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Abstract

An important aspect of the classic Wythoff game is that its P po-
sitions form a disjoint cover of the positive integers by two sequences.
Though generalizations of Wythoff to K > 2 piles abound, we believe
that the generalization presented here is the first where the P posi-
tions form a disjoint cover of the positive integers by K sequences.
To achieve this we add a novel ingredient - we allow pile sizes to in-
crease. This leads, inter alia, to games with infinitely many positions,
yet every such game ends with no remaining tokens, due to a lexico-
graphic order ≺ imposed on the moves. We refer to this Lexicographic
Wythoff game as Lythoff(K). We introduce Lythoff(K) in section 2.
In section 3 we construct its P positions and prove they form a dis-
joint cover. In section 4 we extend the moves of Lythoff(K) to de-
pend on a function f that depends on the position we move to, called
Lythoff(Kf ). In section 5 we study the special case Lythoff(2f ).

1 Introduction

There are many generalizations of Wythoff games. For example, see most of
the 150 bibliographic items in ’Wythoff Wisdom’ [1]. However, this paper
constitutes an unexpected new twist. The positions are K vectors, common
enough. The revolutionary aspect of our present contribution is in their
moves and in the tiling of the positive integers by their P -positions. Given
a K ≥ 2 vector of the pile sizes [a1, a2, ..., aK ] in nondecreasing order, 0 ≤
a1 ≤ a2 ≤ ... ≤ aK , choose any set S of K − 1 integers and then for each pile
i, either leave the pile untouched, or choose x ∈ S with x ≤ ai, and remove
x tokens from the pile. We may have to rearrange the resulting position so
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as to be nondecreasing. To be legal, the resulting position B must satisfy
B ≺ A in lexicographic order. For K = 2 these rules reproduce the classic
Wythoff game. We refer to our Lexicographic Wythoff game as Lythoff(K).
We discuss this in more detail, together with clarifying examples, in section 2.

This definition produces a number of unexpected results: x ∈ S may be
negative, in which case the ’remove’ becomes add. That is, pile sizes may grow
in size rather than diminish. A consequence is that in Lythoff(K) withK > 2
any position T with at least two non-empty piles has an infinite number of
sub-positions and the number of moves till the game ends is unbounded from
above, yet Lythoff(K) always ends after a finite number of moves. All of this
is proved in Theorem 1 below.

We also define and discuss a variable Lythoff(K) whose rule set contains
a wider set of moves, depending on a function f of the position we move
to. We call this generalization Lythoff(Kf ). Lythoff(2f ) is discussed in sec-
tion 5. Notice that Lythoff(2f ) with f a constant, is [5], which itself is a
generalization of Wythoff obtained by weakening the constraint of taking
equal numbers from both piles.

The generalization of Wythoff to more than two heaps was a long sought-
after problem. Some of the more successful generalizations are cited below.
For a wider view see [1], section 4.

In [7], the P-positions for a K-Pile game, K ≥ 2, are constructed using
triangular numbers, and the resulting strategy is polynomial-time, whereas
most games are either Pspace-complete or Exp-complete. However, the P-
positions do not tile the positive integers. There is some resemblance between
the proofs of [7] and the present paper.

A quite different generalization: Moores Nimk, [8], is a variation of Nim in
which up to k piles can be reduced. Thus Nim1 is Nim. A tractable strategy
can be given by expressing the pile sizes in binary as in Nim, but XOR-ing
them to the base k+1. If this sum (without carries) is 0, we have a P-position.
Otherwise, it is an N-position, and a move to 0 wins. No polynomial strategy
seems to be known for this game. Another generalization: In Fraenkel, [2].

In [6] it is shown that a natural generalization of Nim to the case of
K > 2 heaps of sizes [a1, a2, ..., aK ] is to either remove any positive number of
tokens from a single heap, or remove xi tokens from each heap simultaneously,
subject to the conditions: (i) xi > 0 for some i, (ii) xi ≤ ai for all i, (iii)
x1⊕x2⊕...⊕xK = 0, where ⊕ denotes Nim-sum, (also known as addition over
GF(2), or XOR). The player making the last move wins and the opponent
loses. See also [1] section 4. What are the P-positions of this game?
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Two conjectures about the P-positions of multiple pile game are formu-
lated in [9] and [10]. See also [4].

2 K-Pile Wythoff Games

Notation: We will use A to denote a vector of integers [a1, a2, . . . , aK ].
When comparing two such vectors we will use the usual lexicographic order.
Specifically B ≺ A if bi < ai for the first index i at which they differ.

Definition 1. A two-player Lythoff(K) game is played on K ≥ 2 piles of
tokens. A position in the game is specified by giving the sizes of the piles
in nondecreasing order 0 ≤ a1 ≤ a2 ≤ . . . ≤ aK. A legal move from A =
[a1, a2, . . . , aK ] is to choose any set of K−1 integers, S, and then for each pile
i, either leave the pile untouched, or choose x ∈ S with x ≤ ai, and remove x
tokens from the pile. We may have to rearrange the resulting position so as to
be nondecreasing. To be legal, the resulting position B must satisfy B ≺ A.

Note 1: Reducing a pile to size 0 does not change the nature of the
game. It is still a K-Pile game, not a (K-1)-Pile game. So the set S is still
of size K − 1, not K − 2 and therefore the move directly to 0 is now legal
(unless we are already at 0).

Note 2: We explicitly allow S to contain negative integers (which implies
adding tokens to a pile). The restriction B ≺ A ensures that each move
decreases the lexicographic order. Theorem 1 below shows that each game
ends in a finite number of moves since all pile sizes get reduced to zero.

2.1 Examples

We give some examples of positions and moves for K = 3

• [0, 0, 0] has no legal moves, since it is first in lexicographical order.

• [0, 10, 30] has a legal move to [0, 0, 0] as follows: For the set S choose
S = {10, 30}. Then leave the first pile untouched, remove 10 ∈ S from
the second pile and 30 ∈ S from the third pile.

• [0, 10, 30] has a legal move to [0, 9, 50] as follows: For the set S choose
S = {1,−20}. Then leave the first pile untouched, remove 1 ∈ S from
the second pile and remove −20 ∈ S from the third pile (thus adding
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+20). Since [0, 9, 50] < [0, 10, 30] in lexicographical order, the move is
legal.

• [10, 10, 20] has a legal move to [0, 0, 0] as follows: Choose S = {10, 20}.
Remove 10 ∈ S from the first and second piles and 20 ∈ S from the
third pile.

• [1, 2, 3] has no legal move to [0, 0, 0] since such a move would require
removing 1 from the first pile, two from the second and three from the
third and therefore would require a three element set S.

Note: Though not immediately obvious, Lythoff(2) is just the classical
Wythoff game. This is because the 1-element set S must contain a positive
integer if the lexicographical order is to decrease and therefore we can only
leave a pile untouched or remove the same positive number of tokens from
both piles.

One might wonder if the un-natural permission to increase pile size ac-
tually “adds” anything to the game. Might these moves be reversible? To
show that this is not so, below are the first 13 P positions of Lythoff(3)
versus the alternate version that disallows moves that increase the size of a
pile. Only the last row differs. The position [23, 39, 58] is a P position in
the alternate game, but in our version it has a legal move to the previous P
position [20, 37, 53] via S = {−14, 38}. We remove -14 tokens from the first
and second piles and 38 tokens from the third pile.

Lythoff(3)

a1 a2 a3
0 0 0
1 2 3
4 7 10
5 9 13
6 11 16
8 15 22
12 21 30
14 25 36
17 29 41
18 31 44
19 34 49
20 37 53
23 42 61

Alternate definition

a1 a2 a3
0 0 0
1 2 3
4 7 10
5 9 13
6 11 16
8 15 22
12 21 30
14 25 36
17 29 41
18 31 44
19 34 49
20 37 53
23 39 58

4



We note that in Lythoff(K) with K > 2 any position T with at least two
non-empty piles has an infinite number of sub-positions and there is no upper
bound on the number of moves till the game ends. This is true because if
the two piles have sizes 0 < a ≤ b then we can choose the two integers 1 and
−n < 0 to be elements of S so the move a → a− 1, b → b+ n is legal for all
n > 0. We therefore need the following theorem:

Theorem 1. Lythoff(K) always ends after a finite number of moves.

Proof. Consider Lythoff(K) for some fixed value K. We will prove by induc-
tion on n that when both players limit their moves to a fixed set of n piles,
leaving the other K − n piles untouched, those n piles will all have size zero
after a finite number of moves. The case n = K then proves the theorem.

For n = 1 it is obvious that since all other piles are unchanged, each
move must decrease the size of the single pile, which can only happen a finite
number of times. Given n+1 piles, let s be the smallest pile size and let i be
a pile whose size is s. If we leave pile i untouched then we are making moves
on a fixed set of n piles. By the induction hypothesis after a finite number
of moves all their sizes will be zero. At that point we will have to reduce the
i’th pile. Whether we do this only at the end or at some intermediate step
in either case the size of the smallest pile among the n+1 has been reduced.
Since this can only happen at most s times, all n+1 piles will have size zero
in a finite number of steps, thus proving the induction.

One might wonder why we consider Lythoff(K) a natural generalization of
Wythoff. We have already shown that Lythoff(2) is indeed the usual Wythoff
game, but in view of the fact that for K > 2 the K-Pile game isn’t even a
short game (a short game may only have a finite number of sub-positions)
and thus isn’t even in the same class as the Wythoff game, in what sense is it
a natural extension? Isn’t the K-Pile game defined in section 5, Problem 11
of [3] more natural? The reason we feel our current definition best retains the
flavor of the original Wythoff game is the fact that, as in the original game,
the pile sizes of its P-Positions form a disjoint cover of the natural numbers.
We prove this statement in the next section. To the best of our knowledge
this does not occur for any other generalizations to K piles.
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3 P-Positions of K-Pile Wythoff Games

Definition 2. For any set of numbers S and a number x we define the
shifted set, x + S, to be {x + s | s ∈ S }. For two sets S and T we define
S + T = { s+ t | s ∈ S, t ∈ T }.

Definition 3. For a non-decreasing sequence of numbers A = [a1, a2, . . . , aK ]
we define the difference set, D(A), to be { aj − ai | 1 ≤ i < j ≤ K }. Note
that D(A) contains only non-negative numbers.

Notation:

1. The set of components a1, a2, ..., aK of the vector A = [a1, a2, . . . , aK ]
are denoted set(A).

2. To enhance readability we use the following conventions in the notation
below: Subscripts i, j, k, l denote the index of a pile in a position, while
superscripts n,m denote different positions.

Lemma 1. If B ≺ A and A∩B 6= ∅ then there exists a legal move A → B.

Proof. If A ∩ B 6= ∅ there exist i, j such that ai = bj. We can then leave
pile i untouched and choose a set of K − 1 integers to move the other piles
from A to B. So there exists a legal move from A → B.

Lemma 2. If B ≺ A and A∩B = ∅ then there exists a legal move A → B

if and only if there exist i, j such that aj − ai ∈ D(B).

Proof. Since B ∩ A = ∅ no pile in A is in B. Since S only has K − 1
elements a legal move exists if and only if a single number s ∈ S can be used
to move two piles of A to two piles of B. This can happen if and only if
there exist indices i, j, k, l such that ai − bk = aj − bl, which happens if and
only if aj − ai = bl − bk. By switching indices i ↔ j and k ↔ l if necessary,
we can assume bk < bl so bl − bk ∈ D(B) as required.

Motivation: Due to Lemmas 1 and 2 we want to construct the P-positions
recursively so that the n’th P-position has no piles of the same size as in any
of the previous P-positions and that the differences in the sizes of its piles
don’t match any previous differences. This is achieved in the following con-
struction.

6



Construction 1. We recursively construct a set of candidate P-positions,
Pn and the sets Xn, Dn as follows:

P0 = [0, 0, . . . , 0]

and then for all n > 0

Xn =
⋃

0≤m<n

set(Pm)

Dn =
⋃

0≤m<n

D(Pm)

and then, for a given n, define

Qn
1 = Xn

and then recursively for each 1 ≤ i ≤ K

pni = mex {Qn
i }

Qn
i+1 = Qn

i ∪ (pni +Dn) = Xn
⋃

j≤i

(pnj +Dn).

Lemma 3. For all n > 0 we have pn1 > pn−1

1 and for all 1 ≤ i < K we have
pni+1 > pni . In particular, Pn lists the pile sizes in the correct order.

Proof. Since Xn ⊃ Xn−1 we have pn1 ≥ pn−1

1 . Since pn−1

i ∈ Pn−1 ⊂ Xn we
have pn1 6= pn−1

1 . So pn1 > pn−1

1 .
Since Qn

i+1 ⊃ Qn
i we have pni+1 ≥ pni . Since 0 ∈ D1 ⊂ Dn for all n > 0, we

have pni = pni + 0 ∈ Qn
i+1 and therefore pni+1 6= pni . So pni+1 > pni .

Lemma 4. The sequences {pn1}, {p
n
2}, . . . , {p

n
K} for n > 0 form a disjoint

cover of the positive integers.

Proof. By the definition of pn1 = mex {Xn} it is clear that {Xn}n>0 is a
covering. For all i, Qn

i ⊃ Qn
1 = Xn so pni /∈ Xn. By Lemma 3 pni+1 > pni . So

the cover is disjoint.

Lemma 5. For all n > m there is no legal move from Pn to Pm.

Proof. By Lemma 4 no pile in Pn has the same number of tokens as a pile in
Pm. So by Lemma 2 a legal move exists only if there exist i, j with pni −pnj ∈
D(Pm). But then from Lemma 3 we have i > j. So pni ∈ (pnj + Dn) ⊂ Qn

i

contradicting pni = mex {Qn
i }.
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Definition 4. The set of candidate P-positions, P , is {Pn}n≥0. The set of
candidate N-positions, N , is the complement of P .

Lemma 6. For every position in N there exists a legal move to some position
in P .

Proof. Let V ∈ N . By Lemma 4 v1 = pnk for some n, k. If k > 1 then
by Lemma 3 v1 = pnk > pn1 so Pn ≺ V. So the move V → Pn leaving v1
unchanged is legal.

If k = 1 then v1 = pn1 and there exists a first i such that vj = pnj for all
j < i and vi 6= pni (since V 6= Pn). If pni < vi then again the move V → Pn

is legal.
If vi < pni then, since pni = mex {Qn

i },

vi ∈ Qn
i = Xn

⋃

j<i

(pnj +Dn) = Xn
⋃

j<i

(vj +Dn).

If vi ∈ Xn then vi equals some pml and since v1 = pn1 > pm1 , by Lemma 3 the
move V → Pm leaving vi untouched is legal.

Finally, if

vi ∈
⋃

j<i

(vj +Dn),

then vi − vj ∈ D(Pm) for some m < n. Since v1 = pn1 > pm1 , by lemma (2)
the move V → Pm is legal.

Theorem 2. The P-positions other than 0 of Lythoff(K) are given recur-
sively by construction (1). The corresponding sequences {pn1}, {p

n
2}, . . . , {p

n
K}

for n > 0 form a disjoint cover of the positive integers.

Proof. By Lemmas 5 and 6 P and N are the P-positions and N-positions of
the game. By Lemma 4 the P-positions other than 0 form a disjoint cover
of the positive integers.

4 Variable K-Pile Wythoff Games

We now extend the above definitions and theorems to a wider class of games
which we call Variable Lythoff(K) games. As motivation for the extension
we first reformulate the definition of a legal move in a Lythoff(K).
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Definition 5. A move from A to B in Lythoff(K) is legal if B ≺ A and
either A ∩B 6= ∅ or D(A) ∩D(B) 6= ∅

By Lemmas 1 and 2 the new definition is equivalent to the old one given
in Definition 1.

Before proceeding to the definition of a variable Lythoff(K) game we will
also need the following

Definition 6. We define the open interval (i, j) as the set of integers { k | i <
k < j }. We define simliarly the closed and half open intervals [i, j], [i, j), (i, j].

And finally

Definition 7. A Variable Lythoff(K) game has the same positions as those
of Lythoff(K). In addition there is given a function f : NK → N

+. A move

from A to B is legal if B ≺ A and either A ∩B 6= ∅ or D(A) ∩
(

D(B) +
[

0, f(B)
)

)

6= ∅.

We denote the variable Lythoff(K) game defined by f as Lythoff(Kf ).

An example Lythoff(Kf ) game forK = 3 is given by f(B) ≡ f([B1, B2, B3]) ≡
1 +B3 −B2. We list the first few positions B and the values of D(B), f(B)
and D(B) +

[

0, f(B)
)

. The Legality column specifies whether a move from
A = [2, 4, 6] to B is legal and, if so, at least one reason why. Note that
D(A) = {2}. Since the number of possible sub-positions is infinite, the
below table obviously doesn’t contain all legal moves from A.

Variable 3-Pile Wythoff
B1 B2 B3 D(B) f(B) = 1 + B3 −B2 D(B) +

[

0, f(B)
)

Legality
0 0 0 {0} 1 {0} Illegal
0 0 1 {0, 1} 2 {0, 1, 2} D’s intersect
0 0 2 {0, 2} 3 {0, 1, 2, 3, 4} D’s intersect
0 1 1 {0, 1} 1 {0, 1} Illegal
0 1 2 {1} 2 {1, 2} D’s intersect
0 2 2 {0, 2} 1 {0, 2} D’s intersect
1 1 1 {0} 1 {0} Illegal
1 1 2 {0, 1} 2 {0, 1, 2} D’s intersect
1 2 2 {0, 1} 1 {0, 1} A and B intersect
2 2 2 {0} 1 {0} A and B intersect
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Lemma 7. If B ≺ A and A∩B = ∅ then there exists a legal move A → B

if and only if there exist i < j such that aj − ai ∈ D(B) +
[

0, f(B)
)

.

Proof. Immediate from the definition of a legal move.

Construction 2. We duplicate construction (1) with a single change. We
replace the definition of Dn with

Dn =
⋃

0≤m<n

D(Pm) +
[

0, f(Pm)
)

.

Theorem 3. The P-positions other than 0 of Lythoff(Kf) are given recur-
sively by construction (2) and form a disjoint cover of the positive integers.

Proof. The corresponding proofs of Lemmas 3-6 and Theorem 2 remain un-
changed after replacing Lemma 2 with Lemma 7.

5 Variable 2-Pile Wythoff Games and Com-

plementary Sequences

Theorem 4. The P-positions of Lythoff(2f) are given by pn1 = mex {Xn}
and pn2 = pn1 +

∑n−1

m=0
f(Pm).

Proof. pn1 = mex {Xn} follows directly from construction 2 and Theorem 3.
We prove pn2 = pn1 +

∑n−1

m=0
f(Pm) by induction. Since, by convention, the

empty sum is zero, we have p02 = p01 + 0 = 0 so P0 = [0, 0] as required. For
n > 0 we have

Dn =
⋃

0≤m<n

D(Pm) +
[

0, f(Pm)
)

=
⋃

0≤m<n

m−1
∑

s=0

f(Ps) +
[

0, f(Pm)
)

=
⋃

0≤m<n

[

m−1
∑

s=0

f(Ps),
m−1
∑

s=0

f(Ps) + f(Pm)

)

=
⋃

0≤m<n

[

m−1
∑

s=0

f(Ps),
m
∑

s=0

f(Ps)

)

=

[

0,
n−1
∑

s=0

f(Ps)

)

.
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from Theorem 3, looking back at construction (1) we have

pn2 = mex {Qn
2} = mex {Xn ∪ (pn1 +Dn)}

= mex

{

Xn ∪ pn1 +

[

0,
n−1
∑

s=0

f(Ps)

)}

= mex

{

Xn ∪

[

pn1 , p
n
1 +

n−1
∑

s=0

f(Ps)

)}

.

But Xn contains all the integers less than pn1 and
[

pn1 , p
n
1 +

∑n−1

s=0
f(Ps)

)

contains the rest of the integers up to pn1 +
∑n−1

s=0
f(Ps), so

pn2 = pn1 +
n−1
∑

s=0

f(Ps)

(the last equality is true because, by induction, all elements of Xn are less
than pn1 +

∑n−1

s=0
f(Ps)).

Note: If we choose f to be a constant function, f(X) = a for all X with
a > 0, then the P positions of Lythoff(2f ) are

pn1 = mex
{

XN
}

, pn2 = pn1 + na

which are the same as the P positions of the generalized Wythoff game in-
troduced in [5].

Definition 8. An ordered pair of sequences, ({yn}n>0, {z
n}n>0) which form a

disjoint cover of N+ is monotonic if y1 < z1 and for all n > 0, zn+1−yn+1 >
zn − yn.

It is obvious that y1 = 1 and yn < zn for all n and therefore that yn =
mex {{yi}i<n, {z

i}i<n}.
From Theorem 4 we know that the P positions, ({pn1}n>0, {p

n
2}n>0), other

than [0, 0] of Lythoff(2f ) form a monotonic disjoint cover of N+. The converse
is also true:

Theorem 5. Every monotonic disjoint cover of N+, ({yn}n>0, {z
n}n>0), is

the P positions other than [0, 0] of some Lythoff(2f).
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Proof. Define f(0, 0) = z1 − y1 = z1 − 1 > 0. For all n ∈ N
+ either n = yi

or n = zi. If n = yi define f(yi, zi) = (zi+1 − yi+1)− (zi − yi). For all other
(n,m) the value of f(n,m) will turn out to be irrelevant, so define f(n,m) to
be an arbitrary positive integer (for example, 1). Then, since ({yn}, {zn}) is
monotonic, f defines a function from N

2 → N
+ and therefore defines a game

Lythoff(2f ). If [an, bn] are the P -positions other than [0, 0] of Lythoff(2f )
then we prove by induction that for all n > 0, an = yn and bn = zn.

For the case n = 1 we have a1 = 1 = y1 and b1 = a1+f(0) = a1+z1−y1 =
z1. Assume by induction that am = ym and bm = zm for all m < n. Then

an = mex {{am}m<n, {b
m}m<n}

= mex {{ym}m<n, {z
m}m<n} = yn,

and

bn = an +
n−1
∑

m=0

f(am, bm)

= an − an−1 + an−1 +
n−2
∑

m=0

f(am, bm) + f(an−1, bn−1)

= an − an−1 + bn−1 + f(an−1, bn−1)

= yn − yn−1 + zn−1 + f(an−1, Bn−1)

= yn − yn−1 + zn−1 + ((zn − yn)− (zn−1 − yn−1))

= zn.

Corollary 1. In particular, if two Beatty Sequences ⌊np+ βp⌋n>0
, ⌊nq + βq⌋n>0

form a disjoint cover of N+ with q ≥ 3 then they are the P positions of some
Lythoff(2f).

Proof. First we note that ⌊x⌋ + ⌊y⌋ ≤ ⌊x+ y⌋ ≤ ⌊x⌋ + ⌊y⌋ + 1. Since
1/p+ 1/q = 1 we have p < 2. But then

⌊(n+ 1)q + βq⌋ − ⌊(n+ 1)p+ βp⌋ = ⌊nq + βq + q⌋ − ⌊np+ βp + p⌋

≥ ⌊nq + βq⌋+ ⌊q⌋ − (⌊np+ βp⌋+ ⌊p⌋+ 1)

= ⌊nq + βq⌋+ ⌊np+ βp⌋+ ⌊q⌋ − ⌊p⌋ − 1

≥ ⌊nq + βq⌋+ ⌊np+ βp⌋+ 1.

So the Beatty sequences form a monotonic disjoint cover of N+ and the result
follows immediately from Theorem 5.
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6 Further Work

It would seem that many other token taking games that have been discussed
in the literature would also be amenable to “Lexification” which might lead
to interesting games in their own right. For classic Nim, where each move
is restricted to taking tokens from a single pile, “Lexification” would add
nothing. Similarly, we noticed that “Lexification” has no effect on the classic
2-Pile Wythoff game. But there are many games which allow taking from
more than two piles. For example in [6] it is shown that a natural general-
ization of Nim to the case of K > 2 heaps of sizes [a1, a2, ..., aK ] is to either
remove any positive number of tokens from a single heap, or remove xi tokens
from each heap simultaneously, subject to the conditions: (i) xi > 0 for some
i, (ii) xi ≤ ai for all i, (iii) x1⊕x2⊕ ...⊕xK = 0, where ⊕ denotes Nim-sum.
This game has some interesting open conjectures regarding its P-positions.
We can “Lexify” this game by allowing some of the xi to be negative (thus
adding tokens) and requiring that moves be to positions which are earlier in
lexicographic order.

Additional directions of research specific to Lythoff games would be: To
investigate Lythoff(2f ) for f linear, or, more generally, Lythoff(Kf ) for suit-
able functions f that produce ’interesting’ games; Misère play; Reducing
the time complexity of calculating the P positions; Computing the Sprague-
Grundy function to enable play of several games simultaneously.
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