ≤ n−m+ 1 do:

If tpointert = δs(pointerp) then do:
pointert ← pointert + 1
pointerp ← δf (pointerp)
If pointerp = m− 1 then do:

output “pattern occurrence ends in text location pointert”.
pointerp ← δf (m)

enddo
enddo

else (tpointert 6= δs(pointerp)) do:
if pointerp = 0 then pointert ← pointert + 1
else pointerp ← δf (pointerp)

enddo
go to beginning of while loop

endwhile

Theorem 2 [19] The time for the KMP search algorithm is O(n). In fact, it does not exceed 2n compar-
isons.

4 The Parameterized Matching Problem

Amir, Farach, and Muthukrishnan [4] achieved an optimal time algorithm for parameterized string matching
by a modification of the KMP algorithm. In fact, the algorithm is exactly the KMP algorithm, however,
every equality comparison “x = y” is replaced by “x ∼= y” as defined below.

Implementation of “x ∼= y”

Construct table A[1], . . . , A[m] where A[i] = the largest k, 1 ≤ k < i, such that pk = pi. If no such k exists
then A[i] = i.

The following subroutines compute “pi ∼= tj” for j ≥ i, and “pi ∼= pj” for j ≤ i.

Compare(pi,tj)
if A[i] = i and tj 6= tj−1, . . . , tj−i+1 then return equal
if A[i] 6= i and tj = tj−i+A[i] then return equal
return not equal

end

Compare(pi,pj)
if (A[i] = i or i−A[i] ≥ j) and pj 6= p1, . . . , pj−1 then return equal
if i−A[i] < j and pj = pj−i+A[i] then return equal
return not equal

end

4

Theorem 3 [4] The p-matching problem can be solved in O(n log σ) time, where σ = min(m, |Σ|).

Proof:

The table A can be constructed in O(m log σ) time as follows: scan the pattern left to right keeping track of
the distinct symbols from Σ in the pattern in a balanced tree, along with the last occurrence of each such
symbol in the portion of the pattern scanned thus far. When the symbol at location i is scanned, look up
this symbol in the tree for the immediately preceding occurrence; that gives A[i].

Compare can clearly be implemented in time O(log σ). For the case A[i] 6= i, the comparison can be done in
time O(1). When scanning the text from left to right, keep the last m symbols in a balanced tree. The check
tj 6= tj−1, . . . , tj−i+1 in Compare(pi,tj) can be performed in O(log σ) time using this information. Similarly,
Compare(pi,pj) can be performed using A[i]. Therefore, the automaton construction in KMP algorithm with
every equality comparison “x = y” replaced by “x ∼= y” takes time O(m log σ) and the text scanning takes
time O(n log σ), giving a total of O(n log σ) time.

As for the algorithm’s correctness, Amir, Farach and Muthukrishnan showed that the failure link in automa-
ton node i produces the largest prefix of p1 · · · pi that p-matches the suffix of p1 · · · pi.

5 Our Experiments

Our implementation was written in C + +. The platform was Dell latitude 7490 with intel core i7 - 8650U,
32 GB RAM. The running time was computed using the chrono high resolution clock. The random strings
were generated using the random Python package.

We implemented the naive algorithm for exact string matching and for parameterized matching. The same
code was used for both, except for the implementation of the equivalence relation for parameterized matching,
as described above. This required implementing the A array. We also implemented the KMP algorithm for
exact string matching, and used the same algorithm for parameterized matching. The only difference was
the implementation of the equivalence parameterized matching relation.

The text length n was 1,000,000 symbols. We ran patterns of lengths m = 32, 64, 128, 256, 512, and 1024.
The alphabet sizes tested were |Σ| = 2, 4, 6, 8, 10, 20, 40, 80, 160, 320.

Methodology: We generated a uniformly random text of length 1, 000, 000. If the pattern would also be
randomly generated, then it would be unlikely to appear in the text. However, when seeking a pattern in the
text, one assumes that the pattern occurs in the text. An example would be searching for a sequence in the
DNA. For all intents and purposes, the DNA sequence is “random”. However, when seeking a sequence, one
expects to find it but just does not know where. Consequently, we planted 100 occurrences of the pattern in
the text at uniformly random locations. The final text length was always 1, 000, 000. We also implemented
a variation where half of the pattern occurrences were in the last quarter of the text. For each alphabet size
and pattern length we generated 10 tests and considered the average result of all 10 tests.

5.1 Exact Matching

5.1.1 Results

Below are the results of our tests. Tables 1 and 1 in the Appendix show the alphabet size, the pattern
length, the average of the running times of the naive algorithm for the 10 tests, the average of the running
time of the KMP algorithm for the 10 tests, and the ratio of the naive algorithm running time over the KMP
algorithm running time. Any ratio value below 1 means that the naive algorithm is faster. A small value
indicates a better performance of the naive algorithm. Any value above 1 indicates that the KMP algorithm
is faster than the naive algorithm. The larger the number, the better the performance.

To enable a clearer understanding of the results, we present them below in graph form. The following graphs

5

show the results of our tests for the different pattern lengths. The x-axis is the pattern size. The y-axis is the
ratio of the naive algorithm running time to the KMP algorithm running time. The different colors depict
alphabet sizes. To better see the effect of the pattern distribution in the text, we also map, on the same
graph, both cases. In this graph, the x-axis is the average running time of all pattern lengths per alphabet
size, and the y-axis is the ratio of the naive algorithm running time to the KMP algorithm running time.
The results of the uniformly random distribution are mapped in one color, and the results of all pattern
occurrences in the last half of the text are mapped in another.

Figure 2: Performance in the Exact Matching case, pattern oc-
currences distributed uniformly random.

Figs. 2 and 3 map the results of the exact matching comparisons for the case where the patterns were inserted
at random vs. the case where the patterns appear at the last half of the text. In Fig. 4 we map at the same
graph the average results of both the cases where the patterns appear at the text uniformly at random, and
where the patterns appear at the last half of the text.

We note the following phenomena:

1. The naive algorithm performs better than the automaton algorithm. Of the 600 tests we ran, there
were only 3 occasions where the KMP algorithm performed better than the naive. In the vast majority
of cases the naive algorithm was superior by far.

2. The naive algorithm performs better for larger alphabets.

3. For a fixed alphabet size, there is a slight increase in the naive/KMP ratio, as the pattern size increases.

4. The distribution of the pattern occurrences in the text does not seem to make a change in performance.

An analysis of these implementation behaviors appears in the next subsection.

5.1.2 Analysis

We analyse all four results noted above.

6

Figure 3: Performance in the Exact Matching case, pattern oc-
currences congregated at end of text.

Better Performance of the Naive Algorithm
We have seen that the mean number of comparisons of the naive algorithm for binary alphabets is bounded
by

n

m∑
i=1

i

2i
which is bounded by 2n comparisons.

The running time of the KMP algorithm is also bounded by O(2n). However, the control of the KMP
algorithm is more complex than that of the naive algorithm, which would indicate a constant ratio in favor
of the naive algorithm. However, when the KMP algorithm encounters a mismatch it follows the failure link,
which avoids the need to re-check a larger substring. Thus, for longer length patterns, where there are more
possibilities of following the failure links for longer distances, there is a lessening advantage of the naive
algorithm.

Better Performance of the Naive Algorithm for Larger Alphabets
This is fairly clear when we realize that the mean performance of the naive algorithm for alphabet of size k
is:

n

m∑
i=1

i

ki
= n

k

(k − 1)2
comparisons.

This is clearly decreasing the larger the alphabet size. However, the repetitive traversal of the failure link,
even in cases where there is no equality in the comparison check, will still raise the relative running time of
the KMP algorithm. Here too, the longer the pattern size, the more failure link traversals of the KMP, and
thus less overall comparisons, which slightly decreases the advantage of the naive algorithm.

The Distribution of Pattern Occurrences in the Text
If the pattern is not periodic, and if the patterns are not too frequent in the text, then there will be at
most one pattern in a text substring of length 2m. In these circumstances, there is really no effect to the
distribution of the pattern in the text. We would expect a difference if the pattern is long with a small
period. Indeed, an extreme such case is tested in Subsection 5.1.3.

7

Figure 4: Comparison of average performance of uniform pattern
distribution vs. pattern occurrences congregated at end of text.

5.1.3 A Very Structured Example

All previous analyses point to the conviction that the more times a prefix of the pattern appears in the text,
and the more periodic the pattern, the better will be the performance of the KMP algorithm. The most
extreme case would be of text An (A concatenated n times), and pattern Am−1B. Indeed the results of this
case appear in Fig. 5.

Figure 5: Performance in the Exact Matching case, periodic text.

Theoretical analysis of the naive algorithm predicts that we will have nm comparisons, where n is the text
length and m is the pattern length. The KMP algorithm will have 2n comparisons, for any pattern length.
Thus the ratio q of naive to KMP will be O(m2). In fact, when we plot m

q we get twice the cost of the control
of the KMP algorithm. This can be seen in Fig. 5 to be 5.

8

5.2 Parameterized Matching

5.2.1 Results

The exact matching results behaved roughly in the manner we expected. The surprise came in the param-
eterized matching case. Below are the results of our tests. As in the exact matching case, the tables show
the alphabet size, the pattern length, the average of the running times of the naive algorithm for the 10
tests, the average of the running time of the automaton-based algorithm for the 10 tests, and the ratio q of
the naive algorithm running time over the automaton-based algorithm running time. Any ratio value above
1 means that the automaton-based algorithm is faster. A large value indicates a better performance of the
automaton-based algorithm.

The following graphs show the results of our tests for the different pattern lengths. The x-axis is the pattern
size. The y-axis is the ratio of the naive algorithm running time to the automaton-based algorithm running
time. The different colors depict alphabet sizes. To better see the effect of the pattern distribution in the
text, we also map, on the same graph, both cases. In this graph, the x-axis is the average running time of
all pattern lengths per alphabet size, and the y-axis is the ratio of the naive algorithm running time to the
automaton-based algorithm running time. The results of the uniformly random distribution are mapped in
one color, and the results of all pattern occurrences in the last half of the text are mapped in another.

Figure 6: Performance in the Parameterized Matching case, pat-
tern occurrences distributed uniformly random.

The parameterized matching results appear in tables 1 and 2 in the appendix. Figs. 6 and 7 map the results
of the parameterized matching comparisons for the case where the patterns were inserted at random vs. the
case where the patterns appear at the last half of the text. In Fig. 8 we map at the same graph the average
results of both the cases where the patterns appear at the text uniformly at random, and where the patterns
appear at the last half of the text.

Surprisingly, the results are very different from the exact matching case. We note the following phenomena:

1. The automaton-based algorithm always performs significantly better than the naive algorithm.

2. The automaton-based algorithm performs better for larger alphabets.

3. For a fixed alphabet size, the pattern size does not seem to make much difference.

9

Figure 7: Performance in the Parameterized Matching case, pat-
tern occurrences congregated at end of text.

4. The distribution of the pattern occurrences in the text does not seem to make a change in performance.

An analysis of these implementation behaviors and an explanation of the seemingly opposite results from
the exact matching case appear in the next subsection.

5.2.2 Analysis

We analyse all four results noted above.

Better Performance of the Automaton-based Algorithm
We have established that the mean number of comparisons for the naive algorithm in size k alphabet is

n

m∑
i=1

i

ki
= n

k

(k − 1)2
comparisons.

However, when it comes to parameterized matching, any order of the alphabet symbols is a match, thus the
mean number of comparisons is to be multiplied by k!. Therefore, for size 2 alphabet we get 4n comparisons,
and the number rises exponentially with the alphabet size. Also, the automaton-based algorithms is constant
at 2n comparisons. Even for a size 2 alphabet, there is twice the number of comparisons in the naive algorithm
than in the automaton-based algorithm. Note, also, that because of the need to find the last parameterized
match, the control mechanism even of the naive algorithm, is more complex. This results in a superior
performance of the automaton-based algorithm even for small alphabets. Of course, the larger the alphabet,
the better the performance of the automaton-based algorithm.

Pattern Size

The pattern size does not play a role in the automaton-based algorithm, where the number of comparisons
is always bounded by 2n. In the naive case, the multiplication of the factorial of the alphabet size is so
overwhelming that it dominates the pattern length. For example, note that for an extremely large alphabet,
there would be a leading prefix of different alphabet symbols. That prefix will always be traversed by the
naive algorithm. The larger the alphabet, the longer will be the mean length of that prefix.

10

Figure 8: Comparison of average performance of uniform pattern
distribution vs. pattern occurrences congregated at end of text.

Pattern Distribution

As in the exact matching case, for a non-periodic pattern that does not appear too many times, the distri-
bution of occurrences will have no effect on the complexity.

6 Conclusions

The folk wisdom has always been that the naive string matching algorithm will outperform the automaton-
based algorithm for uniformly random texts. Indeed this turns out to be the case for exact matching.
Surprisingly, this is not the case for parameterized matching, where the automaton-based algorithm always
outperforms the naive algorithm. This advantage is clear and is impressively better the larger the alphabets.

The conclusion to take away from this study is that one should not automatically assume that the naive string
matching algorithm is better for uniformly random texts. The matching relation should be analysed. There
are various matchings for which an automaton-based algorithm exists. We considered here parameterized
matching, but other matchings, such as ordered matching [11, 13, 18], or Cartesian tree matching [20, 21, 22],
can also be solved by automaton-based methods. In a practical application it is worthwhile spending some
time considering the type of matching one is using. It may turn out to be that the automaton-based algorithm
will perform significantly better than the naive, even for uniformly random texts.

References

[1] A. Amir, A. Aumann, M. Lewenstein, and E. Porat. Function matching. SIAM Journal on Computing,
35(5):1007–1022, 2006.

[2] A. Amir, G. Benson, and M. Farach. An alphabet independent approach to two dimensional pattern
matching. SIAM J. Comp., 23(2):313–323, 1994.

[3] A. Amir, K. W. Church, and E. Dar. Separable attributes: a technique for solving the submatrices
character count problem. In Proc. 13th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
400–401, 2002.

[4] A. Amir, M. Farach, and S. Muthukrishnan. Alphabet dependence in parameterized matching. Infor-
mation Processing Letters, 49:111–115, 1994.

11

[5] A. Amir and I. Nor. Generalized function matching. J. of Discrete Algorithms, 5(3):514–523, 2007.

[6] A. Apostolico and Z. Galil (editors). Pattern Matching Algorithms. Oxford University Press, 1997.

[7] A. Apostolico, M. Lewenstein, and P. Erdös. Parameterized matching with mismatches. Journal of
Discrete Algorithms, 5(1):135–140, 2007.

[8] G.P. Babu, B.M. Mehtre, and M.S. Kankanhalli. Color indexing for efficient image retrieval. Multimedia
Tools and Applications, 1(4):327–348, Nov. 1995.

[9] B. S. Baker. Parameterized pattern matching: Algorithms and applications. Journal of Computer and
System Sciences, 52(1):28–42, 1996.

[10] B. S. Baker. Parameterized duplication in strings: Algorithms and an application to software mainte-
nance. SIAM Journal on Computing, 26(5):1343–1362, 1997.

[11] S. Cho, J. C. Na, K. Park, and J. S. Sim. Fast order-preserving pattern matching. In Proc. 7th conf.
Combinatorial Optimization and Applications COCOA, volume 8287 of Lecture Notes in Computer
Science, pages 295–305. Springer, 2013.

[12] M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge University Press, 2007.

[13] M. Crochemore, C.S. Iliopoulos, T. Kociumaka, M. Kubica, A. Langiu, S.P. Pissis, J. Radoszewski,
W. Rytter, and T. Walen. Order-preserving incomplete suffix trees and order-preserving indexes. In
Proc. 20th International Symposium on String Processing and Information Retrieval (SPIRE), volume
8214 of LNCS, pages 84–95. Springer, 2013.

[14] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

[15] M.J. Fischer and M.S. Paterson. String matching and other products. Complexity of Computation,
R.M. Karp (editor), SIAM-AMS Proceedings, 7:113–125, 1974.

[16] C. Hazay, M. Lewenstein, and D. Sokol. Approximate parameterized matching. In Proc. 12th Annual
European Symposium on Algorithms (ESA 2004), pages 414–425, 2004.

[17] R.M. Idury and A.A Schäffer. Multiple matching of parameterized patterns. In Proc. 5th Combinatorial
Pattern Matching (CPM), volume 807 of LNCS, pages 226–239. Springer-Verlag, 1994.

[18] J. Kim, A. Amir, J.C. Na, K. Park, and J.S. Sim. On representations of ternary order relations in
numeric strings. In Proc. 2nd International Conference on Algorithms for Big Data (ICABD), volume
1146 of CEUR Workshop Proceedings, pages 46–52, 2014.

[19] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM J. Comp., 6:323–350,
1977.

[20] S. G. Park, A. Amir, G. M. Landau, and K. Park. Cartesian Tree Matching and Indexing. In Nadia
Pisanti and Solon P. Pissis, editors, Proc. 30th Symposium on Combinatorial Pattern Matching (CPM),
volume 128 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–16:14, 2019.

[21] S. G. Park, M. Bataa, A. Amir, G. M. Landau, and K. Park. Finding patterns and periods in cartesian
tree matching. Theor. Comput. Sci., 845:181–197, 2020.

[22] S. Song, G. Gu, C. Ryu, S. Faro, T. Lecroq, and K. Park. Fast algorithms for single and multiple
pattern cartesian tree matching. Theor. Comput. Sci., 849:47–63, 2021.

[23] M. Swain and D. Ballard. Color indexing. International Journal of Computer Vision, 7(1):11–32, 1991.

12

7 Appendix

|Σ| patt. length Naive KMP Naive
KMP |Σ| patt. length Naive KMP Naive

KMP

2

32 4514.1 6712.5 0.6729

4

32 3174.2 5409.9 0.5879
64 4449.3 6727.8 0.6623 64 3167.8 5428.3 0.5818
128 4697.3 6764.3 0.693 128 3136.8 5293.0 0.5917
256 4522.9 6814.2 0.6666 256 3109.7 5228.2 0.5942
512 4764.7 6734.7 0.7051 512 3108.8 5110.5 0.608
1024 4521.4 6188.7 0.7304 1024 3141.1 4928.7 0.6368

6

32 2225.1 4331.2 0.5139

8

32 1771.8 3903.4 0.4553
64 2199.2 4263.2 0.5157 64 1794.5 3852.4 0.4659
128 2180.9 4270.6 0.5108 128 1764.0 3789.7 0.4654
256 2169.2 4201.4 0.5163 256 1766.5 3798.4 0.4652
512 2193.2 4128.4 0.5314 512 1771.9 3670.6 0.4827
1024 2238.7 4110.1 0.5455 1024 1827.3 3596.6 0.5085

10

32 1593.1 3598.9 0.4427

20

32 1312.0 3309.2 0.396
64 1578.3 3586.4 0.44 64 1428.6 3297.7 0.4269
128 1564.8 3563.9 0.4391 128 1252.7 3264.9 0.3817
256 1594.5 3531.6 0.4516 256 1187.4 3161.3 0.375
512 1554.3 3626.0 0.4317 512 1281.7 3166.8 0.4
1024 1892.5 3380.0 0.5619 1024 1274.6 2923.1 0.4347

40

32 943.9 2846.7 0.3316

80

32 898.1 2758.7 0.3242
64 964.3 2869.3 0.3358 64 938.4 2777.9 0.335
128 972.5 2852.5 0.3401 128 946.7 2824.5 0.3336
256 952.6 2835.3 0.3363 256 875.9 2709.0 0.323
512 975.4 2769.0 0.3523 512 875.8 2653.9 0.3302
1024 970.5 2655.4 0.3655 1024 899.6 2605.0 0.346

160

32 810.9 2686.1 0.302

320

32 790.3 2712.0 0.2916
64 794.0 2733.1 0.2918 64 833.4 2711.1 0.3074
128 922.2 2771.1 0.3281 128 803.3 2676.3 0.3005
256 899.2 2700.6 0.3285 256 785.2 2743.0 0.2877
512 897.8 2635.6 0.3374 512 878.5 2690.4 0.3269
1024 861.6 2534.9 0.3399 1024 883.8 2563.6 0.3427

Table 1: Implementation Results - Exact Matching, patterns uniformly distributed.

13

|Σ| patt. length Naive KMP Naive
KMP |Σ| patt. length Naive KMP Naive

KMP

2

32 4613.3 6931.1 0.6649

4

32 3091.7 5362.9 0.5759
64 4570.1 6695.7 0.6824 64 3203.2 5499.5 0.5819
128 4462.8 6702.2 0.667 128 3190.4 5373.6 0.5933
256 4441.5 6644.9 0.6692 256 3200.3 5413.1 0.5924
512 4786.4 6441.1 0.744 512 3305.2 5340.0 0.6176
1024 4493.8 6360.6 0.7105 1024 3322.4 5125.8 0.6469

6

32 2374.7 4638.6 0.509

8

32 1836.3 3978.1 0.4616
64 2336.6 4586.8 0.5093 64 1804.2 3930.2 0.4589
128 2467.1 4597.0 0.534 128 1816.9 3908.6 0.465
256 2350.4 4453.1 0.5274 256 1802.8 3875.2 0.4655
512 2306.2 4447.2 0.5243 512 1792.0 3832.8 0.4684
1024 2411.2 4302.9 0.5597 1024 1889.1 3640.7 0.5183

10

32 1741.8 3762.0 0.4608

20

32 1242.4 3173.7 0.3916
64 1719.8 3772.8 0.4528 64 1173.5 3251.9 0.3615
128 1616.5 3800.2 0.4264 128 1286.4 3302.4 0.3847
256 1685.1 3814.7 0.4424 256 1334.3 3234.5 0.411
512 1774.0 3724.7 0.4737 512 1231.7 3090.4 0.399
1024 1727.8 3484.3 0.4922 1024 1263.8 3031.5 0.4168

40

32 1108.6 3048.3 0.3606

80

32 867.4 2912.6 0.2988
64 1014.5 3084.3 0.3283 64 941.2 2912.8 0.3248
128 1142.9 3210.4 0.3533 128 1023.5 2872.7 0.3546
256 1026.3 3005.2 0.3413 256 1005.4 2949.3 0.3397
512 1503.7 2930.9 0.5205 512 956.0 2852.1 0.3355
1024 1170.1 2926.9 0.3951 1024 954.3 2701.8 0.3532

160

32 981.8 2855.0 0.3393

320

32 769.6 2662.8 0.2894
64 863.6 2818.4 0.3061 64 771.8 2681.5 0.2882
128 908.6 2842.8 0.3178 128 799.5 2627.0 0.304
256 851.2 2796.4 0.3047 256 917.9 2722.0 0.3345
512 909.6 2917.1 0.313 512 967.3 2757.1 0.3455
1024 1174.9 2815.9 0.4093 1024 951.2 2601.3 0.3604

Table 2: Implementation Results - Exact Matching, patterns at end.

14

|Σ| patt. length Naive KMP Naive
KMP |Σ| patt. length Naive KMP Naive

KMP

2

32 25738.0 6871.8 3.7655

4

32 26104.6 7489.6 3.5351
64 25996.5 6761.4 3.8593 64 26734.4 7538.6 3.5998
128 26080.5 6780.8 3.8571 128 26281.4 7370.8 3.6136
256 26269.7 6688.6 3.934 256 26204.3 7361.0 3.6062
512 26004.0 6440.3 4.0456 512 26169.6 7123.6 3.71
1024 26456.0 6277.9 4.2167 1024 26570.9 6863.1 3.924

6

32 26213.2 6818.3 3.96

8

32 26863.5 7229.3 3.9411
64 26244.3 7022.8 3.8621 64 27010.3 7258.5 3.9394
128 26130.3 6879.7 3.9429 128 26965.3 7067.4 4.0336
256 26141.2 6778.1 3.987 256 26918.8 7099.7 4.0304
512 26212.3 6460.7 4.1752 512 27211.8 6888.9 4.1592
1024 26171.5 6312.7 4.2986 1024 27406.5 6698.6 4.3042

10

32 28663.6 7629.8 3.8967

20

32 28539.6 5832.4 5.1463
64 28787.8 7787.6 3.8351 64 28543.3 6329.9 4.6772
128 28629.8 7664.8 3.8775 128 28254.3 6041.4 4.8694
256 28647.0 7478.5 3.99 256 28526.7 5733.2 5.2725
512 28843.4 7406.5 4.0576 512 28326.8 5546.4 5.3728
1024 28516.9 7074.3 4.1282 1024 28457.7 5433.1 5.5292

40

32 33994.8 5708.6 6.0731

80

32 42524.1 5292.8 8.0792
64 33826.0 6076.9 5.6046 64 41425.9 5340.1 7.8236
128 33971.3 5994.7 5.7342 128 41547.1 5387.7 7.8057
256 33740.9 5544.9 6.2016 256 41489.1 5269.7 8.0644
512 34501.6 5411.8 6.5045 512 41615.2 5189.5 8.165
1024 34172.0 5353.9 6.496 1024 42184.8 5067.8 8.478

160

32 54881.0 4789.375 11.5167

320

32 70360.0 3919.7 17.9046
64 56750.0 5222.7 10.8806 64 75533.8 4456.5 17.1093
128 57775.6 5212.2 11.2048 128 75098.4 4284.8 17.4987
256 56719.3 4953.4 11.5 256 77763.7 4238.4 18.328
512 58276.6 4793.2 12.1498 512 75922.3 4181.3 18.1751
1024 57331.2 4913.2 11.7029 1024 76831.3 4366.4 17.989

Table 3: Implementation Results - Parameterized Matching, patterns uniformly distributed.

15

|Σ| patt. length Naive KMP Naive
KMP |Σ| patt. length Naive KMP Naive

KMP

2

32 26063.4 6801.4 3.8439

4

32 26616.5 7505.3 3.61
64 26285.3 6878.0 3.828 64 26571.7 7443.4 3.6226
128 26053.8 7047.4 3.7047 128 26385.6 7829.9 3.4449
256 26612.5 6671.7 3.996 256 26236.1 7649.5 3.4807
512 26501.7 6764.8 3.9329 512 26660.5 7356.9 3.6748
1024 26397.8 6506.4 4.0685 1024 26667.6 7038.6 3.8591

6

32 26312.4 7071.4 3.828

8

32 27246.5 7421.6 3.8491
64 26733.2 6924.6 3.9976 64 27046.1 7185.0 3.9748
128 26470.1 7067.1 3.8636 128 27117.6 7170.1 4.009
256 26346.3 6701.1 4.0218 256 27154.8 7089.7 4.04
512 26610.6 6682.2 4.117 512 26901.8 6998.0 4.0791
1024 26632.3 6399.8 4.2563 1024 27227.5 6667.8 4.2963

10

32 29612.8 7759.5 3.9578

20

32 29588.6 6153.9 5.0995
64 28948.9 7748.2 3.8873 64 29393.4 6010.3 5.1754
128 29305.1 7925.5 3.829 128 29498.7 6312.8 4.8688
256 29457.3 7619.7 4.0189 256 29659.5 5966.3 5.1945
512 29650.7 7836.9 3.9754 512 29067.8 5802.3 5.226
1024 30742.0 7421.5 4.3099 1024 28922.4 5455.1 5.5624

40

32 34179.7 5577.9 6.2968

80

32 41534.5 5441.2 7.6963
64 34385.3 5723.2 6.2199 64 41907.7 5373.0 7.8299
128 34951.8 5758.1 6.1685 128 41709.3 5474.4 7.6894
256 36703.8 6033.8 6.216 256 41900.3 5211.0 8.1372
512 37417.4 5682.4 6.7656 512 41753.4 5196.7 8.1023
1024 35190.1 5488.2 6.5708 1024 43312.9 5074.3 8.5567

160

32 52173.125 4773.875 10.9192

320

32 67440.5 3981.8 16.8561
64 54173.0 5176.9 10.4658 64 71874.8 4294.4 16.7108
128 56313.9 5032.4 11.1442 128 72359.4 4315.2 16.725
256 54897.4 5257.0 10.433 256 72268.3 4179.1 17.2654
512 55123.0 5025.2 11.0268 512 72729.5 4234.7 17.1366
1024 55603.0 4915.0 11.26 1024 73777.8 4152.8 17.7372

Table 4: Implementation Results - Parameterized Matching, patterns at end.

16

