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Abstract

We present a class of two-player Wythoff game variations we dub Wyt(f) that
depends on a given function f(k). In this class a move consists of removing either
a positive number of tokens from precisely one of two given piles, or k tokens from
one pile and ℓ from the other, subject to the constraint 0 < k ≤ ℓ < f(k). We
analyze three classes of integer-valued functions f(k): constant, superadditive and
polynomial of degree > 1 with nonnegative integer coefficients. The nature of the
winning positions in the games is essentially unique for each class.

1. Introduction

We propose and analyze a family of 2-player combinatorial take-away games played
on two piles, dubbed Wyt(f). The two players move alternately by selecting one of
the following moves:

• Move of the first type: Take any positive number of tokens from a single pile,
possibly the entire pile.

• Move of the second type: Take k > 0 tokens from one pile and ℓ > 0 tokens
from the other. This move is restricted by the condition:

0 < k ≤ ℓ < f(k), (1)

where f(k) : Z≥0 → Z≥0 is a function that distinguishes the games from each
other.

1http://www.wisdom.weizmann.ac.il/∼fraenkel
22011 Kupcinet-Getz undergraduate summer student at Weizmann; 2012 graduate student at

Weizmann
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A position in the game can be represented by a pair (a, b) (a, b ∈ Z≥0) which
denotes the number of tokens in each pile. Without loss of generality we assume
throughout 0 ≤ a ≤ b. The games we consider here are played under the normal
play convention, that is, the player making the last move wins the game and the
opponent loses. In the misère play convention the player making the last move loses
and the opponent wins.

Note that these are impartial games - the set of possible moves for a player
depends only on the game position, not on the player. They are deterministic (no
chance moves) and acyclic (the number of tokens decreases at every move until it
becomes 0). Therefore we can partition the positions of the game into Next player
winning positions (denoted N -positions, or by the set N := N (f) ⊆ Z2

≥0) and
Previous player winning positions (denoted P -positions, or by the set P := P(f) ⊆
Z2
≥0).

A game G is tractable if:

• For every position, its state (P - or N -position) can be decided in polynomial
time.

• The next move from any N -position to a P -position can be computed in
polynomial time.

• The winner can consummate a win in at most an exponential number of moves.

To the “run of the mill algorithmicians” the last item dooms the game as intractable.
It may be quite a surprise to them that this is not the case: Whereas we dislike
computing in exponential time, the human race relishes to observe some of its
members being tormented for an exponential length of time! In fact, the easy game
Nim and similar take-away games do require that amount of time. For games there
are also notions of polynomiality and efficiency. See [12], especially section 4.

In the next sections of this paper, we define sequences An and Bn to analyze the
P -positions. We use the notation

A = ∪∞
i=0{Ai}, B = ∪∞

i=0{Bi}.

In addition, when analyzing the P -positions we frequently use the mex function:
Let S be a finite set of nonnegative integers. Then mex(S) is defined to be the least
nonnegative integer not in S. Note that the mex of the empty set is 0.

This paper presents characterizations of the P -positions and tractable winning
strategies for the following types of functions:

• f(k) = t, t > 0 an integer,

• f(k) is a strictly increasing superadditive function,

• f(k) =
∑n

i=0 aik
i is a polynomial of degree n > 1 with integer coefficients

ai ≥ 0 and a0 > 0.
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Note that a function f : Z≥0 → Z≥0 is called superadditive if it satisfies: f(k) ≥ k
and f(k + ℓ) ≥ f(k) + f(ℓ) for all k, ℓ ∈ Z≥0.

Wyt(f) is a general class of games that encapsulates a number of previously
analyzed games and new games. In its simplest case, where f(k) ∈ {0, 1}, the move
of the second type cannot be done and the game reduces to Nim on 2 piles (in
normal play). For the case f(k) = k + 1 the game reduces to the classical Wythoff
game [24] where in a move of the second type, the player has to take the same
positive number of tokens from both piles. An analysis of the constant difference
class f(k) = k + t, t ≥ 1 integer and later for the linear class f(k) = sk + t s, t ≥ 1
integers was done by Fraenkel [8, 11]. For other examples of variations of 2-piles
Wythoff, see [13, 3, 15, 10, 18, 20, 5].

In section 2 we deal with the case f(k) = t, and in section 3 with superadditivity.
In section 4 we handle polynomials, where we resort to real analysis for the proofs.
Further possible work is indicated in the final section 5.

2. Constant Function

Considering Wyt(f) for f(k) = t, t > 0 an integer, using the move of the second
type, a player can take k tokens from one pile and ℓ tokens from the other as
long as 0 < k ≤ ℓ < t. As implied by the penultimate paragraph of the previous
section, we may assume t ≥ 2. The class of games with the restriction k + ℓ < t
for moves of the second type, is called Cyclic Nimhoff and was settled by Fraenkel
and Lorberbom [14] for a general n-piles game; see also [5]. Duchêne and Gravier
[7] examined (among other geometrical extensions of Wythoff) a bounded Wythoff
game in which it is only possible to take k < t tokens from one pile or k < t tokens
from both piles.

Given fixed t ∈ Z≥2, we define g : Z≥0 → Z≥0 such that for all m ∈ Z≥0,

g(m) = tm− (t2 − 1)⌊m/(t+ 1)⌋

and
An = mex{Ai, Bi : 0 ≤ i < n}, Bn = g(An), n ≥ 0.

In this section we show that ∪∞
i=0{(Ai, Bi)} are the P -positions of Wyt(f) when

f(k) = t for any constant integer t ≥ 2. To prove this, we begin by showing the
relation between the An and Bn sequences using a specific numeration system. This
numeration system will also help us to derive a tractable strategy for winning the
game. The first few P -positions for the games where t = 3 and t = 10 are shown in
Table 1 and Table 2 respectively. After Theorem 12 (section 2.2) we point out in
Remark 2, that Table 1 exhibits certain periodicities, which help in exhibiting the
structure of the sequences A and B.

We begin with an auxiliary result.
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Table 1: t = 3
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
An 0 1 2 4 5 8 9 10 12 13 16 17 18 20 21 24 25
Bn 0 3 6 4 7 8 11 14 12 15 16 19 22 20 23 24 27

Table 2: t = 10
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
An 0 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16
Bn 0 10 20 30 40 50 60 70 80 90 11 21 31 41 51 61

Lemma 1. (i) Let t ≥ 2. For every m ∈ Z≥0, g(m) ≥ m, with equality if and only
if m ≡ 0 (mod (t+ 1)).
(ii) The function g is an injection.

Proof. (i) Write m = s(t+ 1) + r, 0 ≤ r < t+ 1, s, r ∈ Z≥0. Then

g(m)−m = (t− 1)(m− (t+ 1)⌊(s(t+ 1) + r)/(t+ 1)⌋).

Thus (g(m)−m)/(t− 1) = m− s(t+ 1) ≥ 0 with equality if and only r = 0.
(ii) An elementary algebra exercise.

Lemma 1 immediately implies:

Corollary 2. For every n ≥ 0, Bn = An if and only if An ≡ 0 (mod (t+ 1)).

2.1. A Numeration System

Lemma 3. Let t ∈ Z≥2. Every nonnegative integer m can be represented uniquely
in the form

m = m2(t
2 − 1) +m1t+m0, (2)

where the digits m0,m1,m2 are integers satisfying:

0 ≤ m0,m1 < t, m2 ≥ 0,

m0 = m1 = t− 1 is not permitted. (3)

Proof. Theorem 1 of [9] states: Let 1 = u0 < u1 < u2 < · · · be any finite or infinite
sequence of integers. Every nonnegative integer m has precisely one representation
in the system S = {u0, u1, u2, . . . } of the form m = Σn

i=0miui, where the mi are
nonnegative integers satisfying:

miui +mi−1ui−1 + · · ·+m0u0 < ui+1 for i ≥ 0.

By this theorem, every nonnegative integer m can be represented uniquely in the
form (2) where m0 < t and m0 +m1t < t2 − 1. It follows immediately that m1 < t
and that m0 = m1 = t− 1 is not permitted.
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Throughout this section, we use the convention that for every nonnegative num-
ber m, we let m0,m1,m2 be the appropriate digits of m in the above numeration
system.

Corollary 4. With hypotheses as in Lemma 3, g(m) = m if and only if m0 = m1.

Proof. m = m2(t
2 − 1) + m1(t + 1) + m0 − m1 ≡ 0 (mod (t + 1)) if and only if

m0 = m1, since 0 ≤ m0,m1 < t. The proof is complete by Lemma 1.

Using our numeration system we can present the g function in a more intuitive
way.

Lemma 5. Let t ∈ Z≥2, and m ∈ Z≥0 which is represented uniquely in the form
(2) with digits m0,m1,m2. If m1 ≤ m0, then

g(m) = m2(t
2 − 1) +m0t+m1.

Otherwise,
g(m) = (m2 + 1)(t2 − 1) +m0t+m1.

Proof. We have,

g(m) = g(m2(t
2 − 1) +m1t+m0)

= m2(t
2 − 1)t+m1t

2 +m0t− (t2 − 1)(⌊(m1t+m0)/(t+ 1)⌋+m2(t− 1))

= m2(t
2 − 1) +m1t

2 +m0t− (t2 − 1)⌊(m1t+m0)/(t+ 1)⌋.

If m1 ≤ m0, then ⌊(m1t + m0)/(t + 1)⌋ = ⌊(m1(t + 1) + (m0 − m1))/(t + 1)⌋ =
m1 + ⌊(m0 − m1)/(t + 1)⌋ = m1 since 0 ≤ m0,m1 < t. Therefore, the g function
for this case becomes:

g(m) = m2(t
2 − 1) +m1t

2 +m0t−m1(t
2 − 1)

= m2(t
2 − 1) +m0t+m1.

Otherwise, ⌊(m1t+m0)/(t+ 1)⌋ = m1 − 1 and the g function becomes:

g(m) = m2(t
2 − 1) +m1t

2 +m0t− (m1 − 1)(t2 − 1)

= (m2 + 1)(t2 − 1) +m0t+m1.

Remark 1. Notice that in the two displayed formulas of Lemma 5 the digits m0,
m1 of the unique representation (2) of m have been switched. Furthermore, m has
a unique representation of the form (2) if and only if m′ := m2(t

2 − 1) +m0t+m1

has a unique representation. Their value difference is m−m′ = (m1 −m0)(t− 1).
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We presented the relation between An and Bn using the special numeration
system. In the next couple of lemmas we show that an independent simple charac-
terization of the {Ai} and {Bi} sets follows from the use of this numeration system.
This characterization will enable us to prove that the An and Bn pairs constitute
the P -positions of the game.

Lemma 6. Let t ∈ Z≥2, and m ∈ Z≥0 which is represented uniquely in the form
(2) with digits m0,m1,m2. Then m ∈ A if and only if m1 ≤ m0.

Proof. Induction on m. Assume that the statement is true for all n in K =
{0, 1, . . . ,m − 1}. Suppose first that m1 ≤ m0. Using the induction hypothesis,
we show that then m /∈ {Bn = g(n) : n ∈ K ∩ A}. It then follows from the mex
definition that m ∈ A.

Let n ∈ K ∩A. Then n1 ≤ n0 by the induction hypothesis. If n1 = n0, then n =
g(n) < m by Corollary 4. So we may assume n1 < n0. Let r = r2(t

2−1)+r1t+r0 be
the unique representation of g(n). Lemma 5 and Remark 1 then imply that r1 = n0

and r0 = n1. Thus r0 < r1. Assuming m = r, the uniqueness of the representation
(Lemma 3) and Remark 1 then imply r1 = m1 and r0 = m0, contradictingm1 < m0.
Therefore, m ̸= g(n).

Secondly, suppose that m ∈ A. Let m′ := m2(t
2 − 1) +m0t+m1. Assume that

m1 > m0. Then m−m′ = (m1 −m0)(t− 1) > 0, so m′ ∈ K ∩ A by the induction
hypothesis. By Lemma 5, m = g(m′) ∈ B. In fact, if, say, m = An, then m′ = Ai

for some i < n, and m = g(m′) = Bi. But this contradicts the definition of the mex
function. Hence m1 ≤ m0.

Consequently we have:

Lemma 7. m = m2(t
2 − 1) +m1t+m0 ∈ B if and only if m0 ≤ m1.

Proof. If m1 > m0 then m /∈ A by Lemma 6 and therefore m ∈ B by the mex
property. If m1 = m0 then m ∈ A by Lemma 6 and m = g(m) ∈ B by Corollary 4.

Conversely, if m ∈ B, then by definition there exists a ∈ A such that m = g(a).
Let a0, a1, a2 be the digits of a represented in form (2). Then by Lemma 6, a1 ≤ a0;
and by Lemma 5, m0 = a1 and m1 = a0, so m0 ≤ m1.

Corollary 8. (i) If An = m2(t
2−1)+m1t+m0 then Bn = m2(t

2−1)+m0t+m1.
(ii) Bn−An = (m0−m1)(t−1) ≥ 0. In particular, Bn = An if and only if m0 = m1.

Proof. (i) By Lemma 6, m = An if and only if m1 ≤ m0; and if m1 ≤ m0, then
Lemma 5 implies that g(m) = Bn = m2(t

2 − 1) +m0t+m1.
(ii) This also follows from m1 ≤ m0.

Theorem 9. For f(k) = t a constant, the set of P -positions of Wyt(f) is given
by W := ∪∞

i=0{(Ai, Bi)}.

Proof. Since Wyt(f) is an acyclic game, it suffices to show two things:
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I. Every move from any position in W lands in a position outside W .

II. For every position outside W , there is a move to some position in W .

I. A move of the first type from (An, Bn) ∈ W leads to a position not in W ,
because there are no repeating terms in A, nor in B: (i) The mex property implies
that the sequence A is strictly increasing thus has no repeating terms. (ii) There are
also no repeating terms in B, since the function g is an injection (Corollary 1 (ii))
and there are no repeating terms in A.

Suppose that a move of the second type from (An, Bn) ∈ W produces a position
(Am, Bm) ∈ W . Then m < n. This move can be made either in the form

(i) An → Am, Bn → Bm; or in the form (ii) An → Bm, Bn → Am.

(i) An → Am, Bn → Bm. Then

Bn −Bm = t(An −Am)− (t2 − 1)

(⌊
An

t+ 1

⌋
−
⌊
Am

t+ 1

⌋)
.

If ⌊An/(t+1)⌋ = ⌊Am/(t+1)⌋ then Bn−Bm = t(An−Am) ≥ t, contradicting
the move rule (1). Otherwise, ⌊An/(t + 1)⌋ − ⌊Am/(t+ 1)⌋ ≥ 1. Since An −
Am = k < t, we get

Bn −Bm ≤ t(t− 1)− (t2 − 1) = 1− t < 0,

again contradicting (1).

(ii) An → Bm, Bn → Am. Let r := Am. Then r1 ≤ r0 by Lemma 6. We may
assume r0 > r1, because r0 = r1 implies Bm = Am (Corollary 8(ii)), whence
case (ii) reverts back to case (i). The move (ii) can only be made if An > Bm.
Then Bn−Am = g(An)−Am ≥ An−Am > Bm−Am = (r0−r1)(t−1) ≥ t−1,
contradicting move rule (1).

II. Let (x, y) with x ≤ y be any position not in W . The construction of An by the
mex rule implies that the set ∪∞

i=0{Ai, Bi} = Z≥0. Therefore, x = Bn or x = An

for some n ≥ 0. We consider several cases.

(i) x = Bn. Then move y → An using the first move rule.
(ii) x = An and y > Bn, then move y → Bn using the first move rule.
(iii) x = An ≤ y < Bn. Recall that we can represent x and y uniquely in our

numeration system: x = x2(t
2 − 1) + x1t+ x0 and y = y2(t

2 − 1) + y1t+ y0.
Let

x′ := x2(t
2 − 1) + x1t+ s, y′ := x2(t

2 − 1) + st+ x1,

where
s := y1 + ⌊(y0 − x1)/t)⌋.

We show the following:
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(a) (a1) If y0 ≥ x1 then s = y1, x0 > y1; if y0 < x1 then s = y1 − 1, x0 ≥ y1.
(a2) 0 ≤ x1 ≤ s < x0 < t.

(b) There exists m such that x′ = Am and y′ = Bm.

(c) The move x → x′ = Am, y → y′ = Bm is a legal move, that is, 0 < x−x′ < t,
0 ≤ y − y′ < t.

(a) Notice that s = y1 + ⌊(y0 − x1)/t)⌋ ∈ {y1 − 1, y1}, since 0 ≤ x1, y0, y1 < t.
By Corollary 8(i), An and Bn have the same coefficient (digit) multiplier of t2 − 1,
so a fortiori y2 = x2. Hence x = An ≤ y < Bn = g(An) implies:

x1t+ x0 ≤ y1t+ y0 < x0t+ x1. (4)

The right-hand side of (4) is equivalent to (x0 − y1)t > y0 − x1. If y0 ≥ x1, then
s = y1 and x0 > y1, so s < x0 < t. If y0 < x1, then s = y1 − 1, yet x0 ≥ y1, and we
have again s < x0 < t. The left-hand side of (4) is equivalent to y0−x0 ≥ (x1−y1)t.
By Lemma 6, x1 ≤ x0, since x = An. Hence s ≥ y1 + ⌊(y0 − x0)/t)⌋ ≥ x1 ≥ 0.

(b) By (a2), x1 ≤ s < t, so by Lemma 6, x′ = Am for suitable m. Again by (a2),
0 ≤ s < t, so y′ = Bm by Corollary 8(i).

(c) From (a), 0 < x − x′ = x0 − s < t. Now y − y′ = (y1 − s)t + y0 − x1, since
y2 = x2. By (a1), if y0 ≥ x1 then s = y1, so 0 ≤ y− y′ = y0−x1 < t; and if y0 < x1

then s = y1 − 1, so 0 < y − y′ = t− (x1 − y0) < t.

2.2. Strategy Tractability and Structure of the P -Positions

Theorem 10. Given game position (x, y) with 0 ≤ x ≤ y, there is a tractable
linear-time algorithm to decide whether or not (x, y) ∈ P.

Proof. We wish to compute whether or not (x, y) ∈ P in time linear in the input size
Θ(log xy). Expand x and y in our numeration system, which can be done linearly
by using the simple greedy algorithm from [9]:

x2 = ⌊x/(t2 − 1)⌋
x1 = ⌊(x− x2(t

2 − 1))/t⌋
x0 = x− x2(t

2 − 1)− x1t.

Then, check whether x0 ≥ x1. If negative, (x, y) ∈ N . If positive, check whether
y2 = x2 and y1 = x0 and y0 = x1. If positive, then (x, y) ∈ P (Corollary 8(i));
otherwise, (x, y) ∈ N .

Corollary 11. Let t ∈ Z≥2 and f(k) = t a constant function. Then there is a
tractable strategy for winning Wyt(f).

Proof. Using the instructions in the second part of the proof of Theorem 9, the
greedy algorithm in Theorem 10, and Lemmas 6 and 7, it is clear how to construct
a tractable strategy for winning Wyt(f) for any given N -position.
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We now turn to the structure of the sequences A and B.

A sequence {sn}n≥0 with limn→∞ sn = ∞ is called arithmetically periodic if there
exist integers 1 < q ≤ p (the periods), and distinct nonnegative integers r1, . . . , rq ∈
[0, p− 1], such that si ≡ ri (mod p) whenever n ≡ i (mod q) (i = 1, . . . , q).

This is a variation of the definitions of arithmetic (or additive) periodicity given
or implied in [1], [4], [17]. It accommodates sequences that are not necessarily
monotonically increasing.

Theorem 12. Let t ≥ 2. (i) Each of the sequences A and B is arithmetically
periodic with periods q = (t− 1)(t+ 2)/2 and p = t2 − 1.
(ii) Each of the sequences A and B contains (t−1)(t+2)/2 distinct residues mod p,
t− 1 of which are common to both sequences.
(iii) A ∪ B contains all the t2 − 1 residues mod p, t − 1 of which appear in both
sequences.
(iv) For all n ≥ 0, 0 ≤ Bn −An ≤ (t− 1)2.

Proof. (i) Lemmas 6 and 7 and Corollary 8 imply that the sequences A and B have
residues that are periodic mod p. Indeed, membership of x in A and B depends
only on the relative size of x0 and x1, not on the size of x2.

(ii) Using (i) we can assume x2 = 0. By the mex property, all the residues of A in
[0, p− 1] are increasing, so they are distinct. Their number is precisely the number
of x0, x1 satisfying 0 ≤ x1 ≤ x0 ≤ t − 1. Since x0 = x1 = t − 1 is forbidden, this
number is precisely (t− 1)(t+ 2)/2, t− 1 of which are common to both sequences,
namely those for which 0 ≤ x0 = x1 < t − 1. The proof for the residues of B is
similar.

(iii) Follows immediately from (ii).
(iv) Follows immediately from Corollary 8(ii).

Remark 2. Notice that the preceding propositions (i)-(iv) of Theorem 12 can be
seen in Table 1.

Almost all game positions (x, y), 0 ≤ x ≤ y are N -positions – see [22], [23].
Therefore (x, y) /∈ P with high probability. Theorem 12 can help to dispose of them
quickly by computing the residues of x and y mod p and searching for them in a
pre-constructed table of the p = t2 − 1 residue pairs of (An, Bn) mod p.

3. Superadditive Functions

In this section we examine Wyt(f), when f is a strictly increasing superadditive
function. We show that the P -positions of this game have a simple recursive formula.
As an example, the first few P -positions for the game for which f(x) = x2 are shown
in Table 3.
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Table 3: f(x) = x2

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
An 0 1 2 3 5 6 7 8 10 11 12 13 14 15
Bn 0 1 4 9 25 36 49 64 100 121 144 169 196 225

Remark 3. The function f in this example is a polynomial, and polynomials are
considered in the next section. However, a polynomial of degree t ≥ 1 of the form

f(x) =
t∑

i=0

aix
i, ai ∈ Z≥0 for 0 ≤ i ≤ t, at > 0, (5)

is clearly superadditive if and only if a0 = 0. In the next section we consider the
case a0 > 0.

Remark 4. Notice that if f : Z≥0 → Z≥0 is strictly increasing, then f(k) ≥ k.

Let
An = mex{Ai, Bi : 0 ≤ i < n}, Bn = f(An), n ≥ 0. (6)

Theorem 13. Let f : Z≥0 → Z≥0 be a strictly increasing superadditive function.
Then the set of P -positions of Wyt(f) is given by W := ∪∞

i=0{(Ai, Bi)}.

Proof. As in the proof of Theorem 9, it suffices to show:

I. Every move from any position in W lands in a position outside W .

II. For every position outside W , there is a move to some position in W.

I. The mex definition implies that An is a strictly increasing sequence. Thus, for
every i > j we have Ai > Aj . Hence Bi = f(Ai) > f(Aj) = Bj since f is a strictly
increasing function. Therefore, there are no repeating terms in An nor in Bn. It
follows that a move of the first type from (An, Bn) ∈ W leads to a position /∈ W .

Suppose that a move of the second type from (An, Bn) ∈ W produces a position
(Am, Bm) ∈ W . Then m < n. Let k := An −Am and ℓ := Bn −Bm. Since An is a
strictly increasing sequence we have k > 0. The superadditivity of f then implies,

ℓ = f(An)− f(Am) ≥ f(An −Am) = f(k).

By Remark 4 we have ℓ ≥ k. Thus 0 < k ≤ ℓ ≥ f(k), contradicting move rule (1).
The move (An, Bn) → (Bm, Am) where m < n is impossible too: Let k′ := An−Bm

and ℓ′ := Bn − Am. Since Bn = f(An) ≥ An, we have: 0 < k′ ≤ k ≤ ℓ ≤ ℓ′. As
was shown above, ℓ ≥ f(k), so ℓ′ ≥ ℓ ≥ f(k) ≥ f(k′) since f is a strictly increasing
function. Hence 0 ≤ k′ ≤ ℓ′ ≥ f(k′), again contradicting move rule (1).
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II. Let (x, y) with 0 ≤ x ≤ y be any position not in W . It follows from the mex
definition that ∪∞

i=0{Ai, Bi} = Z≥0. Therefore, x = Bn or x = An for some n ≥ 0.
Case (i) x = Bn. Then move to the position (An, Bn) by subtracting y−An tokens
from one pile, using a move of the first type.
Case (ii) x = An and y > Bn. Then subtract y −Bn tokens from one pile, using a
move of the first type.
Case (iii) x = An ≤ y < f(An) = Bn. Then move to (0, 0) using a move of the
second type.

The time complexity for deciding whether a given position is a P -position or
N -position depends on the time complexity of the function f . Assume f to be a
polynomial time computable function. The näıve algorithm for deciding whether a
position (x, y) is a winning position consists of calculating An and Bn using their
recursive definition (6) until it is known whether x ∈ An or not. This method takes
exponential time and space since the input position is given in succinct form. In the
previous section and in other Wythoff-like games (e.g. [11]) constructing a special
numeration system assisted in building a tractable strategy to win the game. We
show here that this is not necessary for this case.

Remark 5. For all superadditive functions f, f(0) = 0. This follows from f(0) =
f(0 + 0) ≥ f(0) + f(0).

Lemma 14. Let f : Z≥0 → Z≥0 be a strictly increasing superadditive function. For
every x ∈ Z≥0, if f(x) = x then x = Ax = Bx.

Proof. Induction on x. Since A0 = 0 by the mex property, B0 = f(0) = 0 (Re-
mark 5). Assume that the statement is true for all m < x, m ∈ Z≥0. If f(x) = x
then since f is strictly increasing, for every m < x, f(m) = m. The induction
hypothesis then implies {A0, . . . Ax−1, B0, . . . Bx−1} = {0, 1, . . . , x− 1}. Therefore,
x = Ax by the mex property. If f(x) = x then also Bx = f(x) = x.

Lemma 15. Let f : Z≥0 → Z≥0 be a strictly increasing superadditive function. If
f is not the identity function f(x) = x, then there exist N ∈ Z≥1 and a > 1 such
that for every integer n ≥ N , f(n)/n ≥ a and for every integer n < N , f(n) = n.

Proof. Since f is not the identity function, there exists a minimum integer N ∈ Z≥1

such that f(N) ̸= N . Thus for every integer n < N , f(n) = n. Notice that N ̸= 0
because f(0) = 0 (Remark 5). By Remark 4, we have f(N) ≥ N + 1.

Let a := 1 + 1/(2N − 1). Since N ≥ 1 it is clear that a > 1. We can write
every integer n ≥ N in the form n = kN + r, where 0 ≤ r < N and k ∈ Z≥1. The
superadditivity of f and f(N) ≥ N + 1 then imply that

f(n) = f(kN + r) ≥ f(kN) + f(r) ≥ kf(N) + f(r) ≥ k(N + 1) + r.

Since r < N and k ≥ 1 we have

f(n)

n
≥ k(N + 1) + r

kN + r
= 1 +

k

kN + r
≥ 1 +

k

kN + kr
≥ 1 +

1

N + r
≥ a.
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Theorem 16. Let f : Z≥0 → Z≥0 be a polynomial time computable strictly increas-
ing superadditive function. Let An, Bn be given by (6), and let (x, y) with 0 ≤ x ≤ y
be any game position. Then there is a polynomial-time algorithm to decide whether
or not x ∈ A.

Proof. We apply the following recursive

Procedure 1. Input: x. Output: 1 if x ∈ A; 0 otherwise.

Find z such that f(z) is as close as possible to x, beginning with z = x/2 and then
proceeding in the form of a binary search on the interval [0, x] (O(log x) operations).
There are three possible outcomes:

1. There is no z such that x = f(z). Then return 1 since x ∈ A by the mex
definition.

2. There exists z such that x = f(z) and z = x. Then return 1 since x ∈ A by
Lemma 14.

3. There exists z such that x = f(z) and z < x. Then x ∈ A if and only if z /∈ A.
So apply Procedure 1 with z as input and return 1 minus the returned value
from this new call of Procedure 1.

Suppose the recursive search algorithm stops with xt, for which f t(xt) = x, where f t

denotes f composed with itself t-times. We show that t = O(log x). Consequently,
the algorithm is polynomial because each recursive call is polynomial in log x.

By Lemma 15 there exist a > 1 and minimal N ∈ Z≥1, such that for every
integer n ≥ N , f(n)/n ≥ a. In particular, f(N)/N ≥ a. Since f(N) ≥ N it follows
that f(f(N))/f(N) ≥ a. Hence,

f2(N)

N
=

f2(N)

f(N)

f(N)

N
≥ a2;

and by induction we have:
f t(N)

N
≥ at.

Therefore f t(N) ≥ atN . We assume f(xn) ̸= xn. Otherwise, f(x) = x = f t(xt) =
xt and then t = 0. By Lemma 15, xt ≥ N . Since f is an increasing function, f(xt) ≥
f(N), and by simple induction, f t(xt) ≥ f t(N). Hence x = f t(xt) ≥ f t(N) ≥ atN .
Then loga(x) ≥ t loga(aN) ≥ t, since a > 1 and N ≥ 1. Consequently, t =
O(log x).

Corollary 17. Let f be a polynomial time computable strictly increasing superad-
ditive function. Then there is a tractable strategy for winning Wyt(f).

12



Proof. Using the algorithm in Theorem 16 and the instructions in the second part
of the proof of Theorem 13, it is clear how to construct a tractable strategy for
winning Wyt(f) for any given N -position. Note that by using the binary search
described in the beginning of Theorem 16, it is possible to calculate f−1(x), if it
exists, in polynomial time.

4. Polynomial

In this section we consider the game Wyt(f) for which f : R≥0 → R≥0 is a polyno-
mial of the form (5) with t ≥ 2 and a0 > 0.

Thus f is convex although not superadditive (Remark 3). The analysis of this
class of games is similar to that of the previous section, since the function which
defines the B sequence is superadditive, as we show presently.

We define here, as before, the sequences that compose the P -positions of this
class of games. For x ∈ R≥0, we define

g(x) =

{
max{f(x), f(1)x} if x ∈ [1,∞)

f(1)x if x ∈ [0, 1),

and

An = mex{Ai, Bi : 0 ≤ i < n}, Bn = g(An), n ≥ 0. (7)

The function g is defined on R≥0 in order to enable us to use basic calculus for
proving that g is a superadditive function. Note that g(Z≥0) ⊆ Z≥0.

As an example, the first few P -positions for the game for which f(x) = x2 + 9
are displayed in Table 4.

Table 4: f(x) = x2 + 9
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
An 0 1 2 3 4 5 6 7 8 9 11 12 13 14
Bn 0 10 20 30 40 50 60 70 80 90 130 153 178 205

Lemma 18. The function g(x) is a strictly increasing superadditive function.

Proof. If g(x) is a nonnegative continuous convex function which vanishes at the
origin, then g(x) is superadditive – see [2], Theorem 5. Since g(x) is a nonnegative
continuous function and g(0) = 0, it suffices to show that g(x) is a convex function
in [0,∞). By [16] Corollary 1.1.9, if the right derivative g′+(x) is nondecreasing in
[0,∞) then g(x) is a convex function in this interval. We show here that g′+(x)
is nondecreasing by showing: (i) g′+(x) is nondecreasing in [0, 1). (ii) g′+(x) is
nondecreasing in (1,∞). (iii) g′+(1) ≥ g′+(x) for x ∈ [0, 1).

(i) In [0, 1), g′+(x) = g′(x) = f(1). Hence, g′+(x) nondecreasing in [0, 1).
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(ii) In [1,∞), g(x) is a convex function, since a maximum of convex functions
is convex ([16], Theorem 1.1.3). Therefore by [16] Corollary 1.1.6, g′+(x) is nonde-
creasing in [1,∞).

(iii) For h > 0,

g(1 + h)− g(1)

h
≥ f(1)(1 + h)− f(1)

h
= f(1).

Hence g′+(1) ≥ f(1) = g′+(x) for x ∈ [0, 1).
Therefore, g′+(x) is nondecreasing in [0,∞) and thus g(x) is superadditive there.

Since g(x) is continuous and g′+(x) ≥ f(1) > 0 for all x ∈ [0,∞), g(x) is strictly
increasing there.

Let
S = {n ∈ Z≥0 : f(An) ≤ f(1)An}.

Remark 6. Since t ≥ 2, f(An) > f(1)An for all sufficiently large n, so S is finite,
containing at most the first few nonnegative integers. The next lemma throws some
light on the set S.

Lemma 19. The set S is nonempty, and for every n ∈ S we have An < f(1) and
An = n.

Note 1. For the example f(x) = x2 + 9 we have An < f(1) and f(An) ≤ f(1)An

for 0 ≤ n ≤ 9, but f(An) > f(1)An for all n > 9. Thus An = n for 0 ≤ n ≤ 9, but
An > n for all n > 9 (see Table 4).

Proof. By the mex property, A0 = 0. Hence B0 = g(0) = f(1)0 = 0. Again by mex,
A1 = 1. Thus f(A1) = f(1)A1, so S ̸= ∅. Also, Bn = g(An) = max{f(An), f(1)An}
for all n ≥ 1. In particular, B1 = f(1) ≥ 2.

Next we show An < f(1) for all n ∈ S. Suppose An ≥ f(1) for some n ∈ S. We
note that n ≥ 1, since 0 /∈ S: f(0) > f(1)0. Let k := An − f(1) ≥ 0. Since t ≥ 2
and a0 > 0 we have,

f(An) = f(f(1)+k) ≥ at(f(1)+k)t+a0 > (f(1)+k)2 ≥ f(1)(f(1)+k) = f(1)An.

Thus, f(An) > f(1)An = Bn = g(An), contradicting the definition of g. Therefore
An < f(1) = B1 for all n ∈ S.

We already verified that An = n for n ∈ {0, 1}. Suppose that Am = m for all
m < n for which An < f(1) = B1. Then An = mex {A0, . . . , An−1, B1, . . . , Bn−1} =
mex {0, . . . , n− 1} = n, since Bn−1 > · · · > B1 = f(1) > An.

Theorem 20. Let f : Z≥0 → Z≥0 be a polynomial of the form (5) with t ≥ 2 and
a0 > 0. Then the set of P -positions of Wyt(f) is given by W := ∪∞

i=0{(Ai, Bi)},
where Ai, Bi are defined in (7).
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Proof. As in the proof of Theorems 9 and 13, it suffices to show:

I. Every move from any position in W lands in a position outside W .

II. For every position outside W , there is a move to some position in W.

I. The proof is the same as in part I of Theorem 13, using g instead of f and
using g(x) ≥ f(x).

II. The proof for this statement is as in part II of Theorem 13 up to and including
Case (iii) x = An ≤ y < f(An) = Bn. There are two additional cases:
Case (iv) x = An, f(An) ≤ y < Bn and there exists m for which y = Bm < Bn.
Then move to the position (Am, Bm) by subtracting An −Am tokens from the first
pile, using a move of the first type.
Case (v) x = An, f(An) ≤ y < Bn and y = Bm for no m. Since Bn = g(An) >
f(An) it follows from the definition of g and Remark 6 that:

Bm = g(Am) = f(1)Am for all 0 ≤ m ≤ n. (8)

Further, by Lemma 19,

Am = m < f(1) for all 0 ≤ m ≤ n. (9)

Write
y = f(1)s+ r, 0 ≤ r < f(1), s, r ∈ Z≥0, and u := An −As.

We claim that the move (An, y) → (As, Bs) is a valid move of the second type. For
proving this claim, it suffices to show:

(a) 0 ≤ s < n.

(b) y > Bs.

(c) Either 0 < u ≤ r < f(u) or 0 < r ≤ u < f(r). Thus, condition (1) of the
move of the second type is satisfied by subtracting u tokens from the first pile
and r tokens from the second pile.

(a) We have y = f(1)s + r < Bn = f(1)n by (9). Thus s < n, since r < f(1).
Clearly s ≥ 0.

(b) By (8) and (a), r = y − f(1)s = y −Bs. Therefore r > 0 since y ̸= Bs.
(c) By (9) and (a), u = An − As = n − s > 0 and n − s ≤ n < f(1). Thus if

u ≤ r, then 0 < u ≤ r < f(1) ≤ f(u). Otherwise, if u > r, then 0 < r < u < f(1) ≤
f(r).

Corollary 21. Let f be a polynomial of the form (5) with t ≥ 2 and a0 > 0. Then
there is a tractable strategy for winning Wyt(f).

Proof. By Lemma 18, g is a strictly increasing superadditive function, and clearly
polynomial-time computable. Using the algorithm in Theorem 16 and the instruc-
tions how to move from any N -position to a P -position in the second part of the
proof of Theorem 20, it is clear how to construct a tractable strategy for winning
Wyt(f) for any given N -position.
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5. Further Work

In this paper we studied the P -positions and winning strategies of the game Wyt(f)
for three classes of functions: constant, superadditive and polynomial with nonneg-
ative coefficients. There are two main direction in extending this work. One is to
examine other classes of functions and possibly to generalize the results presented
here to other classes of functions. For example, Wyt(f) where f(k) = sk + t, for
s, t ∈ R>0 (The case s, t ∈ Z>0 was studied in [11]), or for an arbitrary polynomial
function f .

Another direction is to study deeper properties in each class. One of the impor-
tant properties of impartial games is the Sprague-Grundy function, which enables
playing sums of games. Some results on the Sprague-Grundy function for Wythoff’s
game can be found in [21, 17, 4]. An additional direction is to study the sets of
restrictions and extensions of the game, in the sense of a subset or superset of the
set of possible moves, that preserve its P -positions. These directions were studied
for Wythoff and other Wythoff-like games in [14, 6, 19].
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Sohn, Braunschweig (four volumes), 1985.

[2] AM Bruckner and E. Ostrow. Some function classes related to the class of
convex functions. Pacific Journal of Mathematics, 12(4):1203–1215, 1962.

[3] I.G. Connell. A generalization of Wythoff’s game. Canad. Math. Bull, 2:181–
190, 1959.

[4] A. Dress, A. Flammenkamp, and N. Pink. Additive periodicity of the sprague-
grundy function of certain nim games. Adv. in Appl. Math., 22:249–270, 1999.
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[16] L. Hörmander. Notions of convexity, volume 127. Birkhauser, 1994.

[17] H. Landman. A simple fsm-based proof of the additive periodicity of the
Sprague-Grundy function of Wythoff’s game. In R. J. Nowakowski, editor,
More Games of No Chance, Proc. MSRI Workshop on Combinatorial Games,
July, 2000, Berkeley, CA, MSRI Publ., volume 42, pages 383–386. Cambridge
University Press, Cambridge, 2002.

[18] U. Larsson. Blocking Wythoff Nim. Electronic J. of Combinatorics, 18(P120):1,
2011.

[19] U. Larsson. A generalized diagonal Wythoff Nim. Integers, 12:#G2, 24 pp.,
Comb. Games Sect., 2012.

[20] W.A. Liu, H. Li, and B. Li. A restricted version of Wythoff’s game. Electronic
J. of Combinatorics, 18(P207):1, 2011.

[21] G. Nivasch. More on the Sprague-Grundy function for Wythoff’s game. Games
of No Chance III, 56:377–410, 2009.

[22] D. Singmaster. Almost all games are first person games. Eureka, 41:33–37,
1981.

17



[23] D. Singmaster. Almost all partizan games are first person and almost all
impartial games are maximal. J. Combin. Inform. System Sci., 7:270–274,
1982.

[24] W.A. Wythoff. A modification of the game of Nim. Nieuw Arch. Wisk, 7:199–
202, 1907.

18


