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Abstract

An important aspect of the classic game Wythoff is that its P-positions
form a disjoint cover of the positive integers by two sequences. Though
generalizations of Wythoff to K > 2 piles abound, we believe that the
generalization presented here is the first where the P-positions form a
disjoint cover of the positive integers by K > 3 sequences. To achieve
this we add a novel ingredient – we allow pile sizes to increase. This
leads, inter alia, to games with infinitely many sub-positions, yet ev-
ery such game ends with no remaining tokens, due to a lexicographic
order ≺ imposed on the moves.

1 Introduction

The original definition of Wythoff is [14]:

Definition 1. The game is played by two persons. Two piles of counters
are placed on the table, the number of each pile being arbitrary. The players
play alternately and either take from one of the piles an arbitrary number of
counters or from both piles an equal number. The player who takes up the
last counter or counters, wins.

A well known property of Wythoff is that the two sequences of its P-positions
form a disjoint cover of N+. We are interested in extending Wythoff to K > 2
piles while retaining the property that the K sequences form a disjoint cover
of N+.

There are many generalizations of Wythoff. For example, see most of
the 150 bibliographic items in ’Wythoff Visions’ [2]. A significant effort has
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been made to generalize Wythoff to more than two piles, some of the more
successful ones are mentioned below.

In [10], the P-positions for a K-Pile game, K ≥ 2, are constructed using
triangular numbers, and the resulting strategy is polynomial-time, whereas
most games are either PSPACE-complete or EXPTIME-complete. However,
the P-positions do not tile N+. There is some resemblance between the proofs
of [10] and the present paper.

In [4] a generalization of Wythoff to 3 piles is constructed based on the
tribonacci word. In this case the P-positions do tile N+. This is further
generalized in [3]. It does not look like either game can be extended to
K > 3 piles.

A quite different generalization is Moore’s Nimk, [11], which is a variation
of Nim in which up to k piles can be reduced. Thus Nim1 is Nim. A tractable
strategy can be given by expressing the pile sizes in binary as in Nim, but
XOR-ing them to the base k + 1. If this sum (without carries) is 0, we
have a P-position. Otherwise, it is an N-position, and a move to 0 wins. No
polynomial strategy seems to be known for this game. Another generalization
appears in Fraenkel, [5].

In [9] it is shown that a natural generalization of Nim to the case of K > 2
piles of sizes [a1, a2, ..., aK ] is to either remove any positive number of tokens
from a single pile, or remove xi tokens from each pile simultaneously, subject
to the conditions: (i) xi > 0 for some i, (ii) xi ≤ ai for all i, (iii) x1 ⊕ x2 ⊕
...⊕xK = 0, where ⊕ denotes Nim-sum (also known as addition over GF(2),
or XOR). The player making the last move wins and the opponent loses. See
also [2] section 4. This game leads to two open conjectures regarding how
similar the P-positions are to those of Wythoff. See [12] and [13] for their
statement and partial results. Also in this game the P-positions don’t tile
N+.

A special case of the game we define in section 5 is analyzed in [8], which
itself is a generalization of Wythoff obtained by weakening the constraint of
taking equal numbers from both piles.

In a private communication, Professor Shigeki Akiyama shared a gener-
alization similar to ours for the 3 pile case. Though his ruleset is slightly
different, we believe that his P-positions may be identical to ours.

The layout of the paper is as follows. In section 2 we introduce our
generalization of Wythoff to K > 2 piles utilizing lexicographic order. We
call the new game Wytlex. In section 3 we present a recursive construction of
the P-positions of Wytlex and show that, as in the case of classical Wythoff,
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they form a disjoint cover of N+. In section 4 we discuss variable Wytlex with
a wider category of moves and prove that again the P-positions form a disjoint
cover of N+. Finally in section 5 we concentrate on 2-Pile variable Wytlex
and show that not only do the P-positions always form a disjoint cover of N+

but for every pair of complementary sequences in a broad class there exists
a variable 2-Pile Wytlex with matching P-positions. Most nonhomogeneous
Beatty sequences lie within the specified class. The generalization of Wythoff
which appears in [8] is a special case of our 2-Pile variable Wytlex.

2 K-Pile Wytlex

A very natural generalization of Wythoff is:

Definition 2. A two-player game of Wythoff(K) is played on K ≥ 2 piles of
tokens. A legal move is to choose two of the piles and make on them a legal
Wythoff move, and from each of the other piles remove zero or more tokens
with no restriction.

Unfortunately, the 13th and 14th P-positions of Wythoff(4) (in order of
increasing total number of tokens) are [27, 52, 81, 104] and [27, 55, 80, 103] and
both contain 27. Since we are interested in a generalization of Wythoff where
the P-positions form a disjoint cover of N+, we instead analyze a “Lexified”
version of the game as follows.

Recall lexicographic order: Given vectors A = [a1, a2, ..., aK ] and
B = [b1, b2, ..., bK ], we say that B ≺ A if bi < ai for the first index i at
which they differ. For unordered sets (such as pile sizes in a game) one first
arranges the elements into a vector in nondecreasing order, and then applies
lexicographic ordering on the corresponding vectors.

Definition 3. A two-player game of Wytlex(K) is played on K ≥ 2 piles
of tokens. A legal move is to choose two of the piles and either remove or
add any number of tokens from one of them, or remove or add the same
number of tokens from both of them. From each of the other piles remove or
add zero or more tokens with no restriction. For a move from A to B to be
legal, one must have B ≺ A.

A position, A, in Wytlex(K) is specified by giving the sizes of the piles
in nondecreasing order [a1, a2, . . . , aK ] with 0 ≤ a1 ≤ a2 ≤ . . . ≤ aK .
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Note: Reducing a pile to size 0 does not change the nature of the game.
It is still a K-Pile game, not a (K-1)-Pile game. In such a case we may
always move directly from [0, a2, a3, . . . , aK ] to [0, 0, 0, . . . , 0] by performing
a Wythoff move on [0, a2] to [0, 0] and removing all tokens from the other
piles.

2.1 Examples

We give some examples of positions and moves of Wytlex(K) for K = 3.

• [0, 0, 0] has no legal moves, since it is first in lexicographical order.

• [0, 10, 30] has a legal move to [0, 0, 0] as follows: Make a Wythoff move
on the first two piles to [0, 0] and then remove 30 tokens from the third
pile

• [0, 10, 30] has a legal move to [0, 9, 50] as follows: Make a Wythoff move
on the first and third piles from [0, 30] to [0, 50] (because in Wytlex we
may add tokens) and then remove 1 token from the second pile. Since
[0, 9, 50] ≺ [0, 10, 30] the move is legal.

• [10, 10, 20] has a legal move to [5, 12, 12] as follows: Make a Wythoff
move on the first and second piles adding 2 tokens to each pile. Then
remove 15 tokens from the last pile. We thus have 12 tokens in each of
the first two piles and 5 in the third. Representing this in nondecreasing
order we have [5, 12, 12]. Since [5, 12, 12] ≺ [10, 10, 20] the move is legal.

• [1, 2, 3] has no legal move to [0, 0, 0] since no two of the piles have a
legal Wythoff move to [0, 0]

Note that Wytlex(2) is just classical Wythoff. Indeed if tokens are added
to one pile, either the other pile remains unchanged or also has tokens added
to it. In either case the lexicographic order would increase so such moves are
not allowed. That leaves us with the moves of Wythoff(2) which is obviously
identical to Wythoff.

One might wonder if the un-natural permission to increase pile size ac-
tually “adds” anything to the game. Might these moves be reversible? To
show that this is not so, below are the first 13 P-positions of Wytlex(3) ver-
sus those of Wythoff(3). Only the last row differs. The position [23, 39, 58]
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is a P-position in Wythoff(K), but in Wytlex(K) it has a legal move to the
previous P-position [20, 37, 53]: we make a “Lexified” Wythoff move on the
first two piles of [23, 39, 58], adding 14 tokens to each, and remove 38 tokens
from the third pile.

Wytlex(3)

n a1 a2 a3
0 0 0 0
1 1 2 3
2 4 7 10
3 5 9 13
4 6 11 16
5 8 15 22
6 12 21 30
7 14 25 36
8 17 29 41
9 18 31 44
10 19 34 49
11 20 37 53
12 23 42 61

Wythoff(3)

n a1 a2 a3
0 0 0 0
1 1 2 3
2 4 7 10
3 5 9 13
4 6 11 16
5 8 15 22
6 12 21 30
7 14 25 36
8 17 29 41
9 18 31 44
10 19 34 49
11 20 37 53
12 23 39 58

We note that in Wytlex(K) with K > 2 any position T with at least two
non-empty piles has an infinite number of sub-positions and there is no upper
bound on the number of moves till the game ends. This is true because if
the two piles have sizes 0 < a ≤ b then we can remove 1 token from a and
add n > 0 tokens to b, leaving the other piles untouched (one of the other
piles becomes the untouched pile for the Wythoff move). Since the result is
earlier in lexicographic order, the move is legal for all n > 0. Even so, due to
the constraint on lexicographic order, Wytlex(K) always ends after a finite
number of moves.

We would have preferred proving the theorems in this paper for the case
of Wythoff(K) instead of Wytlex(K) but we have not been able to do so.
In any case, we think that the concept of “Lexifying” a takeaway game has
value in its own right and might be usefully applied to other takeaway games.
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3 P-positions of Wytlex

Definition 4. For any set of numbers S and a number x we define the
shifted set, x + S, to be {x + s | s ∈ S }. For two sets S and T we define
S + T = { s+ t | s ∈ S, t ∈ T }.

Definition 5. For a nondecreasing sequence of numbers A = [a1, a2, . . . , aK ]
we define the difference set, D(A), to be { aj − ai | 1 ≤ i < j ≤ K }. Note
that D(A) contains only non-negative numbers.

Notation:

1. The set of components a1, a2, ..., aK of the vector A = [a1, a2, . . . , aK ]
is denoted set(A).

2. To enhance readability we use the following notational convention: Sub-
scripts i, j, k, l denote the index of a pile in a position, while superscripts
n,m denote different positions. For example, P n

i may denote the size
of the i’th pile of the n’th P-position.

Lemma 1. If B ≺ A and A∩B 6= ∅ then there exists a legal move A→ B.

Proof. If A∩B 6= ∅ there exist i, j such that ai = bj. We choose pile i as one
of the two piles for the Wythoff move, leaving it untouched. We add/remove
tokens from the other piles as necessary to move from A to B. Thus there
exists a legal move A→ B.

Lemma 2. If B ≺ A and A∩B = ∅ then there exists a legal move A→ B
if and only if there exist i, j such that aj − ai ∈ D(B).

Proof. Since B ∩ A = ∅ the Wythoff component of the legal move must
add/remove the same number T of tokens from both piles. This can happen
if and only if there exist indices i, j, k, l such that ai−T = bk and aj−T = bl,
which happens if and only if ai − bk = aj − bl if and only if aj − ai = bl − bk.
By switching indices i↔ j and k ↔ l if necessary, we can assume bk < bl so
bl − bk ∈ D(B) as required.

Motivation: Due to Lemmas 1 and 2 we want to construct the P-positions
recursively so that the n’th P-position has no piles of the same size as in any
of the previous P-positions and that the differences in the sizes of its piles
don’t match any previous differences. This is achieved in the following con-
struction.
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Construction 1. We recursively construct a set of candidate P-positions,
Pn and the sets Xn, Dn as follows:

P0 = [0, 0, . . . , 0]

and then for all n > 0

Xn =
⋃

0≤m<n

set(Pm)

Dn =
⋃

0≤m<n

D(Pm)

and then, for a given n, define

Qn
1 = Xn

and then recursively for each 1 ≤ i < K

pni = mex {Qn
i }

Qn
i+1 = Qn

i ∪ (pni +Dn) = Xn
⋃
j≤i

(pnj +Dn).

Lemma 3. For all n > 0 we have pn1 > pn−1
1 and for all 1 ≤ i < K we have

pni+1 > pni . In particular, Pn lists the pile sizes in the correct order.

Proof. Since Xn ⊃ Xn−1 we have pn1 ≥ pn−1
1 . Since pn−1

i ∈ Pn−1 ⊂ Xn we
have pn1 6= pn−1

1 . So pn1 > pn−1
1 .

Since Qn
i+1 ⊃ Qn

i we have pni+1 ≥ pni . Since 0 ∈ D1 ⊂ Dn for all n > 0, we
have pni = pni + 0 ∈ Qn

i+1 and therefore pni+1 6= pni . So pni+1 > pni .

Lemma 4. The sequences {pn1}, {pn2}, . . . , {pnK} for n > 0 form a disjoint
cover of the positive integers.

Proof. By the definition of pn1 = mex {Xn} it is clear that {Xn}n>0 is a
covering. For all i, Qn

i ⊃ Qn
1 = Xn so pni /∈ Xn. By Lemma 3 pni+1 > pni . So

the cover is disjoint.

Lemma 5. For all n > m there is no legal move from Pn to Pm.

Proof. By Lemma 4 no pile in Pn has the same number of tokens as a pile in
Pm. So by Lemma 2 a legal move exists only if there exist i, j with pni −pnj ∈
D(Pm). But then from Lemma 3 we have i > j. So pni ∈ (pnj + Dn) ⊂ Qn

i

contradicting pni = mex {Qn
i }.
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We denote by P the set of candidate P-positions, {Pn}n≥0. We denote
the complement of P by N, namely the set of candidate N-positions.

Lemma 6. For every position in N there exists a legal move to some position
in P .

Proof. Let V ∈ N . By Lemma 4 v1 = pnk for some n, k. If k > 1 then
by Lemma 3 v1 = pnk > pn1 so Pn ≺ V. So the move V → Pn leaving v1
unchanged is legal.

If k = 1 then v1 = pn1 and there exists a first i such that vj = pnj for all
j < i and vi 6= pni (since V 6= Pn). If pni < vi then again the move V → Pn

is legal.
If vi < pni then, since pni = mex {Qn

i },

vi ∈ Qn
i = Xn

⋃
j<i

(pnj +Dn) = Xn
⋃
j<i

(vj +Dn).

If vi ∈ Xn then vi equals some pml and since v1 = pn1 > pm1 , by Lemma 3 the
move V→ Pm leaving vi untouched is legal.

Finally, if

vi ∈
⋃
j<i

(vj +Dn),

then vi − vj ∈ D(Pm) for some m < n. Since v1 = pn1 > pm1 , by lemma (2)
the move V→ Pm is legal.

Theorem 1. The P-positions other than 0 of Wytlex(K) are given recur-
sively by construction (1). The corresponding sequences {pn1}, {pn2}, . . . , {pnK}
for n > 0 form a disjoint cover of the positive integers.

Proof. By Lemmas 5 and 6 P and N are the P-positions and N-positions of
the game. By Lemma 4 the P-positions other than 0 form a disjoint cover
of the positive integers.

The complexity of the above recursive algorithm depends on the size of
the sets Qn

i , which in turn depends on the sizes of Xn and Dn. Obviously
|Xn| ≤ nK and |Dn| ≤ nK2. So |Qn

i | ≤ |Qn
K | ≤ nK3. The recursive

construction of P n thus requires at most n2K3 steps. For fixed K this is
O(n2). We have tried to find a much more efficient arithmetic or algebraic
representation of the P-positions a’ la those in [8] but have had no success.
Using the method of [1] we have shown that the P-positions of Wytlex(3)
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can’t be described by any Beatty sequence, homogeneous or not. The same
remains true far into the sequence, even after ignoring P-positions with total
pile size less than 2 million.

4 Variable K-Pile Wytlex

We now extend the above definitions and theorems to a wider class of games
which we call Variable Wytlex(K). As motivation for the extension we first
reformulate the definition of a legal move in Wytlex(K).

Definition 6. A move from A to B in Wytlex(K) is legal if B ≺ A and
either A ∩B 6= ∅ or D(A) ∩D(B) 6= ∅

By Lemmas 1 and 2 the new definition is equivalent to the old one given
in Definition 3.

Before proceeding to the definition of a variable Wytlex(K) we will also
need the following

Definition 7. We define the open interval (i, j) as the set of integers { k | i <
k < j }. We define similarly the closed and half open intervals [i, j], [i, j), (i, j].

And finally,

Definition 8. A game of Variable Wytlex(K) has the same positions as
those of Wytlex(K). In addition there is given a function f : NK → N+.
A move from A to B is legal if B ≺ A and either A ∩ B 6= ∅ or D(A) ∩(
D(B) +

[
0, f(B)

))
6= ∅.

We denote the variable Wytlex(K) defined by f as Wytlex(K, f).

An example Wytlex(K, f) for K = 3 is given by f(B) ≡ f([B1, B2, B3]) ≡
1 +B3 −B2. We list the first few positions B and the values of D(B), f(B)
and D(B) +

[
0, f(B)

)
. The Legality column specifies whether a move from

A = [2, 4, 6] to B is legal and, if so, at least one reason why. Note that
D(A) = {2}. Since the number of possible sub-positions is infinite, the
below table obviously doesn’t contain all legal moves from A.
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Variable 3-Pile Wytlex
B1 B2 B3 D(B) f(B) = 1 +B3 −B2 D(B) +

[
0, f(B)

)
Legality

0 0 0 {0} 1 {0} Illegal
0 0 1 {0, 1} 2 {0, 1, 2} D’s intersect
0 0 2 {0, 2} 3 {0, 1, 2, 3, 4} D’s intersect
0 1 1 {0, 1} 1 {0, 1} Illegal
0 1 2 {1} 2 {1, 2} D’s intersect
0 2 2 {0, 2} 1 {0, 2} D’s intersect
1 1 1 {0} 1 {0} Illegal
1 1 2 {0, 1} 2 {0, 1, 2} D’s intersect
1 2 2 {0, 1} 1 {0, 1} A and B intersect
2 2 2 {0} 1 {0} A and B intersect

Lemma 7. If B ≺ A and A∩B = ∅ then there exists a legal move A→ B
if and only if there exist i < j such that aj − ai ∈ D(B) +

[
0, f(B)

)
.

Proof. Immediate from the definition of a legal move.

Construction 2. We duplicate construction (1) with a single change. We
replace the definition of Dn with

Dn =
⋃

0≤m<n

D(Pm) +
[
0, f(Pm)

)
.

Theorem 2. The P-positions other than 0 of Wytlex(K, f) are given recur-
sively by construction (2) and form a disjoint cover of the positive integers.

Proof. The corresponding proofs of Lemmas 3-6 and Theorem 1 remain un-
changed after replacing Lemma 2 with Lemma 7.

5 Variable 2-Pile Wytlex and Complemen-

tary Sequences

Theorem 3. The P-positions of Wytlex(2, f) are given by pn1 = mex {Xn}
and pn2 = pn1 +

∑n−1
m=0 f(Pm).

Proof. pn1 = mex {Xn} follows directly from construction 2 and Theorem 2.
We prove pn2 = pn1 +

∑n−1
m=0 f(Pm) by induction. Since, by convention, the
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empty sum is zero, we have p02 = p01 + 0 = 0 so P0 = [0, 0] as required. For
n > 0 we have

Dn =
⋃

0≤m<n

D(Pm) +
[
0, f(Pm)

)
=

⋃
0≤m<n

m−1∑
s=0

f(Ps) +
[
0, f(Pm)

)
=

⋃
0≤m<n

[
m−1∑
s=0

f(Ps),
m−1∑
s=0

f(Ps) + f(Pm)

)

=
⋃

0≤m<n

[
m−1∑
s=0

f(Ps),
m∑
s=0

f(Ps)

)

=

[
0,

n−1∑
s=0

f(Ps)

)
.

from Theorem 2, looking back at construction (1), we have

pn2 = mex {Qn
2} = mex {Xn ∪ (pn1 +Dn)}

= mex

{
Xn ∪ pn1 +

[
0,

n−1∑
s=0

f(Ps)

)}

= mex

{
Xn ∪

[
pn1 , p

n
1 +

n−1∑
s=0

f(Ps)

)}
.

But Xn contains all the integers less than pn1 and
[
pn1 , p

n
1 +

∑n−1
s=0 f(Ps)

)
contains the rest of the integers up to pn1 +

∑n−1
s=0 f(Ps), so

pn2 = pn1 +
n−1∑
s=0

f(Ps)

(the last equality is true because, by induction, all elements of Xn are less
than pn1 +

∑n−1
s=0 f(Ps)).

Note: If we choose f to be a constant function, f(X) = a for all X with
a > 0, then the P-positions of Wytlex(2, f) are

pn1 = mex
{
XN
}
, pn2 = pn1 + na

11



which are the same as the P-positions of the generalization of Wythoff intro-
duced in [8].

Definition 9. An ordered pair of sequences, ({yn}n>0, {zn}n>0) which form
a disjoint cover of N+is monotonic if y1 < z1 and for all n > 0, zn+1−yn+1 >
zn − yn.

It is obvious that y1 = 1 and yn < zn for all n and therefore that yn =
mex {{yi}i<n, {zi}i<n}.

From Theorem 3 we know that the P-positions, ({pn1}n>0, {pn2}n>0), other
than [0, 0] of Wytlex(2, f), form a monotonic disjoint cover of N+. The
converse is also true:

Theorem 4. For every monotonic disjoint cover of N+, ({yn}n>0, {zn}n>0)
there exists a function f such that the P-positions other than [0, 0] of Wytlex(2, f)
are (yn, zn)n>0.

Proof. Define f(0, 0) = z1 − y1 = z1 − 1 > 0. For all n ∈ N+ either n = yi

or n = zi. If n = yi define f(yi, zi) = (zi+1 − yi+1)− (zi − yi). For all other
(n,m) the value of f(n,m) will turn out to be irrelevant, so define f(n,m) to
be an arbitrary positive integer (for example, 1). Then, since ({yn}, {zn}) is
monotonic, f defines a function from N2 → N+ and therefore defines a game
Wytlex(2, f). If [an, bn] are the P-positions other than [0, 0] of Wytlex(2, f)
then we prove by induction that for all n > 0, an = yn and bn = zn.

For the case n = 1 we have a1 = 1 = y1 and b1 = a1+f(0) = a1+z1−y1 =
z1. Assume by induction that am = ym and bm = zm for all m < n. Then

an = mex {{am}m<n, {bm}m<n}
= mex {{ym}m<n, {zm}m<n} = yn,

and

bn = an +
n−1∑
m=0

f(am, bm)

= an − an−1 + an−1 +
n−2∑
m=0

f(am, bm) + f(an−1, bn−1)

= an − an−1 + bn−1 + f(an−1, bn−1)

= yn − yn−1 + zn−1 + f(an−1, Bn−1)

= yn − yn−1 + zn−1 + ((zn − yn)− (zn−1 − yn−1))

= zn.
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Corollary 1. In particular, if two Beatty sequences bnp+ βpcn>0, bnq + βqcn>0

form a disjoint cover of N+with q ≥ 3 then they are the P-positions of some
Wytlex(2, f).

Proof. First we note that bxc + byc ≤ bx+ yc ≤ bxc + byc + 1. Since
1/p+ 1/q = 1 we have p < 2. But then

b(n+ 1)q + βqc − b(n+ 1)p+ βpc = bnq + βq + qc − bnp+ βp + pc
≥ bnq + βqc+ bqc − (bnp+ βpc+ bpc+ 1)

= bnq + βqc+ bnp+ βpc+ bqc − bpc − 1

≥ bnq + βqc+ bnp+ βpc+ 1.

So the Beatty sequences form a monotonic disjoint cover of N+and the result
follows immediately from Theorem 4.

6 Further Work

It would seem that many other token taking games that have been discussed
in the literature would also be amenable to “Lexification” which might lead
to interesting games in their own right. For classic Nim, where each move
is restricted to taking tokens from a single pile, “Lexification” would add
nothing. Similarly, we noticed that “Lexification” has no effect on classic
2-Pile Wythoff. But there are many games which allow taking from more
than two piles. For example in [9] it is shown that a natural generalization
of Nim to the case of K > 2 piles of sizes [a1, a2, ..., aK ] is to either remove
any positive number of tokens from a single pile, or remove xi tokens from
each pile simultaneously, subject to the conditions: (i) xi > 0 for some i,
(ii) xi ≤ ai for all i, (iii) x1 ⊕ x2 ⊕ ...⊕ xK = 0, where ⊕ denotes Nim-sum.
This game has some interesting open conjectures regarding its P-positions.
We can “Lexify” this game by allowing some of the xi to be negative (thus
adding tokens) and requiring that moves be to positions which are earlier in
lexicographic order.

Two additional directions of research specific to Wytlex would be: To
investigate Wytlex(2, f) for f linear, or, more generally, Wytlex(K, f) for
suitable functions f that produce ’interesting’ games; To reduce the time
complexity of calculating the P-positions, for example by an algebraic ex-
pression or using an enumeration system.
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