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Abstract

A binary word is balanced if the numbers of 1-bits in any 2 subwords of
equal length differ by at most 1. The structure of m ≥ 3 complementary
balanced binary words χj is determined. We prove that they must be
characteristic words of Beatty words bnαj + γjc, and that two of the
binary words must have identical densities of 1-bits, except possibly in
the case where one of the αj is a proper rational (denominator ≥ 2). For
m ≤ 7, the exceptional case is characterized completely. It is further
shown that the above results are equivalent to analogous properties of
complementary Beatty words and words on an alphabet of 2m letters.

Keywords: complementary words, balanced words, Beatty words,
Sturmian words, exact covers

1 Preliminaries

Our aim is to reveal some of the structure of balanced complementary words.
Balanced complementary words appear in various areas, such as combinatorics,
combinatorial number theory, combinatorial games, dynamical systems, job
scheduling and load balancing, optimal routing in queuing networks [2], bil-
liard theory [3]. The paper lies in the interface between combinatorics on words
and combinatorial number theory.

Since many authors use different notations/notions/definitions in this area,
this paper will be (almost) self-contained. We use the language of words, which
is isomorphic to that of sequences.

Throughout, Id (d for domain) and Ir (r for range) denote intervals of inte-
gers. Usually Id = Ir = Z≥1 is used in the literature, but here we consider the
more general case. For α, γ real, α > 0, the word Bn(α, γ) = bnα + γc (n ∈ Id)
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is called a Beatty word with modulus α and shift γ. Its associated Sturmian
word is defined by fn(α, γ) = b(n + 1)α + γc− bnα + γc− bαc (n ∈ Id). Clearly
fn(α, γ) = Ir(f) = {0, 1}.

The characteristic word (or indicator word) χ : Id → {0, 1} of a Beatty word
bnα + γcn∈Id

is defined, for all k ∈ Ir (range of the Beatty word), by

χk(α, γ) =
{

1 if ∃ n ∈ Id such that bnα + γc = k
0 otherwise.

Let m ∈ Z≥2. Given an interval Ir, denote by I the word consisting of 1-bits
over all of Ir, i.e., Ik = 1 for all k ∈ Ir. We can partition I into m binary words
χ1, . . . , χm, i.e., χi

kχj
k = 0 for all i 6= j and all k ∈ Ir, and ∪m

i=1χ
i = I. Such a

collection {χ1, . . . , χm} constitutes a partition of I.
A finite collection of infinite words {A1, . . . , Am} of positive integers is said

to be complementary (over Ir), if Ai
kAj

k = 0 for all i, j ∈ {1, . . . , m}, i 6= j
and all k ∈ Id, and ∪m

i=1A
i = Ir. For complementary Beatty words Ai =

∪n∈Id
bnαi + γic (i = 1, . . . , m) we clearly have

∑m
i=1 α−1

i = 1 if |Id| = ∞.
Let χ1, . . . , χm be binary words. For j ∈ {1, . . . , m}, define a map V :

{0, 1} → {0, . . . , 2m− 1} by

V (χj
k) =

{
2j − 2 if χj

k = 0
2j − 1 if χj

k = 1,
(1)

for all k ∈ Ir. Denote by R the word all of whose entries are m2 −m + 1, i.e.,
Rk = m2 −m + 1 for all k ∈ Ir. Incidentally, the sequence {m2 −m + 1 : m ∈
Z≥0} appears in many contexts. See sequence A002061 in Sloane’s On-Line
Encyclopedia [23]. If for every k ∈ Ir there exists precisely one j satisfying
χj

k = 1, we define a word F by Fk = j.
It turns out that balanced complementary binary words of the form V j

behave the same way as balanced complementary binary words χj . One can
define other such words with similar behavior over finite alphabets.

For αj , γj real, αj > 0 for all j ∈ {1, . . . , m}, suppose that the Beatty
words B(αj , γj) partition Ir, i.e., B(αi, γi) ∩ B(αj , γj) = ∅ for all i, j ∈ Id,
i 6= j, and ∪m

i=1B(αi, γi) = Ir. For every j ∈ {1, . . . , m}, define the words
T j : j ∈ {1, . . . ,m}, analogously to the characteristic word, by

T j
k (αj , γj) =

{
k if ∃ n ∈ Id such that bnαj + γjc = k
0 otherwise,

for all k ∈ Ir. Note that the words T j partition Ir, i.e., T i∩T j = ∅ for all i 6= j,
and ∪m

i=1T
i = Ir iff the words B(αj , γj) partition Ir.

A (sub)word u of a word W (notation: u ∈ W ) is a concatenation of con-
secutive letters of W . If u ∈ W , then |u| denotes the number of letters in u,
counting repetitions. For example, 2625 ∈ 872625119, and |2625| = 4. A word
u is finite if |u| < ∞; otherwise it is infinite. If W is a binary word, over {0, 1},
we define the weight w of u ∈ W to be w(u) =

∑
ai∈u ai = number of 1-bits in

u. For an alphabet A and a finite word u over A, we denote by |u|p the number
of occurrences of p ∈ A ∩ u.
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Definition 1 A word W over a finite alphabet A is balanced if for every finite
subwords u, v ∈ W with |u| = |v| we have ||v|p − |u|p| ≤ 1 for every p ∈ A.

When A = {0, 1}, it is convenient to replace the condition ||v|p − |u|p| ≤ 1
by |w(v)− w(u)| ≤ 1. This is clearly equivalent to ||v|0 − |u|0| ≤ 1, and so the
weight condition is an equivalent condition for balance when A = {0, 1}.

Definition 2 A number is a proper rational, if it has the form p/q, p, q ∈ Z,
gcd(p, q) = 1, with q ≥ 2.

In the following definition, t is a real number.

Definition 3 Let χk, k ∈ Ir be a binary word, |Ir| = ∞. We say that χ has
density t (notation: d(χ) = t) if for every prefix I ′r ⊆ Ir,

lim
|I′r|→∞

w(χ ∩ I ′r)/|I ′r| = t

when the limit exists.

Note. Informally, the density is the percentage of the 1-bits in χ. Similarly,
the density of V j is the percentage of (2j − 1)-digits in it. If χ is periodic with
period p and |I ′r| = p , then it is easy to see that d(χ) = w(χ ∩ I ′r)/p.

In the next section we present our main results, together with two examples
(Tables 1 and 2). In §3 we prove various auxiliary results which reveal con-
nections between Beatty, Sturmian, balanced, characteristic and almost linear
(defined in §3) words. The objective is to show that given any binary balanced
word χ, there exists a Beatty word B such that χ is its characteristic word. Al-
most linear and Sturmian words serve as intermediaries. We can then glean the
properties of binary balanced complementary words from those of complemen-
tary Beatty words. Instead of binary balanced words χ, we can, equivalently,
determine the structure of the balanced words V , or of others, over suitable
finite alphabets. In the final §4 we prove the theorems enunciated in §2.

2 Main results

The following are our main results, where in Theorem 1, j ∈ {1, . . . , m} is
intended throughout.

Theorem 1 Let χ1, . . . , χm be binary words.

Then the words V j are balanced and partition R

⇐⇒ the words χj are balanced and partition I

⇐⇒ ∃ Beatty words B(αj , γj) which partition Ir,

where χj is the characteristic word of B(αj , γj)
and d(χj) = d(V j) = α−1

j .
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Moreover, for any finite subinterval I ′r ⊆ Ir, and every j, the computation of
the admissible αj and γj in B(αj , γj), given the word χj, can be done in linear
time in |I ′r|.

An example illustrating Theorem 1 is depicted in Table 1, where m = 3,
α1 =

√
3/(
√

3 − 1), α2 = α3 = 2
√

3, γ1 = γ2 = 0, γ3 = −√3, d(χ2) = d(χ3),
Rk =

∑m
j=1 V j

k = 7 for all k ∈ Ir, and Fk = j iff χj
k = 1.

Table 1: Complementary balanced words for α1 =
√

3/(
√

3 − 1), α2 = α3 =
2
√

3, γ1 = γ2 = 0, γ3 = −√3. Here Bi denotes B(αi, γi).

n B1 B2 B3 T 1 T 2 T 3 χ1 χ2 χ3 V 1 V 2 V 3 F
1 2 3 1 0 0 1 0 0 1 0 2 5 3
2 4 6 5 2 0 0 1 0 0 1 2 4 1
3 7 10 8 0 3 0 0 1 0 0 3 4 2
4 9 13 12 4 0 0 1 0 0 1 2 4 1
5 11 17 15 0 0 5 0 0 1 0 2 5 3
6 14 20 19 0 6 0 0 1 0 0 3 4 2
7 16 24 22 7 0 0 1 0 0 1 2 4 1
8 18 27 25 0 0 8 0 0 1 0 2 5 3
9 21 31 29 9 0 0 1 0 0 1 2 4 1
10 23 34 32 0 10 0 0 1 0 0 3 4 2
11 26 38 36 11 0 0 1 0 0 1 2 4 1
12 28 41 39 0 0 12 0 0 1 0 2 5 3
13 30 45 43 0 13 0 0 1 0 0 3 4 2
14 14 0 0 1 0 0 1 2 4 1
15 0 0 15 0 0 1 0 2 5 3
16 16 0 0 1 0 0 1 2 4 1
17 0 17 0 0 1 0 0 3 4 2
18 18 0 0 1 0 0 1 2 4 1
19 0 0 19 0 0 1 0 2 5 3
20 0 20 0 0 1 0 0 3 4 2
21 21 0 0 1 0 0 1 2 4 1
22 0 0 22 0 0 1 0 2 5 3
23 23 0 0 1 0 0 1 2 4 1
24 0 24 0 0 1 0 0 3 4 2
25 0 0 25 0 0 1 0 2 5 3
26 26 0 0 1 0 0 1 2 4 1
27 0 27 0 0 1 0 0 3 4 2
28 28 0 0 1 0 0 1 2 4 1
29 0 0 29 0 0 1 0 2 5 3
30 30 0 0 1 0 0 1 2 4 1
31 0 31 0 0 1 0 0 3 4 2
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Theorem 2 Suppose that the binary balanced words {χj : 1 ≤ j ≤ m}, m ≥ 3,
partition I. Then there exist words χi, χj, V i, V j, i 6= j with identical density,
except when the χj are characteristic words of Beatty words with moduli

αj = (2m − 1)/2m−j , j ∈ {1, . . . ,m}, (2)

and possibly in other cases where one of the χh is the characteristic word of a
Beatty word B(αh, γh) such that αh is a proper rational number. In the excep-
tional case (2):
(i) d(χi)/d(χj) = d(V i)/d(V j) is a nonzero power of 2 for all i, j ∈ {1, . . . ,m},
i 6= j.
(ii) The word F is the palindrome Fn+1 = Fn(n + 1)Fn, for all n ∈ Z≥1, where
F1 = 1.

The case (2) is the only exception if m is small:

Theorem 3 Suppose that the binary balanced words {χj : 1 ≤ j ≤ m}, 3 ≤ m ≤
7, partition I. Then there exist two words χi, χj, i 6= j with identical density,
except when the χj are characteristic words of Beatty words with moduli (2). In
the exceptional case (2), (i) and (ii) of Theorem 2 hold.

Table 2 depicts an example for Theorems 2 and 3, where αj = (2m−1)/2m−j ,
γ = −2j−1 + 1, j ∈ {1, . . . , m}, 1 ≤ j ≤ m, m = 3. Note that the word F is
a palindrome.

Table 2: aj = (2m−1)/2m−j , γj = −2j−1 +1, j = 1, . . . ,m, m = 3.

n bn 7
4c bn 7

2c−1 n7−3 F(palindr)
1 1 2 4 1
2 3 6 11 2
3 5 9 18 1
4 7 13 25 3
5 8 16 32 1
6 10 20 39 2
7 12 23 46 1

Notes

• The case m = 3 of a theorem similar to Theorem 3 was given by Tijdeman
[24]. The palindromic structure of the word F appears also in Vuillon [27],
Conjecture 1.

• On November 10, 2004, I had a conversation with A. J. Belov and A. L.
Chernyatiev. I don’t know what their results are, but they described to
me complementary non periodic Sturmian words in terms of dynamical
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systems, sketching their idea in the form of layers of spinning roulette
wheels which are colored with two main colors, and there are various
shades of these colors. I told them that the two main colors correspond to
two irrational moduli α1, α2 satisfying α−1

1 +α−1
2 = 1, and the color shades

are the integer multiples of these two irrationals (see also (3) below). A
countable set is excluded by them. This turns out to be the set of words
generated by integer and rational moduli. In a sense, the case of rational
moduli is the most interesting, since much is known about the irrational
case, much about the integer case, yet next to nothing about the proper
rational case — a rather humbling fact. The nice conversation with Belov
and Chernyatiev was the motivation for this paper.

• There is some confusion in the literature about the notions of Sturmian,
characteristic and Beatty words. In [24] Sturmian words are words on any
finite alphabet. In [1], Ch. 9, they are defined similarly to the definition
given above (only for 0 < α < 1), but only when there is a γ. When
γ = 0 they are called characteristic words. Our characteristic word is also
defined there, but no name is given to it. In the authoritative [17], Ch. 2,
Sturmian words are binary, and some equivalent definitions of them are
given. Also in [27] they are binary. In many papers, some of these notions
are given without definition, and the reader has to discern the meaning
from the context. Therefore we defined them above, tailored to our use
here.

3 Beatty, Sturmian, almost linear, balanced and
characteristic words

Definition 4 A word of integers {an}n∈Id
is said to be almost linear if

|(an+t − an)− (am+t − am)| ≤ 1 (∀ m, n,m + t, n + t ∈ Id).

In [6] it was shown, inter alia,

Theorem I A word of integers {an}n∈Id
is almost linear iff it is a Beatty

word B(α, γ).

Note that Theorem I is also a sort of balance result. It was shown by Graham
et al. [13] (where the terminology ”almost linear” was used) for the homogeneous
case, but they left the case γ 6= 0 as an open problem. Given an almost linear
word {an}n∈Id

, and any finite subinterval I ′d ⊆ Id, the computation of the
admissible numbers α and γ of the Beatty word B(α, γ) with values ai can be
done in time linear in |I ′d|, by computing the continued fraction expansion of
the extreme values of the admissible α [7].

There is a indeed an intimate connection between almost linearity and bal-
ance.
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Lemma 1 A Beatty word B(α, γ) = {am}m∈Id
is almost linear iff its associated

Sturmian word F = {fn(α, γ)}n∈Id
is balanced.

Proof. For m,n, t,m+ t, n+ t ∈ Id we get, by telescoping terms, |∑n+t−1
i=n fi−∑m+t−1

i=m fi| = |(an+t − an)− (am+t − am)|. Thus B(α, γ) is almost linear iff F
is balanced. ¥

If 0 < α ≤ 1, then the characteristic word {χn}n∈Id
of the Beatty word with

modulus α is trivially balanced, since it is 1 for all n ∈ Id. Note that if α is
irrational, γ real, then there is at most one integer n0 such that n0α + γ is an
integer. (This can also be seen geometrically, by drawing a straight line in the
plane with inclination α through the point (γ, 0).)

There is also a connection between the characteristic word of a Beatty word
and the Sturmian word of a related Beatty word. This is shown in Lemmas 2
and 4 for the irrational and rational cases respectively.

Lemma 2 Let α > 1 be irrational, γ real, B(α, γ) = bnα + γc, n ∈ Id. Then
χk(α, γ) = fk(α−1,−γα−1) for all k ∈ Ir(B), except that if there exists n0 ∈
Id(B) such that n0α + γ = k0 ∈ Ir, then χk0−1(α, γ) = 0, χk0(α, γ) = 1,
fk0−1(α−1,−γα−1) = 1, fk0(α

−1,−γα−1) = 0. Moreover, if Id is infinite, then
χk(α, γ) is an aperiodic word.

Proof. For k ∈ Ir(B) we have χk(α, γ) = 1

⇐⇒ ∃ n ∈ Id such that k = bnα + γc
⇐⇒ ∃ n ∈ Id such that k ≤ nα + γ < k + 1
⇐⇒ ∃ n ∈ Id such that kα−1 − γα−1 ≤ n < (k + 1)α−1 − γα−1

⇐⇒ either ∃ n ∈ Id such that bkα−1 − γα−1c = n− 1,

b(k + 1)α−1 − γα−1c = n (if k < nα + γ) ⇐⇒ fk(α−1,−γα−1) = 1
or ∃ n ∈ Id such that kα−1 − γα−1 = n < (k + 1)α−1 − γα−1 ⇐⇒

fk−1(α−1,−γα−1) = 1, fk(α−1,−γα−1) = 0 (since α−1 < 1),
χk−1(α, γ) = 0, χk(α, γ) = 1.

The last part of the lemma’s assertion follows from the facts that α > 1
and that {{nα + γ} : n ∈ Id, |Id| = ∞} is dense in [0, 1) [15], Ch. 23, where
{x} = x− bxc denotes the fractional part of x. ¥

This result (without the last part) was proved by Allouche and Shallit [1],
Ch. 3, for the case γ = 0. They also assumed Id = Z≥1, so the special case
nα + γ ∈ Z didn’t arise there.

It almost follows from Lemmas 2 and 1 and Theorem I, that the characteristic
word χ of a Beatty word with α irrational is balanced, since F is balanced, but
there is the exceptional case mentioned in Lemma 2, in which χ deviates from
F in 2 consecutive points. We now show that F remains balanced even when
we transpose these 2 values, so χ is balanced over the entire range.

7



Lemma 3 For B = bnα + γc, α > 1, suppose that there exists n0 ∈ Id(B) and
k0 ∈ Ir(B) such that n0 = k0α

−1−γα−1. Put f ′k(α−1,−γα−1) = fk(α−1,−γα−1)
for all k ∈ Ir, except that f ′k0−1(α

−1,−γα−1) = 0, f ′k0
(α−1,−γα−1) = 1 (a

transposition of the values fk0−1 and fk0). Then F ′ = {f ′k}k∈Ir is also bal-
anced.

Proof. Let u, v ∈ F ′, |u| = |v|, kum = min{k ∈ Ir : b(k + 1)α−1 − γα−1c −
bkα−1−γα−1c ∈ u}, kuM = max{k ∈ Ir : b(k+1)α−1+γα−1c−bkα−1+γα−1c ∈
u}; kvm, kvM are defined analogously. Put U = [kum, kuM ] ∪ [kvm, kvM ]. We
may assume that kα−1−γα−1 = n0 for some k ∈ U , because otherwise u∪v ∈ F ,
which is balanced.

Let δ = min{{kα−1 − γα−1} : k ∈ U}, 0 < ε < δ. Note that whereas
bkα−1 − γα−1 − εc = bkα−1 − γα−1c for all k ∈ U , k 6∈ {k0, k0 − 1}, we
have bk0α

−1 − γα−1 − εc = b(k0 − 1)α−1 − γα−1 − εc = n0 − 1 (since α >
1). This implies fk0−1(α−1,−γα−1 − ε) = 0 = f ′k0−1(α

−1,−γα−1); and also
fk0(α

−1,−γα−1 − ε) = 1 = f ′k0
(α−1,−γα−1).

Now F (α−1,−γα−1 − ε) is balanced by Theorem I and Lemma 1. Hence
also F ′ is balanced. ¥

Note that if α = p/q is rational (p, q ∈ Z≥1, gcd(p, q) = 1), then we may
assume, without loss of generality, that γ = t/q, t ∈ Z.

Lemma 4 Let p, q, t ∈ Z, p > q ≥ 1, |Id| ≥ p, and consider the Beatty word
bnp/q + t/qc, n ∈ Id. Then χk(p/q, t/q) = fk(q/p,−(t + 1)/p) for all k ∈ Ir.
Moreover, χk(p/q, t/q) is periodic with period p.

Proof. For k ∈ Ir,

χk(p/q, t/q) = 1 ⇐⇒ ∃ n ∈ Id such that k = bnp/q + t/qc
⇐⇒ ∃ n ∈ Id such that k ≤ np/q + t/q ≤ k + 1− 1/q

⇐⇒ ∃ n ∈ Id such that kq/p− t/p ≤ n ≤ (k + 1)q/p− (t + 1)/p

⇐⇒ b(k + 1)q/p− (t + 1)/pc − bkq/p− (t + 1)/pc = 1
⇐⇒ fk(q/p,−(t + 1)/p) = 1.

The last part of the lemma’s assertion follows from b(n + q)p/q + t/qc =
bnp/q + t/qc+ p. ¥

Corollary 1 The characteristic word of any Beatty word is balanced.

Proof. The characteristic word of any Beatty word is identical to the Sturmian
word of another Beatty word by Lemmas 2 and 4 with one exception. Every
Sturmian word is balanced by Theorem I and Lemma 1. Also in the exceptional
case of Lemma 2, the characteristic word is still balanced by Lemma 3. ¥
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Corollary 2 (i). Let G = {gn}n∈Ir
be a binary aperiodic balanced word. Then

there exists a Beatty word B(α, γ), α irrational, such that G is its characteristic
word χ, except that if there exists n0 ∈ Id such that n0α + γ = k0 ∈ Ir, then the
values (gn0−1, gn0) = (1, 0) have to be transposed to (0, 1). The balance of χ is
invariant under this transposition.

(ii). Let G = {gn}n∈Ir
be a binary periodic balanced word. Then there exists

a Beatty word B(α, γ), α rational, such that G is its characteristic word χ.
(iii). Let G = {gn}n∈Ir

be a binary balanced word and B(α, γ) a Beatty word
with characteristic word G. If |Ir| = ∞, then G has a density and its value is
α−1.

Proof. (i) Define a word A = . . . aiai+1ai+2 . . . by gn = an+1 − an. For
m,n, t, m+t, n+t ∈ Id we get, by telescoping terms, |∑n+t−1

i=n gi−
∑m+t−1

i=m gi| =
|(an+t − an) − (am+t − am)|. Since G is balanced, A is almost linear. Hence
by Theorem I, there exists a modulus and a shift, which we like to denote by
α−1 and −γα−1 respectively, such that A = {bnα−1 − γα−1c : n ∈ Id}. Its
associated Sturmian word is clearly G.

Since G is aperiodic, it contains a 0, say gj = 0. Then aj+1 − aj = gj = 0,
which implies that α > 1. It then follows from Lemma 2 that χk(α, γ) =
gk(α−1,−γα−1) for all k ∈ Ir(B), except that possibly 2 consecutive values of
G have to be transposed. The last part of (i) follows from Lemma 3.

(ii) By Theorem I, there exists a modulus and a shift, which we like to
denote by q/p and −(t + 1)/p respectively, where p, q, t ∈ Z, such that A =
{bnq/p− (t + 1)/pc : n ∈ Id}. Its associated Sturmian word is clearly G.

If G consists of 0s only, then α = 0 will do, and if G consists of 1s only, then
α = 1. Otherwise, there is a 1 and a 0, and so we conclude, analogously to (i),
that p > q ≥ 1. From Lemma 4 it follows that χk(p/q, t/q) = gk(q/p,−(t+1)/p)
for all k ∈ Ir(B).

(iii) The existence of B(α, γ) follows from (i), (ii). Suppose first that α is
irrational. Clearly, d(χk) = (|I ′r|−γ)/α+c for k ∈ Ir, where |c| ≤ 2 and I ′r ⊆ Ir.
Dividing by |I ′r| gives (1− γ/|I ′r|)/α+ c/|I ′r| which tends to α−1 as |I ′r| tends to
infinity. Now suppose that α = p/q is rational with gcd(p, q) = 1. Then G has
period p by Lemma 4. It is easy to see that every interval of length p contains
q 1-bits, from which the result follows. ¥

The sense of Corollary 2 is that the structure of binary balanced complemen-
tary words can be culled from the structure of complementary Beatty words.
There is some information about the latter, which will be exploited in the next
section.

4 Proof of the main results

Proof of Theorem 1.

The words χj partition I
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⇐⇒
m∑

j=1

χj
k = 1 ∀k ∈ Ir

⇐⇒ V i = 2i− 1 for precisely one i, whereas V j = 2j − 2 ∀j 6= i

⇐⇒
m∑

j=1

V j
k = m2 −m + 1 ∀k ∈ Ir.

The last line follows from the identity
∑m

j=1(2j − 1) = m2. In this proof
balance was not used. However, it follows directly from Definition 1 and the
definition (1) of the words V that the χj are balanced iff the V j are balanced.

Suppose that the words χj partition I. For every fixed j, χj balanced implies,
by Corollary 2(i),(ii), that there exists a Beatty word B(αj , γj) such that χj is
its characteristic word. If B(αi, γi)∩B(αj , γj) = k for some k ∈ Ir and i, j ∈ Id,
i 6= j, then χi

k = χj
k = 1, contradicting the hypothesis that the χj partition

I. If k 6∈ ∪m
j=1B(αj , γj) for some k ∈ Ir, then χj

k = 0 for all j ∈ {1, . . . , m},
contradicting again the hypothesis that the χj partition I.

Corollary 2(iii) implies that χj has density α−1
j .

Now suppose that the Beatty words B(αj , γj) partition Ir. For every fixed
j, the characteristic word χj of the Beatty word B(αj , γj) is balanced by Corol-
lary 1. If χi

k = χj
k = 1 for some k ∈ Ir and i, j ∈ Id, i 6= j, then there exist

n1, n2 ∈ Id such that Bn1(αi, γi) = Bn2(αj , γj) = k, contradicting the comple-
mentarity of the words B(αj , γj). If there exists k ∈ Ir such that χj

k = 0 for all
j ∈ {1, . . . ,m}, then k 6∈ ∪m

j=1B(αj , γj), again contradicting the complementar-
ity of the words B(αj , γj). The density claim follows from Corollary 2.

Note that χj can be translated into T j in time linear in |I ′r|, yielding an
almost linear word. Applying the O(|I ′r|) algorithm [7] to this almost linear
word yields the ranges of the corresponding admissible α and γ. ¥

Proof of Theorem 2 By Theorem 1, there exist Beatty words B(αj , γj)
which partition Ir. Let us examine their moduli. If α1 ≤ α2 ≤ . . . ≤ αm are all
integers, m ≥ 2, then αm−1 = αm. This has been proved using generating func-
tions and complex numbers, see Erdös [8], Znám [28], Newman [19], also known
as the Davenport-Rado-Mirsky-Newman result. A first elementary proof was
given in [5]. In the integer case we denote the αj , γj by ai, bi ∈ Z respectively,
and the B(αj , γj) by E(aj , bj), called exactly covering words ECW for short,
whereas the case of a complementary system with an irrational αj or a proper
rational will be called an exactly covering family , or ECF.

By Kronecker’s Theorem [15], Ch. 23, if one of the αj is irrational, then the
complementarity of the B(αj , γj) implies that all are irrational. The charac-
terization of 2 complementary Beatty words {B(αj , γj) : 1 ≤ j ≤ 2} was given
in [10], see also O’Bryant [20]. For the irrational case, α−1

1 + α−1
2 = 1 and

γ1/α1 + γ12/α2 = t ∈ Z are required, and if n0α1 + γ1 = s ∈ Z, then s 6∈ Id.
Now if {B(α1, γ1), B(α2, γ2)} is an ECF and {E(aj , bj) : 1 ≤ j ≤ m},
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{E(a′j , b
′
j) : 1 ≤ j ≤ m′} are ECWs, then the superposition

{∪m
j=1B(ajα1, bjα1 + γ1)} ∪ {∪m′

j=1B(a′jα2, b
′
jα2 + γ2)} (3)

is clearly an ECF. Graham [12] showed that conversely, any ECF in which some
αj is irrational, is always the superposition of an ECF with 2 irrational moduli
with an ECW, so it is of the form (3). It follows, from the integer case, that
if m + m′ ≥ 3, then any ECF always contains two moduli which are the same.
Since d(χj) = d(V j) = α−1

j by Theorem 1, d(χi) = d(χj) = d(V i) = d(V j) for
some i 6= j.

For the proper rational case, however, there is the ECF with distinct moduli
αj = (2m − 1)/2m−j , j ∈ {1, . . . ,m}, see [11] (if Id = Z≥1, we can take γj =
−2j−1 + 1). In this case the densities of all the binary balanced words are
distinct, though their ratios are integers or reciprocals of integers. For the proof
of (ii) see Tijdeman [26] Theorem. See also Vuillon [27] Conjecture 1. ¥

Proof of Theorem 3 Two conjectures were formulated in [11] (see also
Erdös and Graham [9]).

Conjecture 1 If the words B(αj , γj), j ∈ {1, . . . , m}, partition Ir and m ≥ 3,
then αi/αj ∈ Z for some i, j ∈ {1, . . . , m}, i 6= j.

Conjecture 2 Let α1 < α2 < . . . < αm be positive real numbers, and let m ≥ 3.
If there are real numbers γ1, γ2, . . . , γm such that the words B(αj , γj) partition
Ir, then αj = (2m − 1)/2m−j, j ∈ {1, . . . ,m}.

Note that Conjecture 2 implies Conjecture 1. Morikawa dealt with the con-
jectures in a series of papers during 1982 – 1995. In [16] he classified all rational
ECFs with m = 3. This classification confirms the truth of Conjecture 2 for
m = 3. In [18] he did a similar classification for a certain subclass of m = 4, ver-
ifying Conjecture 2 for this subclass. Altman et al. [2] established it for m = 4,
and Tijdeman [25], [26] for m = 5 and 6. Barát and Varjú [4] extended it to
m = 7. It follows that Conjecture 2 has been established for 3 ≤ m ≤ 7. ¥

We also mention that Simpson [21] established the truth of Conjecture 2
if minj αj ≤ 3/2. See also Simpson [22]. An approach to prove Conjecture 2
by generalizing it to exact multi-coverings was recently taken by Graham and
O’Bryant [14]. In [11], Conjecture 1 was proved for m = 3 and m = 4, as well as
in special cases for m ≥ 5. If Conjecture 2 is true, then of course in Theorem 2
there is no exception beyond its case (2), i.e., Theorem 3 holds for all m ≥ 3.

In Theorems 2 and 3 we assumed m ≥ 3. For m = 2 the result d(χ1) = d(χ2),
is valid only in the integer case, where it is trivial, i.e., α1 = α2 = 2.
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