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In memory of Martin Gardner, who was and remains enchantingly influential and in-
spiring.

WYTHOFF

In 1907, the Dutch mathematician, Willem Abraham Wythoff [13] invented this game,
later vividly explained by Martin Gardner in [7].

WYTHOFF is played on a pair of nonnegative integers, (M, N ). A move consists of
either (i) subtracting any positive integer from precisely one of M or N such that the
result remains nonnegative, or (ii) subtracting the same positive integer from both M
and N such that the results remain nonnegative. The first player unable to move loses.

Given the position (3, 3), say, the next player wins in a single move: (3, 3)→ (0, 0).
The position (3, 3) is called an N -position, because the Next player wins. If M = N =
0, the next player loses, and the previous player, the one who moved to (0, 0), wins.
Thus (0, 0) is a P-position, because the Previous player wins.

If M > 0, it is easy to see that (0,M) and (M,M) are N -positions, since the next
player can win in one move. On the other hand, (1, 2) is a P-position because all its
followers—positions reached in one move—are N -positions. The first few P-positions
are listed in Table 1. Note that every N -position has at least one P-follower, but all
followers of a P-position are N -positions. From an N -position, in order to win, a
player must move to a P-position. Further, the P- and N -positions partition the set
of all game positions: every game position is either a P-position or an N -position but
never both.

The sequences, An , and Bn in Table 1, each strictly increasing, have remarkable
properties. Note that Bn = An + n for all n. But how is An computed? A study of the
table reveals that for n ≥ 1, An is the smallest positive integer not yet appearing in the
sequences. Thus, the next entries in Table 1 are A28 = 45, B28 = 73. It follows that the
sequences are complementary: every positive integer appears precisely once in these
two, recursively defined sequences.
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Table 1. The first few P-positions (An, Bn) for Wythoff’s game.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

An 0 1 3 4 6 8 9 11 12 14 16 17 19 21 22 24 25 27 29 30 32 33 35 37 38 40 42 43

Bn 0 2 5 7 10 13 15 18 20 23 26 28 31 34 36 39 41 44 47 49 52 54 57 60 62 65 68 70

Can a take-away game, such as WYTHOFF, be played on the rational numbers,
rather than the integers? We present such a game here.

A rational take-away game
Given a rational number p/q in lowest terms, a step is defined by

p

q
→

p − q

q
,

if p/q ≥ 1, otherwise

p

q
→

p

q − p
.

The game RATWYT is played on a pair of reduced rational numbers (p1/q1, p2/q2).
A move consists of either (i) doing any positive number of steps to precisely one of
the rationals, or (ii) doing the same number of steps to both. The first player unable to
play (because both numerators are 0) loses.

For example, from (3/5, 2/3), suppose that Alice moves to (3/2, 2/3). Then
Bob can do three steps to both rationals: (3/2, 2/3)→ (1/2, 2/1)→ (1/1, 1/1)→
(0/1, 0/1), and thereby win. Could Alice have made a better initial move? Can Al-
ice win? Suppose she does two steps to each of the initial rationals: (3/5, 2/3)→
(3/2, 2/1) → (1/2, 1/1). If Bob then moves to (1/1, 1/1), Alice can move to
(0/1, 0/1) = (0, 0), winning. We leave it to the reader to verify that in the three
remaining possible moves for Bob, Alice can also win in one move. Thus (3/5, 2/3)
is an N -position in RATWYT.

Is there a nice winning strategy for RATWYT? If so, what is it?
Continuing with our example, we expand 3/5 into a continued fraction:

3/5 = 0+
1

1+
1

1+
1

2

,

or 3/5 = [0, 1, 1, 2], to use the short notation for continued fractions. Similarly, 2/3 =
[0, 1, 2].

The sum of the partial quotients: 0+ 1+ 1+ 2 = 4 is called the integer induced by
the corresponding rational. We claim that playing RATWYT on (3/5, 2/3) is equivalent
to playing WYTHOFF on their induced integers, (3, 4)!

Supposing this established, then, because (3, 4) is not in Table 1, it is not a
P-position, rather an N -position, in WYTHOFF. Hence (3/5, 2/3) is an N -position in
RATWYT. So Alice can, in fact, win. Let us re-examine her initial move: (3/5, 2/3)→
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(3/2, 2/3). Now 3/2 = [1, 2] ≈ 3 (where ≈ denotes the inducing process),
so (3/2, 2/3) ≈ (3, 3). Alas, (3, 3) is another N -position in WYTHOFF, so Alice
missed her opportunity to move to a P-position! Had she made the two-step move
(3/5, 2/3)→ (1/2, 1/1) = ([0, 2], [1]) ≈ (1, 2), she could have won, since (1, 2) is
a P-position in WYTHOFF.

The CW-tree
To substantiate our claim, that playing RATWYT on (p1/q1, p2/q2) is equivalent to
playing WYTHOFF on their induced integers, we resort to a method of counting the
rationals, described in the short, elegant and influential paper of Calkin and Wilf [4].

The Calkin Wilf tree, CW-tree for short, is a binary tree whose nodes are all the
nonnegative rational numbers without repetition! The root is the fraction 0/1. The
rest of the tree is described inductively by the rule that each vertex i/j has at most
two children: a right child (i + j)/j ; and, if i > 0, a left child i/(i + j). The first five
levels (levels 0− 4) are drawn in Figure 1. Note that at each step in RATWYT we move
towards the root of the tree by one level, so we are guaranteed to eventually reach 1/1
on level 1, and then the root on level 0.

0/1

1/1

1/2

1/3

1/4 4/3

3/2

3/5 5/2

2/1

2/3

2/5 5/3

3/1

3/4 4/1

Figure 1. The first five levels of the CW-tree of reduced fractions.

Here are some key properties of the CW-tree.

1. The numerator and denominator at each vertex are relatively prime: proved by
induction on the level of the tree.

2. The induced integer of every rational on level k of the tree is k. Indeed, an ele-
ment r has the right child r + 1. Incrementing by 1 means incrementing the first
term of the continued fraction, hence incrementing the induced integer. The left
child is 1/(1+ 1/r). Since taking the reciprocal of a continued fraction amounts
to either prefixing or removing a leading 0, neither of which changes the induced
integer [8], this also increments the induced integer by one. (See Figure 2.)

3. Every rational number p/q in reduced form occurs precisely once in the CW-
tree, namely on level k, where k is the integer induced by p/q . There is a unique
path from p/q to the root whose length is precisely k—the same as for every
element on level k of the tree, in particular of the rational k/1 = k. Hence playing
on the rational p/q is equivalent to playing on its induced integer k, as we set
out to show.
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Figure 2. The first five levels of the CW-tree of continued fractions

More games
In [13], Wythoff also discovered that the sequences An , Bn can be described explic-
itly: An = bnτc, Bn = bnτ 2

c, where bxc is the floor function; and τ = (1 +
√

5)/2
is the golden ratio. This observation leads to a winning strategy for Wythoff that is
polynomial time in the succinct input size log(xy) of any given game position (x, y).

The preceding section explained how playing RATWYT on the rationals is equiv-
alent to playing on their induced integers. The same holds for any take-away game.
Playing on the integers means restricting travel along the right edge of the CW-tree.
Playing on the integer k is equivalent to playing on any of its 2k−1 rational siblings on
level k of the tree (k ≥ 1). Here are a few sample take-away games, played on reduced
rationals. Keep in mind that the number of steps performed must always preserve non-
negativity, and that the first player unable to move loses.

Game I. Let t be a fixed positive integer. A position is a pair (p1/q1, p2/q2) of ratio-
nals. There are two types of moves: (i) do any positive number of steps on precisely
one of the rationals, or (ii) do k > 0 steps on one of the rationals and ` > 0 on the
other, such that |k − `| < t .

This game, if played on the integers induced by p1/q1, p2/q2, is a generalization
of WYTHOFF (the case t = 1 is WYTHOFF). The winning strategies given in [5] apply
directly to every rational number with the same induced integers. P-positions of gen-
eralized WYTHOFF partition the integers, so Game I partitions the rationals. Are there
any meaningful partitions of the rationals that transcend tree level?

Game II. Let t be fixed positive integer. A position is a single rational, p/q. A move
consists of performing up to t steps. The P-positions are all the rationals on nonnega-
tive integer multiples of level (t + 1).

Game III. A position consists of m rationals (p1/q1, . . . , pm/qm). A move consists
of selecting any one of the rationals and performing a positive number of steps. This
game amounts to playing Nim on the integers induced by those rationals.

Though playing on the integer k is equivalent to playing on any of its 2k−1 rational
siblings on level k of the tree (k ≥ 1), there are games on the rationals with no obvious
integer parallels. For example, one may restrict every move to a single tree direction:
either move up right, or move up left, both for impartial (Wythoff-like) and partizan
(chess-like) games.
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Our game steps amount to single steps in the “slow Euclidean Algorithm”. The
game EUCLID corresponds to playing along the Euclidean Algorithm at a pace chosen
by the player. There is a large bibliography on EUCLID including [3], [11], [6]. For
related games, see [2] and [10].

Like the CW-tree, the older Stern-Brocot tree [12], [1] also contains all the reduced
rationals. The former has the advantage that the transition from any level to its neigh-
bor is simple; the latter that it is a search tree. Both trees are intimately related to the
famous Stern diatomic sequence available at http://oeis.org/A002487. A con-
struction of the rationals using recurrence is given in [9].

Final remark In a different context, an anonymous referee recently asked whether
there are any “bridges” between combinatorial game theory (CGT) and classical game
theory. In the latter, of course, the notion of “rationality” plays a prominent role (in the
form of the rational players). Now we see that rationality also plays a role in CGT.

Summary. WYTHOFF is played on a pair of nonnegative integers, (M , N ). A move either
subtracts a positive integer from precisely one of M or N such that the result remains nonneg-
ative, or subtracts the same positive integer from both M and N such that the results remain
nonnegative. The first player unable to move loses. RATWYT uses rational numbers instead,
transformed using a generalization of the rules of WYTHOFF. Using the Calkin-Wilf tree, we
show how to play RATWYT, and any other rational take-away game.
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