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Abstract
The game of Domineering is a combinatorial game that has been solved for sev-
eral boards, including the standard 8 × 8 board. We create new partizan – and
some impartial – combinatorial games by using trominoes instead of and along with
dominoes. We analyze these Tromping games for some small boards providing a
dictionary of values. Further, we prove properties that permit expressing some
connected boards as sums of smaller subboards. We also show who can win in
Tromping for some boards of the form m× n, for m = 2, 3, 4, 5 and infinitely many
n.

1. Introduction

1.1. Outline

The game of Domineering was invented by Göran Andersson around 1973, accord-
ing to [3], [4], and [7]. The two players in Domineering alternately tile a board using
a regular domino (a 2 × 1 tile). The players are usually called Vertical (or Left)
and Horizontal (or Right). They place their tiles, without overlapping, vertically
and horizontally, respectively. The player making the last move wins. The game
is partizan, since the set of moves is different for each player. Conway [4]; and
Berlekamp, Conway, and Guy [2] have computed the value of Domineering for sev-
eral small boards, not necessarily rectangular. D.M. Breuker, J.W.H.M Uiterwijk
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and H.J. van den Herik [3] have determined who wins the game of Domineering for
additional boards. In particular, they showed that the first player can win on the
classical 8× 8 board, which was the original game presented by Andersson.

In this paper we investigate the game of Tromping, which is played as Domi-
neering, but with larger tiles instead of, or along with, dominoes, denoted by D
for Dominoes. The additional polyominoes are trominoes, also called triominoes.
There are 2 trominoes: a “straight” tromino, i.e., a 3 × 1 tile, dubbed I-tromino
because its shape is that of the letter I; and an L-shaped tromino, i.e., a 2× 2 tile
with one square removed, dubbed L-tromino.

Any nonempty subset of a rectangular board is called a board or subboard in this
paper. The boundaries of its squares are vertical and horizontal only. In Tromping,
Vertical and Horizontal place dominoes and I-trominoes vertically and horizontally
respectively; the L-tromino can be placed by either player in either one of its four
orientations (an “impartial” tromino).

We assume that the reader is familiar with the basic theory of combinatorial
games, which can be found in [2], [4] and [1]. A concise 18-page summary with the
basic results in combinatorial game theory can be found in [5]. We recall that for
a partizan game G, Vertical (Left) can win if G > 0, Horizontal (Right) can win if
G < 0, the second player can win if G = 0, and the first player can win if G || 0 (G
is fuzzy (incomparable) with 0). In particular, Horizontal wins as second player if
G ≤ 0, and as first player if G < 0.

In Section 2 we create new partizan combinatorial games, variations of Domineer-
ing, by admitting the use of larger tiles. For each game we provide dictionaries of
values – where squares that cannot be used during the play (not part of the board)
are painted black. We also prove some properties that allow one to express the
value of a “connected” board B as the sum of the values of subboards B1 and B2.
Normally only disjoint subboards form a sum. We point out that all our games are
acyclic and short ; that is, there are no repetitions and only finitely many positions.

In Section 3 we discuss some ideas from number theory that can be used to
determine the winner of our variations for particular families of boards. These
ideas seem to be implicit in Lachmann, Moore, and Rapaport [10].

In Section 4 we provide several results on our variations. For example, we apply
the results from number theory discussed in Section 3 to determine the winner for
particular boards of the form m × n for m = 2, 3, 4, 5 and infinitely many n. This
section contains our main result, Theorem 14, stating that when tiling with either
a domino, or an I-tromino or an L-tromino, Horizontal can win on a 3 × n board
for every n > 1, except that for n ∈ {2, 3, 7}, the first player wins. We also include
other results about a new iMpartial game, M-Tromping.

Finally, for convenience, whenever no confusion arises, we do not distinguish
between the board on which the players are tiling and the actual game.



INTEGERS 11A (2011): Proceedings of Integers Conference 2009 3

1.2. Computation of the Values

Values and outcomes of the games were computed by constructing plug-ins for
Siegel’s Combinatorial Game Suite (CGS) [11]. Such plug-ins were needed in order
for CGS to understand the rules of the variations of Domineering. No changes were
done to the code of CGS. In the computation of the values of the games, CGS
considers all possible positions that can be reached in a game without considering
efficiency. This approach differs from that of [3] where the authors cut off some
positions using an α− β search technique to determine the winner.

For the computer experiments, we used a Dell PowerEdge 1750 server with dual
3 GHz Xeon processors and 4 GB of memory running Linux 2.4.21 and a Sun
Enterprise 420R server with quad UltraSPARC processors and 4GB of memory
running Solaris 8.

For those values too long to write down, we only present the winner, according
to whether G is positive, negative, zero, or fuzzy with 0. For example, the value
corresponding to the game of I-Tromping (see below) played on the 6× 6 board is

±({2|1||1/2}, {{6|5||9/2|||2|1||1/2}, {6|5||9/2|||4|0}|{4|0|||−1/2||−1|−2},
{7/2||3|2|||−1/2||−1|−2}}),

which is fuzzy with 0, so the first player wins.
Throughout the paper, we use the notations * = {0|0}, and n* = n + * = {n|n}

for all integers n ≥ 1.

2. New Combinatorial Games

2.1. I-Tromping

In our first game, we substitute the domino by an I-tromino. Its rules are exactly the
same as for Domineering: the two players, Vertical and Horizontal, tile alternately
vertically and horizontally, respectively. Overlapping is not permitted. The player
making the last move wins. It might appear that I-Tromping is simply a scaled
version of Domineering, but this is not the case for boards that are not rectangular.
For square boards there is some resemblance, though: In Domineering, the 2 × 2
and 3 × 3 boards both have value ±1; for I-Tromping the 3 × 3 and 5 × 5 boards
both have value ±2.

Figure 1 gives the values of I-Tromping for boards up to six squares, including the
35 boards with 6 squares, excluding their negatives obtained by a right angle turn.
Moreover, Figure 2 displays 59 boards with seven squares and their values. Both
figures, as well as the rest of figures displaying game values, contain the maximum
number of boards that we could fit into four rows.

We enumerate the rows of a board from top down and its columns from left to
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Figure 1: I-Tromping values for boards up to 6 squares.

Figure 2: I-Tromping values for some boards with 7 squares.

right, as is common when labeling the rows and columns of a matrix. Since a board
need not be rectangular, a row or column can be formed by only one square.

Table 1 depicts the value of I-Tromping for some rectangular boards. We have
omitted “messy” values – those that take considerable space to express. Instead,
we have used F to indicate that the first player wins; V, that Vertical wins; and H,
that Horizontal wins. This notation is also used in the tables (below) containing
the values of D-Tromping and L-Tromping (explained below) for small rectangular
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1 2 3 4 5 6

1 0 0 −1 −1 −1 −2

2 0 0 −2 −2 −2 −4

3 1 2 ±2 {3|− 3/2} {4|− 1,−1*} {4|0|||−1/2||−1|−2}
4 1 2 {3/2|− 3} ±5/2 {3|− 2,−2*} {3|−3/2|||−7/4||− 3|−4}
5 1 2 {1, 1*|− 4} {2, 2*|− 3} ±2 {−3||−3,−3*|− 8}
6 2 4 {2|1||1/2|||0|−4} {4|3||7/4|||3/2|−3} {8|3, 3*||3} F

Table 1: Values of I-Tromping for small rectangular boards.

boards.

Definition 1. A board F is said to be concatenated to a board G if a domino can
be placed horizontally so that its left square tiles a square of F and its right square
tiles a square of G. Notation: FG. If the connecting domino is placed in row i of
F and row j of G, we also use the notation FG(i,j).

Definition 2. Let FG(i,j) be a concatenation of the board F to G. If each column
of FG(i,j) intersects only one of the two boards, then F is (i, j)-aligned to G. If F

is (i, j)-aligned to G for all possible (i, j), then we simply say that F is aligned to
G. Otherwise they are not aligned .

DA B C

Figure 3: Aligned and non-aligned boards.

Figure 3 depicts an example where A is (1, 1)-aligned to B but not (4, 1)-aligned,
as AB(4,1) will contain in its third column squares from both boards. Also, C is not
(1, 1)-aligned to D, but it is (3, 1)-aligned to D. On the other hand, D is aligned
to C.

Definition 3. A rectangular board is called 2-wide if it has a row with exactly two
consecutive squares and no row or column with three consecutive squares.

Clearly any 2-wide board is a 0-game in I-Tromping, since no player is able to
move.

These definitions permit us to express some connected boards as sums of their
subboards.
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Proposition 4. Let F be aligned to G, and G aligned to H, where G is 2-wide.

Then in I-Tromping,

(a) FG + GH ≤ FGH,

(b) If FG = F then FGH = F + GH,

(c) If GH = H then FGH = H + FG.

Proof. (a) It suffices to show that Horizontal can win as second player in FG +
GH −FGH (see Figure 4(a)). If Vertical begins by playing exclusively on F or H,
then Horizontal can respond by playing exclusively on −F or −H respectively, and
conversely. Since F is aligned to G, Vertical has no moves using squares from both

of these boards, and the same holds for G and H. The only way Vertical can use
squares from two boards is on −H and −G or −F and −G. Horizontal can counter
these moves by using squares from H and G or F and G, respectively. These are
the only options of Vertical since G is 2-wide, so no player can move exclusively on
G or move using squares from all three boards. Hence Horizontal can win.

Figure 4: Illustrating the proof of Proposition 4.

(b) We first prove that FGH ≤ F +GH by showing that FGH−F−GH ≤ 0 (see
Figure 4(b)). If Vertical, as first player, plays exclusively on F or H, then Horizontal
can respond by playing exclusively on −F or −H, respectively, and conversely.
Further, if Vertical plays using squares from −H and −G, then Horizontal can
move using squares from H and G, respectively. Since these are the only options
for Vertical, Horizontal can win.

To complete the proof, we use the result just proved and part (a):

FGH ≤ F + GH = FG + GH ≤ FGH,

and the result follows.
(c) The proof is the same as for (b). ✷



INTEGERS 11A (2011): Proceedings of Integers Conference 2009 7

Corollary 5. Let F be aligned to ��, and �� aligned to H. Then

(a) F�� + ��H ≤ F��H,

(b) If F�� = F then F��H = F + ��H,

(c) If ��H = H then F��H = H + F��.

Proof. These are special cases of Proposition 4 (a) – (c) with G = �� . ✷

Remarks. (1) The condition that the boards must be aligned is necessary: Fig-
ure 5(a) depicts a case where G is not aligned to H, with G 2-wide. Proposition 4
(a) does not hold, for otherwise ∗+ {0|− 1} + 1 = {1*|*} ≤ 0, which is false since
{1*|*} is positive.

(2) The condition that G must be 2-wide is also necessary. Figure 5(b) exhibits
a case where G = 0 is not 2-wide and the proposition does not hold, since it is easy
to verify that

{1|− 3} + {1|1/2} = {2|3/2||− 2|− 5/2} �≤ {2|3/2||− 2|− 3}.

Figure 5: Boards alignment and 2-wideness are necessary.

(3) If G �= 0, then Proposition 4 does not hold. Consider F = G = H = the 3×1
tile. Then FGH = ±2 (Table 1), and FG = GH = 2. Clearly, 2 + 2 �≤ ±2, so (a)
does not hold.

(4) Proposition 4 holds also for playing with a “straight” n-polyomino (an n× 1
tile), if we require G to be (n−1)-wide. The proof of this claim is entirely analogous
to the above. For increasing n, there is a growing set of (n− 1)-wide boards G, for
each of which Proposition 4 holds. For Domineering, however, Proposition 4 holds
if and only if G is the 1× 1 tile (see also Proposition 6 below).

The last remark shows that for increasing size of the (smallest) tiling polyomino,
the power of Proposition 4 increases, as it permits to express as sums a growing
variety of boards that are not disjoint. This can already be observed for I-Tromping.
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In Figure 6 we have applied Proposition 4(b) to two different cases: The first one
with G being the 2×2 board, F the 3×3 board, and H the 3×1 tile. In the second
case, we take G to be a 2 × 2 board with one square removed. Note that G need
not be rectangular. From Figure 6 we see that

{2|1||− 2|− 3} = ±2 + {0|− 1}
±(2)* = ±2 + ∗

Figure 6: Two sample applications of Proposition 4 (b).

In general we cannot divide a “connected” board into pieces so that the value of
the original board equals the sum of the values of the smaller boards, but here we
can.

2.2. D-Tromping

Here Vertical and Horizontal alternate in tiling with either a domino or an I-tromino.
The player making the last move wins. A dictionary of values for boards of up to six
squares is depicted in Figure 7. Table 2 presents some of the values of rectangular
boards.

Proposition 6. Let F be aligned to �, and � aligned to H. Then for D-Tromping

we have,

(a) F� + �H ≤ F�H,

(b) If F� = F then F�H = F + �H,

(c) If �H = H then F�H = H + F� .

Proof. Same as Proposition 4 with G replaced by �. ✷

This proposition holds also for Domineering; see [4] Ch. 10.
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Figure 7: D-Tromping values for boards up to 6 squares

1 2 3 4 5

1 0 −1 −1 −2 −2

2 1 ±1 {2|−1} {2|0||−1*} {0, {3|0}|−1, {0|−2}}
3 1 {1|−2} ±2 {2|−1||−2↑} {−1, {3|−1}|− 7/4, {−1|−4}}
4 2 {1*||0|−2} {2↓ ||1|−2} ±1* F

5 2 {1, {2|0}|0, {0|−3}} {7/4, {4|1}|1, {1|−3}} F F

Table 2: Values of D-Tromping for small rectangular boards

2.3. L-Tromping

In this game we tile with an L-tromino in addition to the I-tromino and domino.
The L-tromino adds a total of 4 new moves to the set of moves of each player, since
it can be rotated and placed in 4 different positions on a rectangular board. A
dictionary of values of this game for small boards is exhibited in Figures 8 and 9,
and Table 3 depicts the values of L-Tromping for some rectangular boards.

1 2 3 4 5
1 0 −1 −1 −2 −2
2 1 ±1 {2|−1} {1*, {2|0}|−1*} {0, {3|0}|0, {0|−2}}
3 1 {1|−2} ±2 H H
4 2 {1*|{0|−2},−1*} V F F
5 2 {0, {2|0}|0, {0|−3}} V F F

Table 3: Values of L-Tromping for small rectangular boards.
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Figure 8: L-Tromping values for boards up to 6 squares.

Figure 9: L-Tromping values for some boards with 7 squares

As can be seen in the dictionaries of Figures 8 and 9, the value *2 is attained
several times on small boards of L-Tromping. The first time is on a board of only 6
squares. For domineering, on the other hand, it is not so easy to construct a board
with value *2. Such a board was recently constructed by G.C. Drummond-Cole [6].
It appears that the values of L-Tromping are hotter than those of our preceding
games. If this is indeed the case in general, it may be due to the L-tromino, which
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can be used by both players. Thus the game resembles more an impartial game in
which every nonzero value is hot.

L-Tromping also satisfies Proposition 6 of D-Tromping.
Here is another property of L-Tromping:

Lemma 7. Let B be a board and let B
�
be a subboard obtained from B by removing

either a single k × 1 subboard S of B, where k ∈ {2, 3} or an L-tromino. Then in

L-Tromping, B < 0 implies B
� �> 0.

Proof. Suppose that Vertical begins tiling on B with a 2 × 1 or 3 × 1 tile or with
an L-tromino, so that B

� results. If B
�
> 0, then Vertical can win as player I on B,

so B || 0 or B > 0, a contradiction. Hence B
� �> 0. ✷

Remark 8. An analogous statement holds for Domineering, I-tromping, D-Tromping,
by removing a 2× 1, 3× 1, k × 1 (k ∈ {2, 3}) subboard, respectively.

3. Connection with the Frobenius Problem

Definition 9. Let n ∈ Z>0, and A ⊂ Z>0 a finite set. We say that A is a
nonnegative basis for Z>n if every integer greater than n can be written as a linear
nonnegative integer combination of elements of A.

Example. A = {4, 5, 6}. One can easily see that A is a nonnegative basis for
Z>7. Indeed, any nonnegative integer combination of elements of A has the form
4k1 + 5k2 + 6k3 for k1, k2, k3 ∈ Z≥0, not all of them zero: Considering the positive
integers modulo 4 we get

• For n of the form 4k, k > 0, we use k2 = k3 = 0.

• For n of the form 4k + 1, k > 0, we use k1 = k − 1, k2 = 1, k3 = 0.

• For n of the form 4k + 2, k > 0, we use k1 = k − 1, k2 = 0, k3 = 1.

• For n of the form 4k + 3, k > 1, we use k1 = k − 2, k2 = 1, k3 = 1.

It is clear that there can be more than one nonnegative basis for Z>n, n ∈ Z>0.
For example, consider B1 = {12, . . . , 23} and B2 = {4, 9, 11, 14}. The set B1 is a
nonnegative basis for Z>11 by Proposition 10 below. Furthermore, we can see that
B2 is also a nonnegative basis for Z>11 (we can follow the preceding example, noting
that B2 is a complete system of remainders modulo 4). In fact, since 11 ∈ B2, this
set is actually a nonnegative basis for Z≥11.

The following is a result on nonnegative bases.
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Proposition 10. If k ∈ Z>0, then the set A = {k, k + 1, . . . , 2k − 1} forms a

nonnegative basis for Z>k−1.

Proof. For any n ∈ Z≥k, n can be written uniquely in the form n = qk + r, with
q ∈ Z≥0 and k ≤ r < 2k, so r ∈ A. ✷

For example, the set {3, 4, 5} forms a nonnegative basis for Z>2.
While playing a game, a board B will normally be divided into smaller boards.

For example, in I-Tromping, Vertical can divide a 3× n board into two as soon as
he performs his first move. On the other hand, Horizontal also has the power of
dividing a board, by avoiding certain moves. For example, if the game takes place
on a 3× 8 board, Horizontal can divide such a board into two 3× 4 subboards by
not tiling squares from the fourth and fifth column in the same move.

The above observation shows that, when playing I-Tromping or D-Tromping, if
Horizontal can divide an m× n board into subboards in which he wins, the whole
board will be won by Horizontal.

More concretely, fix m ∈ Z>0 and let A = {n1, n2, . . . , nk} ⊂ Z>0 so that
Horizontal wins I-Tromping or D-Tromping on the m × ni board, i = 1, . . . , k.
Then Horizontal wins on the m × n board, for n =

�
k

i=1 aini and ai ∈ Z≥0 for
i = 1, . . . , k.

As an interesting connection with number theory, the largest integer N for which
there is no solution to the Diophantine equation N =

�
k

i=1 xini in nonnegative
integers xi is known as the Frobenius number for A. See [9], C7. Finding the
Frobenius number for a given set of positive integers is known as the Frobenius

problem (sometimes referred to as Frobenius coin problem or coin problem).
So in particular, if we can find a nonnegative basis B for Z≥k with each element

ni ∈ B representing a subboard m× ni (for fixed m) that can be won by Horizon-
tal, then Horizontal will win all m × n boards, where n ≥ k. This is the use of
nonnegative bases in our study.

The above application relies on the following theorem, which is a generalization
of a result implicit in [10].

Theorem 11. Let F = {F1, . . . , Fk} be a set of boards such that Fi is aligned to Fj

for all i, j ∈ {1, . . . , k}, and Fi < 0 for all i. If G is constructed by concatenating

any finite number of copies of boards from F , not necessarily distinct copies, then,

for I-Tromping and D-Tromping, G < 0.

Proof. The idea is to notice that Horizontal has the power to divide G into smaller
boards by refraining to tile more than one subboard. The following is a winning
strategy for Horizontal: Divide G into subboards and play exclusively on a given
copy of a game, without ever tiling across the border of 2 adjacent subboards. Ver-
tical is unable to play on more than one copy by alignment. In this way, Horizontal
establishes vertical boundaries, which cannot be crossed by Vertical. Since Fi < 0,
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for i = 1, . . . , k, Horizontal can force a win on each subboard. In this fashion, G

becomes the sum of the copies of elements of F , and so Horizontal can win G. ✷

Note that this method cannot be applied directly to L-Tromping, as each player
is allowed to use an L-tromino, and so Horizontal no longer has the advantage of re-
stricting the play to a given copy. Does Theorem 11 still hold anyway? Theorem 14
below shows it does for a special case.

4. Who Wins on Horizontal Strips?

4.1. Results for Particular Boards

We will focus on games of the form m × n, where m = 2, 3, 4, 5. The tables were
computed using the plug-in for the CGS software.

As mentioned earlier, we denote in the tables a win for Horizontal by H, a win
for Vertical by V, and a win for the first player by F.

We apply the following method: For fixed m, we try to find several values ni for
which the games played on the m × ni board are negative. Then by Theorem 11,
concatenating any number of those boards will produce a negative game. If the nis
also form a nonnegative basis for Z>k for some k ∈ Z>0, then we can determine the
winner for a game played on an m× n board, n > k.

Note that Horizontal wins I-Tromping on 2× n boards for all n ≥ 3, as Vertical
cannot move at all on any such board. For n ∈ {1, 2}, the first player loses. Of
course all results for boards of the form m× n have a similar version for boards of
the form n × m, with the respective changes. More specifically, the board of the
form n×m is the negative of the m× n board. If a board is a win for Horizontal,
its negative is a win for vertical, and vice-versa. If a board is a win for the first
(second) player, its negative is also a win for the first (second) player, respectively.

4.2. I-Tromping for 3 × n Boards

Many values found so far are fuzzy, as seen in Table 4. More information is needed
to determine the winner for an arbitrary n. However, since Horizontal wins in the
3 × 6 game, Theorem 11 implies that Horizontal wins for all boards of the form
3× 6k for k ∈ Z≥1.

Remark 12. If we concatenate (in an aligned manner) a board A that is won by
Horizontal and a board B that is won by the first player we obtain a board that is
won by either Horizontal or the first player. This observation is made in [10], Table
(2-3). Indeed if Horizontal plays first, he can start in B and counter Vertical’s moves
in A. For instance, since 19 = 6 + 13, we can conclude the winner of I-Tromping
on the 3× 19 board is either Horizontal or the first player, for Horizontal wins the
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3 × 6 board and the first player wins the 3 × 13 board. Similarly, from Table 4
we conclude that either the first player or Vertical wins I-Tromping on the 3 ×m

board, where

m ∈ {3 + 6j, 4 + 6j, 5 + 6j,7 + 6k, 9 + 6k, 10 + 6k, 11 + 6k, 13 + 6l, 14 + 6l,
15 + 6l, 16 + 6l, 17 + 6l | j, k, l ∈ Z≥3, k, l ∈ Z≥2}.

Remark 13. Notice that we cannot tell who wins in the concatenation of a board
that is won by Vertical and one that is won by the first player since Horizontal can
cross the vertical boundaries of these two boards.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

V V F F F H F V F F F H F F F F F H

Table 4: I-Tromping values for 3× n boards

4.3. I-Tromping for 4 × n Boards

We find that the boards for n ∈ {6, . . . , 11} have negative values. Further, {6, . . . , 11}
forms a nonnegative basis for Z>5 by Proposition 10. Hence, Horizontal wins I-
Tromping on 4× n boards for all n ≥ 6, by Theorem 11. Table 5 shows the winner
for n < 6.

n 1 2 3 4 5
V V F F F

Table 5: I-Tromping values for 4× n boards

4.4. I-Tromping for 5 × n Boards

By Table 6, H can win for all n ∈ {6, . . . , 11}, so Proposition 10 implies that
Horizontal can win all games with n ≥ 6. The table also shows who wins for n < 6.

n 1 2 3 4 5 6 7 8 9 10 11
V V F F F H H H H H H

Table 6: I-Tromping values for 5× n boards

4.5. D-Tromping for 2 × n Boards

By computation, 2 × n boards have negative values for n ∈ {4, 9, 11, 14}. This set
forms a nonnegative basis for Z≥11. Table 7 shows the values for boards of width
less than 11. Therefore, we know who wins D-Tromping on boards of the form 2×n

for all n ≥ 1.



INTEGERS 11A (2011): Proceedings of Integers Conference 2009 15

n 1 2 3 4 5 6 7 8 9 10
V F F H F F F H H F

Table 7: D-Tromping values for 2× n boards

4.6. D-Tromping for 3 × n Boards

The game has negative values for n ∈ {4, 5, 6}. Hence by the example in Section 3
Horizontal also wins the game for n > 7. Table 8 gives the values for n ≤ 7. So the
winner of D-Tromping on boards of the form 3× n is known for all n ≥ 1.

n 1 2 3 4 5 6 7
V F F H H H F

Table 8: D-Tromping values for 3× n boards

4.7. D-Tromping for 4 × n Boards

Table 9 summarizes the results we have obtained so far. Since Horizontal wins the
4 × 6 board, Theorem 11 implies that Horizontal also wins on all boards of the
form 4 × 6k, k ∈ Z>0. Furthermore, Remark 12 in Section 4.2 implies that either
Horizontal or the first player is the winner of D-Tromping for boards of the form
4×m, where m ∈ {4 + 6k, 5 + 6k, 7 + 6k | k ∈ Z≥1}.

n 1 2 3 4 5 6 7
V V V F F H F

Table 9: D-Tromping values for 4× n boards

4.8. L-Tromping for 2 × n Boards

Table 10 shows who can win for 1 ≤ n ≤ 14. Since the first player wins for
1 < n ≤ 14, we are wondering whether the the first player wins L-Tromping on the
2× n board for all n > 1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
V F F F F F F F F F F F F F

Table 10: L-Tromping values for 2× n boards
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4.9. L-Tromping for 3 × n Boards

Table 11 summarizes the winner of L-Tromping for 3 × n boards, n ≤ 12. This
table, along with Theorem 14 below, gives us the winner of L-Tromping for 3 × n

boards, for every n ∈ Z>0.

n 1 2 3 4 5 6 7 8 9 10 11 12
V F F H H H F H H H H H

Table 11: L-Tromping values for 3× n boards

Although we do not know whether Theorem 11 holds for L-Tromping, the theo-
rem holds for 3× n boards. The key here is the geometry of the board. Horizontal
has the upper hand by tiling squares in the second row, by which he reserves some
squares in the first and third row for future moves.

Theorem 14. Horizontal can win L-Tromping both as first and as second player

on every 3× n board for all n > 1, except that for n ∈ {2, 3, 7}, the first player can

win.

We use the following notation: For a 3 × n board B, we call n the width of B,
and write w(B) = n. The following definition is used in the proof of Theorem 14.

Definition 15. The vertical part (horizontal part) of an L-tromino L is the vertical
(horizontal) domino that is contained in L.

Proof of Theorem 14. We proceed by induction on n. Since Table 11 contains the
information for n ≤ 12, we assume that n ≥ 13. Specifically, for an arbitrary but
fixed integer n ≥ 13, we assume that every 3×m board is a win for Horizontal for
every 1 < m < n, except that for m ∈ {2, 3, 7} the first player wins. We will show
that Horizontal wins also on an 3× n board. There are two cases:

(1) Horizontal starts. We think of B as being divided into two pieces: a sub-
board A of size 3× 4 on the left and an abutting subboard B

� = B \A of size 3×m

to its right, where m = n− 4 ≥ 9.
It is straightforward to verify that A(0, 3, 0) ≤ 0 and A(1, 3, 0) ≤ 0, where the

numbers indicate the squares removed at the extreme right or left end of A, here
the rightmost end of A. Thus A(1, 3, 0) is A without the top rightmost and three
middle rightmost squares. Horizontal’s overall strategy is to begin tiling A, where
he can win, and to counter Vertical’s moves in whatever part Vertical chooses to
move. Horizontal can win in B

� by induction.
Horizontal starts by moving on A with an I-tromino, covering the squares in

the second row adjacent to B
� (the rightmost three squares of the middle row),

resulting in A(0, 3, 0). If Vertical does cross the boundary with an L-tromino, then
Horizontal responds in B

� with Horizontal’s winning strategy there. If Vertical
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moves in A, then Horizontal can use his strategy on A(0, 3, 0) or A(1, 3, 0) to win
what is left of A. So after his first move, Horizontal has transformed the board into
two “basically disjoint” negative pieces, in the sense that any move that crosses the
boundary between both pieces has its vertical part in B

�, transforming A(0, 3, 0)
into A(1, 3, 0).

Since B
�

< 0 by induction and A(0, 3, 0) ≤ 0, A(1, 3, 0) ≤ 0, Horizontal wins
B by always responding in the part in which Vertical tiled at least two adjacent
squares.

(2) Vertical starts. Vertical’s first move can be one of three kinds.
(a) An I-tromino I. Notice that placing I in either the first or last column makes

B < 0 by induction, since now the play is on the 3 × (n − 1) board. So we can
assume that Vertical divides B into two nonempty disjoint subboards B1 and B2

of size 3 × k1 and 3 × k2 respectively, where k1 + k2 + 1 = n. If k1 = k2 = 6 (so
n = 13), then B1 < 0 and B2 < 0 by Table 11. We can thus assume that either
k1 ≥ 7 or k2 ≥ 7. So we assume, without loss of generality, that k2 ≥ 7. Moreover,
if k1 ≤ 3 then 9 ≤ k2 < n, and so B2 < 0 by induction. To show that B < 0, it
suffices to show that Horizontal can win as first player on B \ I, that is, B \ I < 0.

(i) If k1 = 1, then B1 = 1 (the game value 1); and B2 < 0 by induction.
Horizontal’s response is to tile the 3 × 3 board adjacent to I in its middle row.
Let B3 denote the 3 × 5 subboard that contains B1 and the two I-trominoes, and
let B4 = B \ B3. In B4 Horizontal can win by induction, since n ≥ 13, implies
w(B4) ≥ 8. Even if Vertical crosses the boundary covering the rightmost upper or
lower square of B3 with an L-tromino whose vertical part is in B4, Horizontal can
clearly win in B3. In fact, B3 < 0, since Horizontal has two moves for the single
move available to Vertical. So the following is a winning strategy for Horizontal
as second player on B3 + B4: Counter Vertical’s moves on B3 and B4 respectively,
wherever Vertical chooses to play.

(ii) If k1 ∈ {2, 3}, then B1 || 0 and B2 < 0 by induction. So Horizontal wins
B1 + B2 as first player by moving first on B1 and countering Vertical’s moves on
B2.

(iii) If k1 ≥ 4, k1 �= 7 and k2 �= 7, then B1 < 0 and B2 < 0 by induction. In
particular, Horizontal wins B1 + B2 as first player, that is, B \ I < 0.

(iv) For k1 = k2 = 7, CGS shows that B1 + B2 < 0, so B \ I < 0. Letting
G = B1 = B2, Table 11 shows that G || 0. Yet CGS implies further that G < 1
(Vertical has less then one move advantage over Horizontal in G−1) and G+3 || 0,
so even if Vertical would start in G + G, Horizontal would have an advantage of at
least two moves over Vertical.

(v) If k1 ≥ 4 and k1 �= 7 and k2 = 7, then B1 < 0 by induction, and B2 || 0. So
Horizontal wins B1 + B2 by playing first on B2. Thus B \ I < 0.

(vi) If k1 = 7 and k2 �= 7, then B1 || 0 and B2 < 0 by induction. So Horizontal
wins B1 + B2 by playing first on B1. Hence B \ I < 0.
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These are all the possible values of k1, so we established that B < 0 for this case.
(b) A domino D. Placing D on the first or last column, we have B < 0 by

induction, since then the game can be thought of as that on the 3× (n− 1) board.
Indeed, let S be the remaining square in the column where D is placed. Horizontal
can pretend that Vertical placed an I-tromino instead of a domino, and use Hori-
zontal’s winning strategy as in (a). If Vertical covers S, he must use an L-tromino
whose vertical part is on the 3× (n− 1) board, so its effect is equivalent to tiling a
vertical domino.

Otherwise D is placed so as to form nonempty subboards B1 and B2 as in
(a). Notice that if the moves are completely contained in B1 and B2, (a) shows
that B \ D < 0, so Horizontal does not need to cover S in order to be victorious.
Furthermore, If Vertical covers S, he must use an L-tromino whose vertical part is
contained in either B1 or B2, and thus its effect would be equivalent to tiling with
a vertical domino in either B1 or B2, respectively. Thus B < 0 in this case.

(c) An L-tromino L. There are two possibilities for the horizontal part of L: it
either lies on the first or third row of B, or it lies on the second row of B.

Suppose first that the horizontal part of L lies on the first or third row. We divide
B into two rectangular subboards B1 and B2 so that B2 contains L completely and
B1, abutting B2, shares its vertical boundary with the outside vertical part of L.
The board B and its division are depicted in Figure 10. Notice that the division of
B depends on the orientation of L, as can be seen in Figure 10(a) and Figure 10(b).

2

(b)

(a)

S

S

BB2 1

BB1

Figure 10: B2 and B1 share the vertical boundary of the vertical part of L. By definition, B1

and B2 are rectangular boards and B2 contains L. The respective positions of B1 and B2 change

depending on the orientation; for instance, (a) shows B1 to the left of B2 while (b) shows B2 to

the left of B1. However, by symmetry, we can assume that B1 is to the left of B2.
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By symmetry, we can assume, without loss of generality, that L covers squares
at positions (1, k), (1, k + 1), (2, k), rather than at (2, k), (3, k), (3, k + 1), for some
1 ≤ k < n. For instance, the L-tromino depicted in Figure 10(a) can be considered
to cover squares (1, k), (1, k + 1), (2, k) by flipping B so that the first row becomes
the third row. We can further assume that B1 is located to the left of B2.

Let C denote the 3 × 2 rectangle containing L. We may assume that B1 is
nonempty since otherwise, after Vertical placed L, Horizontal can place another
L-tromino L

H , tiling C completely, whence the game is played on the 3 × (n − 2)
board, which Horizontal can win by induction. So w(B1) ≥ 1. The same argument
shows that we may assume w(B2) ≥ 3.

Assume first that w(B1) = 1. Then a winning move for Horizontal is to tile
an I-tromino on squares (2, 3), (2, 4), (2, 5) of B. Let B

�
1 be the 3 × 5 rectangle

consisting of the first five columns of B that contain the two trominoes tiled so far,
B
� = B \ B

�
1. An easy analysis shows that B

�
1 < 0, even if Vertical chipped away

one of the squares (1,5) or (3,5) with an L-tromino on B
�. Moreover, notice that

w(B�) ≥ 13− 5 = 8, and so Horizontal wins B
� by induction. Thus B \ L < 0.

Now suppose that w(B1) ≥ 2. Analogously to the notation introduced in part (1)
above, denote by B2(0, 1, 2) the subboard B2 without the leftmost middle and two
bottom leftmost squares, that is, B2 after it has been tiled with L. By induction and
Table 11 (since w(B2) ≥ 3), B1 and B2 are either fuzzy or negative. We consider
all four possibilities.

(i) Suppose B1 < 0 and B2 < 0. Let S be the square in column k that L did
not cover (see Figure 10). Horizontal first counters Vertical’s L-tromino with his
winning strategy as first player on B2(0, 1, 2), and then counters Vertical’s moves in
whatever part Vertical chooses to play. However, Vertical might cross the borders
by tiling S with an L-tromino whose vertical part is on B1. Then Horizontal can
counter this move with his winning strategy on B1. But Vertical has also tiled
the square S on B2(0, 1, 2). It thus suffices to show that Horizontal’s strategy on
B2(0, 1, 2) does not require to tile S.

We show that this is the case by considering all possible values for w(B2). Since
B2 < 0, we may assume w(B2) ≥ 4. Also w(B2) �= 7 since B2 < 0. If w(B2) ∈ {5, 6},
it is easy to verify that S is not required in Horizontal’s winning strategy as first
player on B2(0, 1, 2). Indeed, tiling (2, k + 1), (2, k + 2), (2, k + 3) (recall that L

covers the squares (1, k), (1, k+1), (2, k), for some 1 < k < n) is a winning move for
Horizontal on B2(0, 1, 2). If w(B2) ∈ {8, 9}, Horizontal can win by tiling a domino
D on squares (2, k+1), (2, k+2). Let C1 be the board formed by the three leftmost
columns of B2(0, 1, 2). Horizontal’s D is a winning move on C1 and on C1(1, 0, 0),
and C1(0, 0, 1), the boards obtained from C1 by removing the last square in the first
and third row respectively. Furthermore, the board E = B2(0, 1, 2) \ C1 has width
w(E) = w(B2) − 3 ∈ {5, 6}, so E < 0. Thus after playing D, the game becomes
B1 + C1 + E, which is negative since each of its components is, so Horizontal
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wins. The same holds if C1 is replaced by C1(1, 0, 0) or C1(0, 0, 1). If w(B2) ≥ 10,
then Horizontal’s winning move is to tile L

H , the L-tromino that along with L

covers columns k and k + 1. This move transforms the game into a disjoint sum
B1 + (B2 \ {L,L

H}), which is negative by induction, since w(B2 \ {L,L
H}) ≥ 8.

(ii) Suppose B1 || 0 and B2 || 0. Then w(B1) = w(B2) = 7, since we are
assuming that n > 12 and B1 || 0 implies w(B1) ∈ {2, 3, 7} by induction. In this
case, Horizontal can play an L-tromino L

H so that L and L
H cover two columns

of B completely. After placing L
H , the game is played on two disjoint boards of

width 7 and 5, respectively. CGS shows that the sum of these games is negative,
and thus B \ L < 0.

(iii) Suppose B1 < 0 and B2 || 0. Hence w(B2) ∈ {2, 3, 7} by induction. If
w(B2) ∈ {2, 7}, then Horizontal’s tiling L

H (where L
H is as before) is a winning

move. Indeed, after tiling L
H , the game has value B1 + B

�, where B
� is a 3 × �

board with � ∈ {0, 5}. Therefore B1 + B
�
< 0, so Horizontal wins. If w(B2) = 3,

then Horizontal’s winning move is to tile (2, n−1), (2, n) (the two rightmost middle
squares of B2) with a domino. After this move Vertical can only move on B1 <

0 (possibly also tiling S, which still leaves a move for Horizontal on B2). Thus
B \ L < 0.

(iv) Suppose B1 || 0 and B2 < 0. Then B1 ∈ {2, 3, 7} by induction. Horizontal’s
strategy is to tile the I-tromino I covering (2, k+1), (2, k+2), (2, k+3), as depicted
in Figure 11. Let B3 be the 3×4 subboard containing I and L, and let B4 = B2\B3.
Notice that any move of Vertical on B\{L, I} is a move on either B4 or B1, possibly
also tiling one of the squares S,A,C (Figure 11). Clearly Horizontal wins B3 by at
least one move. Also, w(B4) ≥ 13− 11 = 2. For the case w(B1) = w(B4) = 3, CGS
shows that B1 + B4 = 0. But then clearly B = B1 + B3 + B4 < 0, so Horizontal
wins. For any other combination of B1 ∈ {2, 3, 7}, B4 ∈ {2, 3, 7}, CGS shows that
B1+B4 < 0, so Horizontal again wins. Hence we may assume that w(B4) �∈ {2, 3, 7}.
Thus by induction, B4 < 0.

It is Vertical’s turn to play on B\{L, I}, and he can win as first player on B1. We
show that Horizontal’s I enables to save enough moves to counter this advantage.
If w(B1) = 7, Vertical is not able to save any extra moves on B1 since B1 − 1 < 0
(see (a)(iv) above). Thus Horizontal can counter Vertical’s move on B1 with moves
on B1 and the move saved on B3. If w(B1) ∈ {2, 3}, then one easily sees that
the winning moves for Vertical as first player do not involve tiling S. Furthermore,
if Vertical does not use a winning move as first move on B1, Horizontal is able
to guarantee his victory on B1 quite easily, and thus on the whole game, since
B4 < 0. So we can assume that Vertical’s first move on B1 is a winning move, and
in particular does not involve S. Furthermore, notice that Vertical can cover at
most one of the squares A or C, and so by tiling I, Horizontal has actually saved
two moves if S is not tiled. If w(B1) = 2, these two moves are enough to counter
Vertical’s advantage on B1.
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B2B1
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XY
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Figure 11: Depictions of the subboards used in case (iv). Notice that w(B1) ∈
{2, 3, 7} since B1 || 0.

It remains to see what happens if w(B1) = 3. The only winning move for Vertical
as first player on B1 that tiles R is tiling R,T,W with an L-tromino. If Vertical
utilizes this move, then Horizontal counters by tiling V,X, Y or by an I-tromino in
the top row of B1. Then Vertical has one extra move on B1’s leftmost column. This
extra move can be countered with the two extra moves that Horizontal saved on B1.
On the other hand, if Vertical’s winning move does not tile R, then Horizontal can
counter Vertical’s winning move on B1 with the L-tromino S,R, V . Then Vertical
has only one extra move left on B1, and such extra move can be countered with
the move that Horizontal saved on B1 (in this case only one horizontal move is
guaranteed to be saved on B1, since Horizontal tiled S). Thus Horizontal wins.

Thus Horizontal wins if the horizontal part of L lies in the first or third row.
Now assume that the horizontal part of L lies in the second row of B. As in (c)

above, we let C denote the 3×2 rectangle containing L. Then C partitions the board
B into two subboards B1, B2 of width k1, k2 respectively, where k1 + k2 + 2 = n.
If B1 is empty, then Horizontal wins by induction, since w(B2) ≥ 11, and any move
of Vertical on C is equivalent to a domino on B2, here and below. The same holds
if B2 is empty. We may thus assume that both are nonempty, and proceed very
much like in (a)(i)-(vi) above. Specifically,

(i) k1 = 1. We use the strategy of (a)(i), where the I-tromino I of width 1 is
replaced by C of width 2. Horizontal’s I-tromino is now placed in positions (2,4),
(2,5), (2,6), so we have only w(B4) ≥ 7 (rather than 8 in (a)(i)). If w(B4) ≥ 8, then
the argument of (a)(i) applies. For w(B4) = 7, CGS shows that B partially tiled
with C and Horizontal’s I-tromino, is negative. Thus B \ L < 0.

The cases (a)(ii)-(vi) carry over to the present case, except that Vertical’s initial
I is replaced by C. Thus B < 0, since Horizontal wins B as both first and second
player. ✷
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4.10. Results on M-Tromping

Motivated by L-Tromping, we create a game in which each of the two players is only
allowed to use L-trominoes. Since the sets of moves for each player are identical,
M-Tromping is an iMpartial game. The Sprague-Grundy theory tells us that its
values are nimbers ∗a, a ∈ Z≥0. So for each game of M-Tromping G, we have,

G = {∗a1, ∗a2, · · · , ∗an| ∗a1, ∗a2, · · · , ∗an} = ∗a, a := mex {a1, a2, · · · , an},

where for any set S � Z≥0, mexS = min Z≥0 \ S = smallest nonnegative integer
not in S.

We present the value of M-Tromping for small rectangular boards in Table 12,
where we denote each nimber ∗b by b to simplify notation. Note that such a table
is symmetric, since every nimber is its own negative.

m\n 1 2 3 4 5 6
1 0 0 0 0 0 0
2 0 1 2 0 3 1
3 0 2 0 1 2 2
4 0 0 1 0 1 0
5 0 3 2 1 0 1
6 0 1 2 0 1 1

Table 12: Sprague-Grundy values for M-Tromping played on the m× n board

Let m ∈ Z>0 and n ∈ Z≥0. Denote by G(m,n) the game of M-Tromping played
on an m × n rectangular board. Furthermore, let G1(m,n) be the game of M-
Tromping played on an m × n board with two opposite corners removed (say, the
upper-left and lower-right corner) and let G2(m,n) be the game of M-Tromping
played on an m×n board with the first and last square of the first row removed. It
is convenient to define G(m, 0) = G1(m, 0) = G1(m, 1) = G2(m, 0) = G2(m, 1) = 0.
We prove,

Theorem 16. The games G(2, n), G1(2, n + 1), and G2(2, n + 1) have the same

value for all n ∈ Z≥0.

Before proving Theorem 16, we need some notation to describe moves on G(2, n),
G1(2, n + 1), and G2(2, n + 1). Label the squares of both rows of G(2, n) and
G1(2, n + 1) from left to right with numbers from [n] = {1, 2, . . . , n} in increasing
order. Similarly, label the squares in the first row of G2(2, n+1) with {2, 3, 4, . . . , n}
in increasing order from left to right and the squares in the second row with [n + 1]
increasingly from left to right (see Figures 12 and 13.) In any of these boards let
(a, a + 1; a + 1) represent the move where the L-Triomino is covering the squares
labeled a, a+1 from the first row and a+1 from the second one, with a, a+1 ∈ [n].
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Define (a, a+1; a), (a; a, a+1), (a+1; a, a+1) similarly, where the semicolon is used
to separate the labels from different rows.

Proof of Theorem 16. It is enough to show that G(2, n) + G1(2, n + 1) = 0 and
G(2, n) + G2(2, n + 1) = 0, for n > 0.

We proceed by induction on n. For n = 0, 1, all three games have value 0 and for
n = 2, all have value ∗. For n > 2, suppose that for m < n, G(2,m)+G1(2,m+1) =
0 and G(2,m) + G2(2,m + 1) = 0.

The rules below, depicted in Figure 12, guarantee a win for the second player in
G(2, n) + G1(2, n + 1): If the first player’s first move is

(1) (k; k, k + 1) in G(2, n) then move (k; k, k + 1) in G1(2, n + 1), for 1 ≤ k < n.

(2) (k, k + 1; k) in G(2, n) then move (k; k, k + 1) in G1(2, n + 1), for 1 ≤ k < n.

(3) (k − 1, k; k) in G(2, n) then move (k − 1, k; k) in G1(2, n + 1), for 1 < k ≤ n.

(4) (k; k − 1, k) in G(2, n) then move (k − 1, k; k) in G1(2, n + 1), for 1 < k ≤ n.

(5) (k; k, k + 1) in G1(2, n + 1) then move (k; k, k + 1) in G(2, n), for 1 ≤ k < n.

(6) (k − 1, k; k) in G1(2, n + 1) then move (k − 1, k; k) in G(2, n), for 1 < k ≤ n.

Now each player has moved exactly once, and the two boards have been divided
into at most four subboards: two rectangular boards T1 and T2 with a corner square
removed, one G(2,m), and one G1(2,m + 1) for some 0 ≤ m < n (these last two
could be empty). By the induction hypothesis, G(2,m)+G1(2,m+1) = 0. Since T1

and T2 have the same shape (after rotating and flipping if necessary), T1 + T2 = 0.
So after the first move, the second player can turn the game into a zero game.

The rules for the remaining possible first moves of the first player in G(2, n) +
G1(2, n + 1) now follow:

(7) (k−1, k; k+1) in G1(2, n+1) then move (k, k+1; k) in G(2, n), for 1 < k < n.

(8) (k−1; k, k+1) in G1(2, n+1) then move (k; k−1, k) in G(2, n), for 1 < k < n.

Now each player has moved exactly once, and the two boards have been divided
into at most four subboards: two rectangular boards T1 and T2 with a corner square
removed, one G(2,m), and one G2(2,m + 1) for some 0 ≤ m < n (these last two
could be empty). By the induction hypothesis, G(2,m) + G2(2,m + 1) = 0. As
above, T1 and T2 have the same shape, hence T1 + T2 = 0. So after the first move,
the second player can turn the game into a zero game.

Thus G(2, n) + G1(2, n + 1) = 0.
The rules below, depicted in Figure 13, guarantee a win for the second player in

G(2, n) + G2(2, n + 1): If the first player’s first move is
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Figure 12: Second player’s response in the game G(2, 8)+G1(2, 9) according to the
rules (1)-(8) with k = 4. The first player has 8 possible first moves, one for each
pair of the 4 orientations of the L-tromino and the 2 boards G,G1. First player’s
moves are depicted in the first column of boards; second player’s response in the
second column.

(1’) (k; k, k+1) in G(2, n) then move (k+1; k, k+1) in G2(2, n+1), for 1 ≤ k < n.

(2’) (k, k+1; k) in G(2, n) then move (k+1; k, k+1) in G2(2, n+1), for 1 ≤ k < n.

(3’) (k − 1, k; k) in G(2, n) then move (k; k, k + 1) in G2(2, n + 1), for 1 < k ≤ n.

(4’) (k; k − 1, k) in G(2, n) then move (k; k, k + 1) in G2(2, n + 1), for 1 < k ≤ n.

(5’) (k+1; k, k+1) in G2(2, n+1) then move (k; k, k+1) in G(2, n), for 1 ≤ k < n.

(6’) (k; k, k + 1) in G2(2, n + 1) then move (k; k − 1, k) in G(2, n), for 1 < k ≤ n.

Now, each player has moved exactly once, and the two boards have been divided
into at most 4 subboards: two rectangular boards T1 and T2 with a square removed,
one G(2,m), and one G1(2,m + 1) for some 0 ≤ m < n (these last two could be
empty). By the inductive hypothesis, G(2,m) + G1(2,m + 1) = 0 and since T1 and
T2 have the same shape (after rotating and flipping if necessary), then T1 +T2 = 0.
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So after the first move, the second player can guarantee that the game becomes a
zero game.

The rules for the remaining possible first moves of the first player in G(2, n) +
G2(2, n + 1) now follow:

(7’) (k, k + 1; k) in G2(2, n + 1) then move (k − 1, k; k) in G(2, n), for 1 < k ≤ n.

(8’) (k−1, k; k) in G2(2, n+1) then move (k−1, k; k−1) in G(2, n), for 2 < k ≤ n.

Each player has now moved exactly once, and the two boards have been divided
into at most four subboards: two rectangular boards T1 and T2 with a square
removed, one G(2,m), and one G2(2,m + 1) for some 0 ≤ m < n (these last two
could be empty). By the inductive hypothesis, G(2,m) + G2(2,m + 1) = 0 and
since T1 and T2 have the same shape (after rotating and flipping if necessary), then
T1 +T2 = 0. So after the first move, the second player can guarantee that the game
becomes a zero game.

Thus G(2, n) + G2(2, n + 1) = 0. This completes the proof. ✷

As noted above, M-Tromping is an impartial game and therefore the winner of
this game is either the first or second player. For example, G(2, 3) is a first-player
win, and G(2, 4) is a second-player win. Curiously, however, by just removing a
corner from a 2× n board, M-Tromping becomes a first-player game for all n > 1.
We prove this in the following theorem.

Theorem 17. For n > 1, let B(n) be the value of M-Tromping played on a 2× n

board with one corner removed. Then B(n) || 0 for all n.

Proof. Without loss of generality, we assume that the square removed is the lower-
right corner. After labeling both columns of the board with numbers from [n] in
increasing order, we note that the statement is trivial for n = 2. For n > 2, we
recognize two cases,

n is odd. The first player moves (n+1
2 ; n+1

2 − 1, n+1
2 ), this will bisect the board

into two pieces with value B(n+1
2 − 1). After this move, the value of the

game is B(n+1
2 − 1) + B(n+1

2 − 1), which is a zero-game, as B(n+1
2 − 1) is

its one negative. Therefore the first player (who is the second to play on
B(n+1

2 − 1) + B(n+1
2 − 1)) can win the game.

n is even. The first player moves (n

2 ,
n

2 + 1; n

2 ). This will split the original board
into two pieces: G(2, n

2 −1) and G1(2, n

2 ), respectively. By Theorem 16, these
two pieces have the same value when playing M-Tromping, and so its sum is
0. Hence the first player (who is the second to play on G(2, n

2 −1)+G1(2, n

2 ))
can win the game. ✷
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Figure 13: Second player’s response in the game G(2, 8)+G2(2, 9) according to the
rules (1’)-(8’) with k = 4. The first player has 8 possible first moves, one for each
pair of the 4 orientations of the L-tromino and the 2 boards G,G2. First player’s
moves are depicted in the first column of boards; second player’s response in the
second column.

4.11. Some Families of Values

When playing I-Tromping or D-Tromping on square boards, notice that the sets of
moves for Horizontal and Vertical are negatives of one another. So these games are
either a first or second-player win. Notice that the winner of both I-Tromping and
D-Tromping on the 5 × 5 board is the first player. In contrast, it is shown in [4]
page 116 that Domineering on a 5× 5 board is a second player win. We also note
that Tables 1 and 2 are antisymmetric, since the value of a game on a board B is
the negative of the game on board B

�, where B
� is the rotation of B by 90◦ about

its center (clockwise or counterclockwise).
Finally, in addition to the dictionaries of values already provided, we present in

Figure 14 some patterns of boards that have a clearly discernible pattern of values.
One can prove the validity of some of these patterns by using the properties that
were pointed out in Propositions 4 and 6. For example, to prove by induction the
validity of the first sequence of I-Tromping , we use Proposition 4 (a) and (b), and
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the well-known fact that ∗+ ∗+ · · ·+ ∗ is 0 if we add an even number of stars, and
∗ if we add an odd number of them.

The last two lines of Figure 14 constitute a sequence of values for L-Tromping.
The values obtained are,

∗, ↓, {↓ |− 1},−1,−1*,−1↓� �� �, {−1↓ |− 2},−2,−2*,−2↓� �� �, {−2↓ |− 3},−3,−3*,−3↓� �� � · · ·

The emerging pattern is a four-term block of the form {(1−a)↓ |−a},−a,−a*,−a↓
for a ∈ Z≥1 increasing in steps of 1.

We remark, in passing, that the “double cross” in Fig 14 (second board from
left in first row of L-Tromping) has value {{0| − 1}, ∗|∗, 0, {0| − 1}} = {∗|0, {0| −
1}} (by domination) = {∗|0} (by reversibility) = ↓ . Note that, perhaps a bit
counterintuitively, the best opening move for Horizontal is to tile with a domino
the middle 2 squares.

5. Concluding Remarks

• We proved some properties of I-Tromping (Proposition 4) which generalize
those of Domineering (Proposition 6). This may lead one to think that there
could be some isomorphism between I-Tromping and Domineering. We be-
lieve, however, that this is not the case. In particular, we propose that there
is no position in I-Tromping with value

±(0, {{2|0}, 2+2 |{2|0},−2}),

which is the value of a 4× 4 board in Domineering.

• It is natural to generalize the results of this paper to larger polyominoes.
Results of the form of Proposition 4 grow stronger with increasing size of the
smallest participating polyomino.

• The games presented here were analyzed for normal play; that is, the player
making the last move wins. One can also analyze these games for misère play,
where the player making the last move loses, but then the usefulness of sums
is lost.

• For some of the boards, we need more experimental computations. But, since
we are dealing with a very particular kind of board (horizontal strips), perhaps
some heuristic techniques can be used.

• We do not know whether Theorem 11 can be applied in general for L-Tromping,
although for the particular cases we have analyzed here, it seems plausible.
One approach would be to generalize Theorem 14.
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Figure 14: Families of patterns.

• M-Tromping on 2×m boards has interesting properties: while removing two
corners basically does not change the game (see Theorem 16 for a precise
statement), removing a single corner makes the game fuzzy.
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