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Abstract
The P positions of both two-heap Nim and Wythoff’s game are

easy to describe, more so in the former than in the latter. Calculating
the actual G values is easy for Nim but seemingly hard for Wythoff’s
game. We consider what happens when the rules for removing from
both heaps are modfied in various ways.
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1 Introduction

In the game of Nim, played on two heaps of tokens, the two players alternate
in choosing a heap and removing any positive number of tokens from that
heap. Wythoff’s game is also played with two heaps, as in Nim, a player
may remove any positive number from a single heap or the same positive
number from both heaps, subject to the proviso that every heap remains
of nonnegative size at all times. For both games, and in all other games
considered in the sequel, the player first unable to move loses.
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Definition 1 For a position v of an impartial game, let Op(v) be the set
of the options of v. That is Op(v) is the set of all the positions that can be
reached from v in one move.

Definition 2 A P position is one in which the next player has no winning
move and in an N position, the next player does have a winning move.

In Wythoff and in nim, the position in which both heaps are empty
is a P position and any position that has a move to a P position is an N
position. Every move from a P position leads to an N position.

Let U ⊂ Z≥0, U 6= Z≥0. The Minimum EXcluded value of U , denotd
by Mex(U), is the smallest nonnegative integer not in U . In particular,
Mex(∅) = 0.

The P and N classsification of positons can be refined. To each game
position v of an impartial game we associate a nonnegative integer value
G(v), called the G-value of v. This function G is called the Sprague-Grundy
function. It can be defined recursively as follows:

G(v) = Mex({G(u) : u ∈ Op(v)}).

It is well-known that the 0s of the Grundy function constitute the P
positions of a game. (See e.g. [1, 5, 14] for more information on the G-
function.) Note that this function exists uniquely for any finite impartial
acyclic game. In an acyclic game, each game position is reached at most
once.

Definition 3 Given two positive integers a and b, a mod b denotes the
smallest non-negative remainder of the division of a by b.

Definition 4 We denote the nim-sum of a and b by a⊕ b, that is, addition
in binary without carries. (Also known as XOR or addition over GF(2) of
a and b.)

In two heap Nim, the G-value of (a, b) is a⊕b and is a P position precisely
when a = b. In Wythoff’s game, the P positions are (bnτc, bnτ2c), where
τ = (1 +

√
5)/2 is the golden ratio. The non-zero G-values appear to be

difficult to calculate (cf. [2, 16]), however they exhibit additive periodicity.
See [6]. A much simplified proof is given in [15].

In the literature, several variations of Wythoff’s game were investi-
gated, some concerning its P positions, others its Sprague-Grundy function.
The variations can be subdivided mainly into two categories: (i) extensions,
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i.e., adjoining new rules to those of Wythoff, and (ii), restrictions, where
only certain subsets of Wythoff’s moves are permitted. Most investiga-
tions concern (i). Examples are [7], where the “diagonal” move (taking
from both piles) is relaxed to taking k > 0 from one pile, ` > 0 from the
other, subject to |k − `| < a, where a is a fixed positive integer parameter.
In [8], this rule is further extended to permit diagonal moves of the form
0 ≤ k − ` < (s − 1)k + t, k ∈ Z≥1, where s, t ∈ Z≥1 are fixed parameters.
See also [4, 9, 13]. Still other extensions are generalizations to more than 2
piles [11], [18], [17].

Examples of (ii) are [13], where m ≥ 2 piles are considered to be com-
ponents of a vector, and removals can be made only from the first and the
last end piles of the vector. In [12], the diagonal moves of Wythoff are
restricted in certain ways. In [10] the moves from a single pile are restricted,
and the diagonal moves are both restricted and extended!

In this paper, we define a new variation of Wythoff’s game called
WytK . The rules are more restrictive than in classical Wythoff’s game
but are in the same spirit as [12], which appears to constitute the first
bridge between Nim and Wythoff’s game. In [12], the authors deal with
games where the ”diagonal move” (i.e., taking k > 0 from one pile and
` > 0 from the other) is subject to a relation R(k, `). Such games are called
Nimhoff games. Wythoff’s game is Nimhoff’s game where R(k, k) for
all k > 0, whereas Nim is the game where no pair (k, `) satisfies R. The main
objective there is to a find a closed formula for the G-values of Nimhoff
games, for some particular relations R. The family of cyclic Nimhoff games
is widely studied in [12]. This family contains games of the type R(k, `) if
0 < k+l < h, where h is a fixed positive integer. In addition to these results,
the cases R(1, 1) and R(k, k) for all k being a power of 2 are investigated.
A generalized Nim sum is provided to ensure the polynomiality of the G-
function of such games.

In the present paper, the games WytK that we investigate are exactly
the subset of Nimhoff games corresponding to restrictions of Wythoff’s
game. Unlike the previous paper, we here focus on the regularity of G-
functions (defined in Sect. 2). The set WytK is an illustration of games
having a certain regular G-function that we call p-Nim regular. For that
purpose, the games R(1, 1) and R(2q, 2q) of [12] are also considered here
as instances of WytK having such a regular G-function. Besides, we deal
with the conditions for which a game does or does not have a p-Nim regular
G-function.

Definition 5 Let K be a subset of the positive integers. The game WytK is
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played with two heaps of tokens and

Op(a, b) = {(a− i, b) : 0 < i ≤ a} ∪ {(a, b− j) : 0 < j ≤ b}
∪{(a− k, b− k) : 0 < k ≤ min{a, b}, k ∈ K}.

That is, for a given K, WytK is Wythoff’s Nim but with a restricted set
K of moves along the diagonal.

Specifically, we focus on the following questions:

1. What are the P positions for WytK?

2. For any non-negative integer j, is there an aj such that (aj , aj + j) is
a P position?

3. What are the G-values and do they exhibit any regularity?

The interest in the first question is clear. The second is an indication of
how close the game is to Wythoff’s game. The third is clear but needs a
little explanation. Subtraction games have periodic Sprague-Grundy func-
tions; many infinite octal games (including one-heap nim) have arithmetic
periodic Sprague-Grundy functions. As noted, the rows of the Sprague-
Grundy function of Wythoff’s game are ultimately additive periodic [6],
[15]. For many other games, when a player is analyzing a new game, hand
calculations are usually tried first, varying the value of just one or two heaps,
say of size k, and calculating the corresponding Sprague-Grundy function,
call it G(k), Even though, initially, this sequence can hold the promise of
regularity, the appearance of values k′ where G(k′) ≥ k′ is a typical indi-
cator of impending chaos. This is the motivation behind our definition of
nim-regularity in section 2, where we give an automatic test (one suitable
for computers) for checking for this regularity. This test forms the basis for
our positive results, but it also leads, later on, to conditions where games do
not have any of the aforementioned periodicities, though it may have other
regularities. This negative result does not appear (explicitly) in [12, 2, 3].

In section 3 we show that when K = {k}, the P positions of WytK are
nim-regular. For k even, this is (essentially) Lemma 10 of [12]. We complete
the picture for k odd in this section.

In section 4 we consider the case where K contains only powers of 2.
In 4.1 we handle the case K = {1}, followed by stating, in the present
language, the case K = {2k} for fixed k > 0, already given in [12]. We
then state and prove the negative result alluded to earlier. In section 4.2
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we deal with the case where |K| is an infinite set of powers of 2. The case
K = {1, 2i, i ∈ I ⊆ Z≥1}, turns out to be equivalent to the game where
K = {1}. In that case, we show a surprising regularity of the G-values
modulo 3. We wrap up with a brief final section 5.

2 Closed p-Nim Regularity Check

Our basic definitions are the following.

Definition 6 Let A be a doubly, semi-infinite matrix and Ap be the finite
matrix consisting of the first p rows and first p columns of A. The matrix
A is called p-nim-regular if

A(a, b) = p

(⌊
a

p

⌋
⊕

⌊
b

p

⌋)
+ Ap(a mod p, b mod p) for a, b ∈ Z≥0;

if, in addition, each row and each column of Ap contains all the integers
0 through p − 1 then A is called closed p-nim-regular. A game whose
G-values constitute a (closed) p-nim-regular matrix, is said to be a (closed)
p-nim-regular game.

Figure 1 illustrates this definition with p = 4. Roughly speaking, one
can say that a p-nim-regular matrix is obtained by tiling the quarter-plane
with copies of Ap scaled according to the Nim matrix.
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Figure 1: The first G-values of WytKwhen K = {2}: an example of a closed
4-nim-regular matrix
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Notation 1 For a given WytKand p ∈ Z≥1, denote by AK(p) a p×p matrix
where AK(p)(i, j) = G(i, j), i.e. the (i, j) entry of AK(p) is the G-value of
the position with heaps of size i and j, for all 0 ≤ i, j < p.

Note that if A is a closed p-nim-regular matrix, then in the matrix A2kp,
every row and column contains all the values 0 through 2kp − 1; i.e., this
matrix is a latin square.

Theorem 1 of [12] shows that the following game is p-nim-regular: given 2
heaps and allowing the subtraction of ai from heap i, i ≤ 2 where a1+a2 < p.
Here, Theorem 5 notes that not all WytKwith |K| = 1 are closed p-nim-
regular.

We present an automatic check for closed p-nim-regularity for any finite
set K.

Lemma 1 Let K ⊆ Z≥1 be a finite set and A be the matrix with entries
G(a, b). If there is a positive integer p > maxK such that

(i) each row and each column of AK(p) contains all the integers 0 through
p− 1; and

(ii) G(a + p − k, b + p − k) 6= G(a, b) for 0 ≤ a + p − k, b + p − k < p,
0 ≤ a, b < p and k ∈ K,

then A is closed p-nim regular.

Figure 1 above shows the first few G-values of WytK for K = {2}. In
that case, the value p = 4 makes AK(p) satisfy both conditions of Lemma
1.

Proof: Assume there exists some p > maxK satisfying both conditions
(i) and (ii).

Now, let (Mn) be the following sequence of matrices:

Mn =
[

Mn−1 Mn−1 + 2n−1p
Mn−1 + 2n−1p Mn−1

]

for all n ≥ 1. Set M0 = AK(p).

We will now prove four properties about the sequence (Mn):

1. Mn = AK(2np).

2. Mn(a, b) = p(ba
pc⊕b b

pc)+AK(p)(a mod p, b mod p) for 0 ≤ a, b < 2np.
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3. Each row and each column of Mn contains all the integers 0 through
2np− 1.

4. Mn(a + 2np− k, b + 2np− k) 6= Mn(a, b) for
0 ≤ a + 2np− k, b + 2np− k < 2np, 0 ≤ a, b < 2np and k ∈ K.

One can check that these properties are true for M0 = AK(p). Now
suppose that they are true for some matrix Mn−1 with n ≥ 1, and consider
the matrix Mn.

1. We will prove that Mn = AK(2np).

Let 0 ≤ a, b < 2n−1p. By the induction hypothesis, we have G(a, b) =
Mn(a, b) = Mn−1(a, b).

Now consider the position (a, b+2n−1p). According to the rules of the
game, we have

G(a, b + 2n−1p) = mex({G(a− i, b + 2n−1p) : 0 < i ≤ a}
∪{G(a, b + 2n−1p− j) : 0 < j ≤ b + 2n−1p}
∪{G(a− k, b + 2n−1p− k) : 0 < k ≤ a, k ∈ K}).

One may assume inductively that G(s, t) = Mn(s, t) for all the pairs
(s, t) 6= (a, b + 2n−1p) satisfying 0 ≤ s ≤ a and 0 ≤ t ≤ b + 2n−1p.
With this hypothesis and by construction of Mn, we have
{G(a− i, b + 2n−1p) : 0 < i ≤ a} = {G(a− i, b) + 2n−1p : 0 < i ≤ a}.
Similarly

{G(a, b + 2n−1p− j) : 0 < j ≤ b + 2n−1p}
= {G(a, b + 2n−1p− j) : 0 < j ≤ b}

∪{G(a, b + 2n−1p− j) : b < j ≤ b + 2n−1p}
= {G(a, b− j) + 2n−1p : 0 < j ≤ b}

∪{0, 1, 2, . . . , 2n−1p− 1}
and

{G(a− k, b + 2n−1p− k) : 0 < k ≤ a, k ∈ K}
= {G(a− k, b + 2n−1p− k) : 0 < k ≤ a, b, k ∈ K}

∪{G(a− k, b + 2n−1p− k) : b < k ≤ a, k ∈ K}
= {G(a− k, b− k) + 2n−1p : 0 < k ≤ a, b, k ∈ K}

∪{G(a− k, b + 2n−1p− k) : b < k ≤ a, k ∈ K}.

7



Since

{G(a− k, b+2n−1p− k) : b < k ≤ a, k ∈ K} ⊆ {0, 1, 2, . . . , 2n−1p− 1},
we have that

G(a, b + 2n−1p) = mex({G(Op(a, b)) + 2n−1p} ∪ {0, 1, 2, . . . , 2n−1p− 1})
= G(a, b) + 2n−1p.

Now consider the position (a + 2n−1p, b + 2n−1p). Then

G(a + 2n−1p, b + 2n−1p)
= mex({G(a + 2n−1p− i,b + 2n−1p) : 0 < i ≤ a + 2n−1p}

∪{G(a + 2n−1p, b + 2n−1p− j) : 0 < j ≤ b + 2n−1p}
∪{G(a + 2n−1p− k, b + 2n−1p− k) : 0 < k ≤ min(a + 2n−1p, b + 2n−1p), k ∈ K}).

As previously, suppose that G(s, t) = Mn(s, t) for all the pairs (s, t) 6=
(a+2n−1p, b+2n−1p) satisfying 0 ≤ s ≤ a+2n−1p and 0 ≤ t ≤ b+2n−1p.
Then we have:

{G(a + 2n−1p− i, b + 2n−1p) : 0 < i ≤ a + 2n−1p}
= {G(a− i, b) : 0 < i ≤ a} ∪ {2n−1p, . . . , 2np− 1}

{G(a + 2n−1p, b + 2n−1p− j) : 0 < j ≤ b + 2n−1p}
= {G(a, b− j) : 0 < j ≤ b} ∪ {2n−1p, . . . , 2np− 1}

{G(a + 2n−1p− k, b + 2n−1p− k) : 0 < k ≤ min(a + 2n−1p, b + 2n−1p), k ∈ K}
= {G(a− k, b− k) : 0 < k ≤ min(a, b), k ∈ K}

∪{G(a + 2n−1p− k, b + 2n−1p− k) : k > min(a, b), k ∈ K}.

Hence

G(a + 2n−1p, b + 2n−1p)
= mex({G(Op(a, b)}

∪{2n−1p, . . . , 2np− 1}
∪{G(a + 2n−1p− k, b + 2n−1p− k) : k > min(a, b), k ∈ K}).

We already know that G(a, b) /∈ {2n−1p, . . . , 2np − 1}, since G(a, b) ∈
Mn−1.

Moreover, G(a, b) /∈ {G(a+2n−1p−k, b+2n−1p−k) : k > min(a, b), k ∈
K}. Indeed, if a + 2n−1p− k ≥ 2n−1p or b + 2n−1p− k ≥ 2n−1p, then
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G(a + 2n−1p − k, b + 2n−1p − k) ≥ 2n−1p > G(a, b). Otherwise, if
a+2n−1p−k < 2n−1p and b+2n−1p−k < 2n−1p, it is true since Mn−1

satisfies Property (4).

Therefore, we conclude that G(a + 2n−1p, b + 2n−1p) = G(a, b).

2. Let 0 ≤ a, b < 2np. We will prove that the formula

Mn(a, b) = p(ba/pc ⊕ bb/pc) + AK(p)(a mod p, b mod p) is satisfied.

• If 0 ≤ a, b < 2n−1p, then it is true by induction.

• If 2n−1p ≤ a, b < 2np, then by construction of Mn, we have

Mn(a, b) = Mn(a− 2n−1p, b− 2n−1p). (2A)

By the induction hypothesis, we expand (2A):

Mn(a, b) = Mn(a− 2n−1p, b− 2n−1p)
= p(ba/pc − 2n−1 ⊕ bb/pc − 2n−1) + AK(a mod p, b mod p)
= p(ba/pc ⊕ bb/pc) + AK(a mod p, b mod p).

• If a ≥ 2n−1p and b < 2n−1p, then by construction:

Mn(a, b) = Mn(a− 2n−1p, b) + 2n−1p. (2B)

By the induction hypothesis, we know that

Mn(a− 2n−1p, b)
= p(ba/pc − 2n−1 ⊕ bb/pc) + AK(a mod p, b mod p).

Finally, since a ≥ 2n−1p and b < 2n−1p, and according to the
properties of the nim-sum, we get from (2B)

Mn(a, b)
= 2n−1p + p(ba/pc − 2n−1 ⊕ bb/pc) + AK(a mod p, b mod p)
= p(ba/pc ⊕ bb/pc) + AK(a mod p, b mod p).

• If b ≥ 2n−1p and a < 2n−1p, then we reduce to the previous case
by symmetry.

3. By construction of Mn from Mn−1, and since Mn−1 satisfies property
(3) by the induction hypothesis, one can easily check that each row
and each column of Mn contains all the integers 0 through 2np− 1.
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4. We will show that Mn(a + 2np− k, b + 2np− k) 6= Mn(a, b)

for 0 ≤ a + 2np− k, b + 2np− k < 2np, 0 ≤ a, b < 2np and k ∈ K.

The condition 0 ≤ a+2np−k, b+2np−k < 2np implies a, b < k. And
since k < p, we now consider that 0 ≤ a, b < p.

We now define two integers A and B such that:

A = a + (2n − 1)p
B = b + (2n − 1)p.

By the formula proved in (2), we have Mn(a, b) = Mn(A,B).

Let (X, Y ) be a position defined as follows:

X = a + 2np− k

Y = b + 2np− k.

Thus Mn(X,Y ) = Mn(A+ p−k,B + p−k) = Mn(a+ p−k, b+ p−k)
according to the formula. It now suffices to prove that
Mn(a + p− k, b + p− k) 6= Mn(a, b).

Since a + 2np− k, b + 2np− k < 2np, we have a− k + p, b− k + p < p,
which means that the positions (a, b) and (a + p − k, b + p − k) both
belong to the square [0, . . . , p− 1]× [0, . . . , p− 1]. As AK(p) satisifes
condition (ii), we deduce that Mn(a + p− k, b + p− k) 6= Mn(a, b).

3 P positions

Theorem 2 Let K = {k}. Then in WytK ,

1. For k = 2j, the P positions are (i + 2kp, i + 2kp), i = 0, 1, . . . , k − 1,
p ∈ Z≥0 and (k+2i+2kp, k+2i+2kp+1), i = 0, 1, . . . , j−1, p ∈ Z≥0.

2. For k = 2j + 1, the P positions are (i + (2k + 1)p, i + (2k + 1)p),
i = 0, 1, . . . , k−1, p ∈ Z≥0 and (k+2i+(2k+1)p, k+2i+(2k+1)p+1),
i = 0, 1, . . . , j, p ∈ Z≥0.

Proof: Denote by S ⊂ Z2 the set of positions described by the theorem.
Denote by A the set Z2 \S. We must prove that any move from S lands in a
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position of A, and that from any position of A, there exists a move leading
to a position of S.

For any subset T of Z2, denote by T |x the set {(i, j) ∈ T : 0 ≤ i, j < x}.
Denote by B the value 2k (resp. 2k + 1) if k is even (resp. odd).

Figure 2 depicts the set S, which is the diagonal concatenation, modulo
B, of the pattern S|B.

2B
k k or k+1

k 
or

 k
+

1
k

0

0

B

B

2B

Figure 2: A view of the structure S.

We first remark that there is exactly one position of S in each row and
in each column. It is then straightforward to see that it is not possible to
move from a position of S|B to another one. Besides, from each position
of A|B, one can move to a position of S|B. Therefore, from any position of
the sets {(i, j) : i ≥ B, j < B} and {(i, j) : j ≥ B, i < B}, one can reach a
position of S|B.

Now consider a position of S ∩ {(i, j) : B ≤ i, j < 2B}. Moves in
a single heap clearly land in A. A move of length k in both heaps may
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land in Z2|B, but not in S|B (see figure 2). Also, from any position of
A ∩ {(i, j) : B ≤ i, B ≤ j < 2B ∨ B ≤ j, B ≤ i < 2B}, one can move to a
position of S ∩ {(i, j) : B ≤ i, j < 2B}.

It now suffices to iterate the result for the sets S ∩ {(i, j) : pB ≤ i, j <
(p + 1)B} and A ∩ {(i, j) : (pB ≤ i, pB ≤ j < (p + 1)B) or (pB ≤ j, pB ≤
i < (p + 1)B)}, with p > 1.

Remark 1 When K = {k}, this result ensures that the only integers j for
which there exists an aj such that (aj , aj + j) is a P position are 0 and 1.

This remark leads us to the following conjecture:

Conjecture 1 Let K be a finite set, then there exists an integer JK > 0
such that if (a, b) is a P position for WytKthen |a− b| < JK .

4 G-Values

4.1 K is finite

Theorem 3 Let K = {1}. Then in WytK

G(3m + i, 3n + j) = 3(m⊕ n) + AK(3)(i, j), 0 ≤ i, j < 3, ∀m,n ∈ Z≥0

where,

AK(3) =




0 1 2
1 2 0
2 0 1


 .

Figure 3 illustrates this result by depicting the table of the first G-values.
Proof: One can check that AK(3) contains the first G-values of the

game WytKwith K = {1}. With p = 3 > maxK, it is now straightforward
to see that the conditions of Lemma 1 are satisfied.

For completeness, we report the cases where K = {2j} since the language
used in [12] does not immediately lend itself to this interpretation.

Theorem 4 Let K = {2k} for fixed k > 0. Then in WytK

G(2k+1m + i, 2k+1n + j) = 2k+1(m⊕ n) + AK(2k+1)(i, j),

0 ≤ i, j < 2k+1, ∀m,n ∈ Z≥0

and, as a 2× 2 array of matrices,
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Figure 3: The first G-values of WytK for K = {1}.

AK(2k+1) =
[

AK(2k) AK(2k)⊕ 2k

AK(2k)⊕ 2k AK(2k)⊕ 1

]
,

where AK(2k) is the 2k × 2k matrix of the G-values of Nim with two heaps
of sizes lower than 2k.

As an illustration of that case with k = 1, one can refer to Figure 1.

Theorem 5 Let K = {k : k 6= 2q 6= k + 1 ∀q ∈ Z≥1} (for any integer
q > 0). Then there is no p such that AK(p) satisfies Lemma 1, condition
(i), i.e. WytK is not closed p-nim-regular for any p.

Proof: We suppose that such a p exists.
First, let K = {2j}, j 6= 2q. From Theorem 2, the P-positions repeat

with period 4j, consequently, then p would be also be a multiple of 4j. There
exists an i such that 2i < 2j and with the property that 2i ⊕ 2j = 2i + 2j.
Moreover, since 2j is not a power of 2 then 2i+1 < 2j also holds and there
is no diagonal move available from (2i+1, 4j − 1). Hence the G-value of the
position is 2i+1 ⊕ 4j − 1—this is 2-heap nim. Then we have 2i+1 ⊕ 4j − 1 =
2i+1 +4j− 1 ≥ 4j. Therefore, since AK(4j) contains a number greater than
4j − 1 not every row and column can contain all the numbers 0 through
4j − 1.

For K = {2j + 1}, the argument is similar. ¿From Theorem 2, p would
be a multiple of 4j + 3. Since 2j + 2 is not a power of 2 then there exists
2i 6∈ 2j + 1, 1 < 2i < 2j + 1 so that 2i ⊕ 2j + 1 = 2i + 2j + 1. Therefore,
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2i+1 ⊕ 4j + 2 = 2i+1 + 4j + 2 > 4j + 3. The position (2i+1, 4j + 2) has
a G-value equal to 2i+1 ⊕ 4j + 2. Therefore, since AK(4j + 3) contains a
number greater than 4j + 3 not every row and column can contain all the
numbers 0 through 4j + 2.

4.2 |K| is an infinite set of powers of 2

When K is a subset of the powers of two including 1, we show that the
G-values of WytKare those described by Theorem 3 (see Figure 3).

Theorem 6 Let K = {1, 2i : i ∈ I ⊆ Z≥1}. Then in WytK ,
G(3m+ i, 3n+j) = 3(m⊕n)+AK(3)(i, j), 0 ≤ i, j < 3, ∀m,n ∈ Z≥0, where
AK(3) is as defined in Theorem 3.

Proof: Denote by G1(a, b) the G-value of the position (a, b) for WytKwith
K = {1}. The function G1 is described in Theorem 3. We aim at proving
that G1 and G for WytKwhere K = {1, 2i : i ∈ I ⊆ Z≥1} are identical.

Since the moves of WytKwith K = {1} are included in those of WytKwith
K = {1, 2i : i ∈ I ⊆ Z≥1}, it suffices to check that G1(a, b) 6= G1(a−k, b−k)
for all k in {2i : i ∈ I ⊆ Z≥1}.

Suppose that there exists a position (a, b) and an integer k = 2i, i ≥ 1
such that G1(a, b) = G1(a − k, b − k). Then we also have G1(a, b) mod 3 =
G1(a− k, b− k) mod 3.

According to Theorem 3, we can assert that G1(x, y) mod 3 = AK(3)(x mod
3, y mod 3) for any position (x, y). This implies that AK(3)(a mod 3, b mod
3) = AK(3)((a − k) mod 3, (b − k) mod 3). When looking at the matrix
AK(3), we notice that each value 0, 1, 2 appears exactly once in each diago-
nal (fig. 4).

Therefore, AK(3)(a mod 3, b mod 3) = AK(3)((a−k) mod 3, (b−k) mod
3) if and only if a mod 3 = (a−k) mod 3 and b mod 3 = (b−k) mod 3. These
equalities now imply k mod 3 = 0, which is impossible since k is a power of
2.

Remark 2 From Theorem 6, one can see that in WytKwith K = {2i : i ≥
0}, we have G(3m+i, 3n+j) = 3(m⊕n)+AK(3)(i, j), 0 ≤ i, j < 3, ∀m,n ∈
Z≥0.

Conjecture 2 Let K = {2i : i > 0}. Then for all non-negative integers j,
there is an aj such that (aj , aj + j) is a P position.

14



1

0 1 2

1 2 0

02

Figure 4: The three diagonals of AK(3) modulo 3

5 Concluding remarks

As we pointed out in the Introduction, this work is about restrictions of
Wythoff’s game. Most previous papers about Wythoff concerned ex-
tensions thereof. The Wythoff variation defined in [10] contains both a
restriction and an extension. It depends on two given positive integer pa-
rameters a, b: (i) Remove a positive multiple of b tokens from a single pile
(restriction), or (ii) remove k > 0, ` > 0 tokens from the 2 piles, subject
to the constraints k − ` ≡ 0 (mod b) (restriction), |k − `| < ab (extension).
Other games that are both an extension and a restriction of Wythoff are
suggested by the present paper. For example, let a ∈ Z≥1, K ⊂ Z≥1. The
diagonal move is extended as follows: take k > 0 from one pile and ` > 0
from the other subject to |k − `| < a (extension – see [7]) and k ∈ K (re-
striction). The extension [8] can be restricted similarly. (Although in [13]
there are m ≥ 2 piles, this is not a genuine extension, since all moves are
restricted to taking from at most 2 piles.)
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