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Abstract. Recursive, algebraic and arithmetic strategies for winning generalized Wythofl games
in miscre play are given. The notion of cedar trees. a subset of binary trees, is introduced and
used for consolidating these and the normal play strategies. A connection to generalized Fibonacci
searches is indicated.

1. Introduction

Let «¢ be a positive integer. Given two piles of tokens, two players move alternately
in a generalized Wythoff game. The moves are of two types: a plaver may remove
any positive number of tokens from a single pile, or he may take from both piles,
say k (>0) from one and !/ (>0) from the other, provided that |k —[| < a. Note that
passing is not allowed: each player at his turn has to remove at least onc token In
normal piay, the plaver first unable to move is the loser, his opponent the winner.
In misére play, the outcome is reversed: the player first unable to move is the
winner, his opponent the loser.

In this paper we show how to beat our adversary recursively, algebraically ard
arithmetically in misére play, analogously to the three strategies given in [3] for
normal play. In addition we introduce the notion of cedar trees and use it to
consolidate the strategies of normal play and of miscre play. This permits us to beat
our adversary iii both normal and misére play from the top of a single cedar tree.
A connection between cedar trees and generalized Fibonacci searches is also indi-
cated.

The classical Wythofl game (see, e.g., Wythoff [9] or Yaglom and Yaglom [10])
is the pormal play version for the parameter choice a =1, that is a player taking
from both piles has to take the same number from both. Denote by S; and S, the
previous-player-winning positions of normal and misére play rcspectively. Our
results imply, in particular. the interesting fact that S, is identical to S, except for
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the first two positions when « =1 (for which case the game is tame in the sense of
Berlekamp, Conway and Guy [1]), whereas §,n S, =0 for every a> 1.

The recursive and algebraic characterizations of the previous-player-winning
positions are presented in Sections 2 and 3 respectively. Some prerequisite results
on continued fractions and systems of numeration are briefly presented in Section
4. These results are used for giving the arithmetic characterization of the previous-
player-winning positions in Section 5. In Section 6 the notion of cedar trees is
introduced, and in the final section 7 it is used for consolidating normal and misére
play strategies.

Notation

Unless otherwise specified, we assume miscre play. Game positions are denoted
by (x, y) with x=<y, where x denotes the number of tokens in one pile and y the
number of tokens in the other pile. Positions from which the Previous player can
win whatever move his opponent will make are czalled P-positions, and those from
which the Next player can win whatever his opponent will make ars called N-
positions. Thus (0, 1) is a P-position for every a, becausc the Next player has to
move to (0, 0) and so Previous wins; (1, b), b>1 is an N-position for every a: the
Next player moves to (0, 1) and wins. For a = 2, the position (2, 5) is a P-position:
if Next moves to (0,2}, (0, 3), (0,4), (0,5). (1,2), (1,3), (1,4) or (1,5), then
Previous. using a move of the first type, moves to (0, 1) and wins. If Next moves
to (2.2).(2,3) or (2, 4), then Previous. using a move of the second type, can again
move to (0, 1),

The set of alt P-positions is denoted by P, and the set of all N-positions by N.

2. Recursive characterization of the P-positions

Adistof the first few P-positions ( E,,, H,,) for the cases a = 1 and a = 3 is displayed
in Tables 1 and 2. The tables have an interesting structure. First note that (at least
for n==11). H,— E,=mn in Table 1, and =3n+1 in Table 2. It is a bit harder to
iotice that E, =mex{E,, H: 0= i< n} for both, where, for any set S, if § denotes
the complement ot S with respect to the nonnegative integers, then mex S =min § =
lcast nennegative integer not in S (mex stands for minimum excluded value). Thus
mex ¢ (0L 1f we define (E,. H,,) in the indicated manner for all n, then (E,>, H,») =
(19. 31 fora =1 and (16, 53) for a =3.

Wi now prove that the pairs (E,, H,) constitute the set P of P-positions for every
n .

Theorein 2.1. The P-positions for misére Wythoff games are the following:
(tr Fora=1:(E,. H)=1(2,2).

E,=med{E.H:0=si<n}, H,=E,+n (n=1).



Wythoff games, continued fractions, . . . 51

Table 1 Table 2
The first few P-positions of the The first few P-positions for the

misére Wythoff game for a =1. misére Wythoff game for a = 3.
n E, H, n E, H,

0 2 2 0 0 1

| 0 i ) i 2 6

2 3 5 2 3 10

3 4 7 3 4 14

4 6 10 4 5 18

5 8 13 5 7 23

6 9 i5 6 8 27

7 11 18 7 9 3

8 12 20 8 11 36

9 14 23 9 12 40

10 16 26 10 13 44

11 17 28 11 15 49

(1) Fora>1:

E,=mex{E;, H:0<i<n}, H,=E,+an+1 (n=0),

Proof. From the definition of E, and £, as given in the theorem it follows that if
E =\{Un-0 E, and H =\, -, H,. then, for every a > 1, E and H are complementary
sets of numbers, that is, E U H = Z" (the set of nonnegative ‘ntegers), and E ~ H = .
The last equality is true since if E, = H,,, then n > m implies that E, is the mex of
a set containing H,, = E,, a contradiction; and n<m is impossible since H,, =
E,+am+1=E,+an+1>E,. For a=1, E and H are covering sets, that is,
EUH=2" (In fact, E n H={2} is easily proved as above.) Thus E and H are
covering for every a=1.

In order to prove the theorem it evidently suffices to show two things: (i) A
player moving from some (E, ., H,) lands in a pcsition not of the form (E;, H,). {ii)
Given any position (x, y) # (E;, H;) (except for (x, y) =((, 0)), there is a move to
some (E,, H,). (It is useful to note that these two conditions are also necessary:
the definition of P and N implies that all positions reachable in one move from a
P-position are N-positions; whereas at least one P-position is reachable in one
move from an N-position.)

(i) A move of the first type from (E,, H,) clearly produces a position not of the
form (E;, H,). Suppose that a move of the second type from (E,, H,) produces a
position (E;, H;). Then i # n. A move of the second type satisfies

i(H,,"H,)“(E,,_E,”:‘(H,,"‘E,,)"(H,‘“E;”:!(n"i)al< a,

which implies i = n, a contradiction.
(ii) Let (x, y) with x <y be a position not of the form (E;, H)) (i=0). If (x, y) =
(0, 0), then Next wins without doing anything. So we may assume (x, y) # (0, 0).
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Since E and H are covering, every nonnegative integer appears in one of {E,} or
{H,}. Therefore either x=H, or x=E, for some n=0.

Case 1. x=H,. Then move y- E,. (This move always exists since y=x=H, =
E,. and at least one inequality is strict.)

Case 2. x=E,. If y> H,, then move y~- H,. If y=E,, then move to (E,, Hy).
We may thus assun_ 2 that E, < y < H,. In particular,n> 1 fora=1.Letd=y—x—g¢,
m=|d/a], where

0 ifa=1,
1 ifa>1.

F=£(a)={

Then move (x, y) - (E,,. H,,). This is a legal move, since

(a) m =0,
thy d=v-E,—¢<H,—E,—¢=an, hence m=|d/al<d/a<n,
() v=E,+d+e>FE,+d+e=E,+tam+e=H,,.

&d) l(}"Hm)“(X‘Em)‘zl(,V“‘X)“(Hm"Em)l'—‘|d"am!<a- D

Note that whereas the statement of Theorem 2.1 characterizes the P-positions,
its proof indicates explicitly how to win, starting from an N-position. The characteriz-
ation and move-specification constitute together a strategy for the game. Thus
Theorem 2.1 and its proof provide a strategy for misere Wythoff games in which
cach P-position can be computed from the previous ones.

f‘or computing a strategy. consider a position (x, y) withO<x =y ((x. v) # (0, 0)).
We may assume. here and in the sequel, that y < x+ax+1, since for y> x+ax+1
we have (x, v) € Niand (x, y) and (x, x +ax + 1) have then the same winning strategy.
At most O(x) computation steps are needed for computing the table of P-positions.
Once the table is given, only O(log x) steps are required to locate x in it by binary
search. Since aiso the next move can be computed in O(log x) steps, the total
number of steps for computing the strategy is only O(log x), which is linear in the
input size O(log x). However, a given table permits to compute the strategy for
piles of bounded size only, and the table itself has exponential size. In the next
section we give a closed form for the nth P-position, which enables us to beat our
adversary using an explicit rather than only an implicit recursive strategy, which is
always polynomial (in time and space).

3. An algebraic characterization of the P-positions

I.et

a=ala)=32-a +vat+4), B=B(a)=a+a.
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a is the positive rooi of the -juadratic equation £ '+(¢£+a)™'=1. Thus a and B
are irrativnal for very posit.ve integer a, and satisfy a '+8 7' =1. Let y=y(a) =
a”', 8=8{a)- 41} Then

y & Sl l) 1 1 1
_.+_...; :!._.*___ o
a B "\a B

It thus follows immediately from [2, Theorem II] that the sets
E'={E,:n=0,1,2,...}, H={H,:n=0,1,2,...}

are complementary, wnere E, = |na+vy], H, = |nB+8].

Let a>1. Note that E{,=0=E,, H,=1=H,, and H,, = E, +an+ 1. Moreover,
mex{E /. H: 0:=<i<n}=E] (n=0), since {E} and {H',} are increasing sequences
and E' and H' are complementary: if the mex-were not E , then E; would never
be obtained! This shows that E;, =E,, H,, = H, (n =0). We have proved the second
part of the following theorem.

Theorem 3.1. The P-positions of misére Wythoff games are the folloning .
(i) Fora=1:(E,, H)=(2,2) (E,,H))=(0, 1),

(E,..H,)=(|na], |nB]) (n=2),

where a = a(1), B=B(1).
(1) Fora>1,

(E,,H,)=(|na+7vy], [nB+8]) (n=0),
where a = a(a). B=B(a), y=vy(a), §=258(a).

Proof. The first part of the theorem is proved in essentially the same way as the
second part. [

A strategy based on this observation can be realized as follcws for every a > 1.
It is easy to see that na + vy is irrational for every n. Since a > 1,

x=|na+y| @ x<na+y<x+l

x— v—y+1 [x—y+1] [x-
<:;>x ‘y\:fnaf‘ Y c:>l:t Y ]=|:-—~z]+l.

24 [44 (24 X

where (x, ¥) with x < v is a game position. Therefore either x = |na + v| = E, where
n=|(x—y+1)/al. or else, by complementarity, x=[nB+8]=H, where n=
[(x—8+1)/B]. We have thus reduced the situation to that considered in cases (ii)
and (1) in the proof of Theorem 2.1, and hence the move selection made there can
be followed. The strategy is similar for a =1, hence the details are omitted. For
implementing this strategy, a, 8, ¥ and 8 have to be computed and stored to a
precision of O(log x) digits, such that (x—y+1)a 'and (x—8+1)8 ' have still at
least one significant digit to the rignt of the (decimal, say) point.
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In order to give yet another, unexpected, way for beating our opponent, we resort
to the theory of continued fractions.

4. Continued fractions and systems of numeration

Let a be an irrational number satisfying 1 < a <2. Denote its simple continued
fraction expansion by

l :[laal,aZsa3,...jl,

(l3+'

where the a, arc positive integers. Its convergents p,/q, =[1,a,.. .., a,] satisfy the
recursion

pi=lLpp=1.p,=d,potp, > (n=1),
q 120' qllzloqrx:auqu~l+qu -2 ('121)'

For the basic facts of the theory of continued fractions, see, for example, Hardy
and Wright [4], Olds [7] or Perron [8].

In the next theorem we present two systems of numeration, one based on the
numerators p; and one on the denominators g, of the convergents of a. The two
systems are called p-system: and g-system in the sequel.

Theorem 4.1. Every positive integer can be written uniquely in the form

n

N=Y sp. 0ss,<a,,,. $,/,=0;,-=>5=0 (i=0),

10

and also in the form

n

N=%Y1q. 0siy<a, 0st<a,,, L=a.,=> =0 (i=1]).

=0

Table 3 displays the representation of the first few nonnegative integers in the p
and g-systems for the case ¢, =3 (i=1).
For the proof of Theorem 4.1 and Lemma 4.2 below (which is n=¢ded later), see

3]

Lemma 4.2. Let

(;:‘!:aul[’:"'a: Ipl 2+" '+ak+1[71\-
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Table 3
The representation of the first few nonnegative integers in the p and g-systems
for the case a, =3 (i=1).

h P> P Po q, q, G0
13 4 1 10 3 1

0 0 0 0 0 0 0
1 1 1
2 2 2
3 3 1 ]
4 1 0 1 1
S 1 1 1 2
6 1 2 2 0
7 1 3 2 1
8 2 0 2 2
9 2 1 3 0
10 2 2 1 0 0
11 2 3 1 0 |
12 3 0 1 0 2
13 1 0 0 1 1 0
14 1 0 | 1 1 1
15 1 0 2 1 | 2
16 1 0 3 1 2 0
17 1 1 0 1 2 1
18 1 1 1 1 2 2
19 1 1 2 1 3 0
20 1 1 3 2 0 0

where k =0 if i is cvon, k=1 if i is odd. Then G,,,=p,,,—1.

(Informally, G,,; is the equivalent in the p-system of 99...9 in the decimal
system.)

We close this short section with three definitions which will be useful ia the next
sections.

Definition 4.3 (Representations and their interpretations). Relative to a simple
continued fraction a =[1, a,. a,, ..., define a representation R to be ani (m+1)-
tuple

R = (dnn dmmls R ] dl- d”)*
where
()Sdiga,wl and d,‘+|:ai¢2:>d,'=() (120)

If it 1s known that d;_, =d, .=+ -=d,=0, we also write R =(d,,, ..., d;) instead
of (d,,.....d;,0,...,0). The p-interpretation I, of a representation R =(d,,, ..., dy)
is the number I, =Y." 'd;p.. The g-interpretation of R is the number I, =Y., da;,

provided that d,<a,; otherwise R has no g-interpretation. Given any positive
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integer k, we say that its p-representation R,(k) (or g-representation R,(k)) is
(dy,....d,))if

k=Y dip (0fk= Y dg;, du<a1)-
i=0

1=0

We shall later-be iaterested in p-interpretations of g-representations! Thus for
a =[1, 3] where ¥ denotes the infinite concatenation of x with itself, the decimal
number 15 has g-representation 112 (see Table 3), whose p-interpretation is 19.
Thus I,(R,(15))=1,{112) =19.

Definition 4.4 (Left :nd right shifts of representations). If R =(d,,.....d,) is any
representation (which might be R, (k) or R, (k) for some positive integer k), then
the representation R'=(d,,.....d,.0) is called a left shift of R. In other words.
R’ is obtained from R by shifting each digit d; of R left by one place and inserting
azeroattheright. If R=(d,,,....,d,, d,) isany representation, then the representa-
ton R"=(d,,....,d;) is called a right shift of R.

Definition 4.5 (Lexicographic ordering of representations). Given two representa-
tiens Ry =(d,,.....d,) and R,=(c,,....c,)., we say that R, is larger than R, or

R is smaller than R, (R, > R, or R><R,) if there is some je€[0, m] such that
d,> ¢, and d,= ¢, (i>]).

Note that R, > R, if and only if I,(R,)> I,(R:).

5. An arithmetic characterization of the P-positions

We use the numeration systems introduced in the previous section to give a quite
different characterization of the P-positions. Comparing Tables 2 and 3 we notice
three interesting patterns. To make them more conspicuous, we unite Tables 2 and
3 in the form of Table 4. Below we prove that these patterns do indeed hold for
every a =[1,d]. a>> 1, in the form of the following three properties.

Whenever we say that a representation R ends in a certain string, we mean ihat
this string constitutes the right-hand end of R.

Property 1. The set {E,: n =0} isidentical to the set of numbers with p-representations
ending inone of (1) 3.4,...,a.(ii)) 01 ... leven, 01 ... 12even. or (iii} cl ... lodd,
cl...120dd, where ¢ denotes any digit in the range 1 < ¢ <a. and even (odd) at
the end of a string means that the number of consecutive traifing 1’s is even (odd).
followed by the digit 2 where indicated. The set {H, : n =0} is identiccl to the set of
numbers with p-representations ending in one of (iv) 01...lodd, 01...120dd, or
(vicl.. . leven =2, cl...12even.
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Table 4
The representation of the first few P-positions (E,, H,) and n in the p and g-systems for « =11, 3]
, (a =3, misére play). ’
n E, H, R,(E,) R,(H,) R,(n)
P2 P Po Ps 2] 141 Po q2 q; 4o
13 4 1 43 13 4 1 10 3 1
0 0 1 0 0 0 1 0 0 0
1 2 6 2 1 2 ‘ 1
2 3 10 3 2 2 2
3 4 14 10 R 10
4 S i8 1 1 | 1 i 1 1
5 7 23 ] 3 1 2 2 1 2
6 8 27 2 0 2 0 1 2 0
7 9 31 2 1 2 1 1 2 1
8 It 36 2 3 2 2 2 2 2
9 12 40 3 0 3 0 1 3 0
10 13 44 1 0 0 1 0 0 1 1 0 0
11 15 49 1 0 2 1 0 | 2 1 0 1
12 16 54 1 0 3 1 0 2 2 1 0 2
13 17 57 1 1 \] 1 1 0 1 I 1 0
14 19 62 1 1 2 1 1 1 2 1 I 1
15 20 66 1 1 3 1 1 2 2 1 1 2
16 21 70 1 2 0 1 2 0 1 1 2 0
17 22 74 1 2 1 1 2 1 1 1 2 |
18 24 79 1 2 3 1 2 2 2 1 2 2
19 25 83 1 3 0 1 3 0 1 1 3 0
20 26 87 2 0 0 2 0 0 1 2 0 0
21 28 92 2 0 2 2 0 1 2 2 0
22 29 96 2 0 3 2 0 2 2 2 0 2
23 30 100 2 1 0 2 1 0 1 2 | 0
24 32 105 2 1 2 2 1 1 2 2 | 1
25 33 109 2 1 3 2 1 2 2 2 1 2
26 34 113 2 2 0 2 2 0 1 2 2 0
27 35 117 2 2 1 2 2 1 1 2 2 1
28 37 122 2 2 3 2 2 2 2 2 2 2
29 38 126 2 3 0 2 3 0 i 2 3 0
30 39 130 3 0 ¥ 3 U 0 | 3 0 0
31 41 135 3 0 2 3 0 1 2 3 0 1
3 0 3 3 0 2 2 3 0 2

32 42 139

Property 2. Denote the least significant digit of R,(E,) by t. Then R,(H,) is the ieft
shift R,(E,) of R,(E,) with the last digit (zero) replaced by 1 (if t=0 or 1) or by
2 and t replaced by t—1 (if 1<t<a) (n=0).

Property 3. Let n be any nonnegative integer. If R,(n) ends in 01 ... leven or in
cl...lodd (1<c<ay, then E,=1,(R,(n)). If R,(n) ends in 0] ...lodd or in
cl...leven, then E, = I,(R,(n))+1 (n=0).
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For proving these properties we need two further auxiliary results. Let o =

Lemma 5.1
m

Di+ Z a/*ZiD1+2i~~l =Dj+2m (]2—1)
=1

Proof. For a proof, see [3].

Lemma 5.2. Let b be any integer, a any positive integer and a =[b, a}. Then

Y D=a (D,+Dp.,+b+1—a) (m=0).

1 -0

roof. True for m=0. i{ it is true for m, then
114}

Z Dr =da I(Dm+Dm+l +b+1—0’)+ D:)1-+l

0

=d l(a[)nn'lqi”l)m*_l)m*'l +b+ l —(I')

=a l‘I)m"I—+—I)m+2—+b_§‘l_al) Since aDm+1+Dm=Dm+l~ D

For proving Property 3 it evidently suffices to show that the following four relations
hotd for every j=(0:

2y i k 2j-1 k
M n=Y g+ Y dg=|na+e =Y p+ ¥ dp (k=0)
10 =27+ 1 t =0 i=2jt1

27 k
”” h= L q.' + L dlqn d}y! | > l
1

(0 P2

k
2nata '[=Y p+ Y dp (k=1),

I} =241
X : 2 :
(i) n=3% g+ ¥ dg = |na+a '|=1+Y p+ Y dip (k=0),
-0 12742 =0 (=25+2

1 A
tiv) n= l (I,+ L d:ql' d21>1

[T P2y

271 K
Slna+e =1+ Y p+ ¥ dp (k=0).

1=0 1=2j
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Relation (i) is evidently equivalent to
2j—1 k
OSna'i'a'—l—- Z pi_ Z d,p,<1
i=0 i=2j+1
for n as given in (i). This is equivalent to:
2j—-1

(v) 0= Y D+ 7 d;Di+a"'<1 (k=0).

i=0 i= 2;+l

Similarly, (ii), (iii) and (iv) are equivalent, respectively, to

(vi) O<ZD+ Z dDi+a7'<1 (dye>1,k=1),

=0 i=2j+1

2j Kk
(Vli) 1= 2 D‘+ Z d,‘Di+a'_l<2 (k?(]),

i=0 i=2j+2
2j~1

(viii) 1= Y D;+ }: diDi+a'<2  (dy>1,k=0).
i=0 i=2j

Proof of (v). We proceed to prove (v). By Lemma 5.1,

Z d;iD; < Z aDh,HHm |)"D2,+>k+1 D2j+1<‘D2j+|,

1=2j+1
Z dD; = Z aDsjiziy = Dhjeak — Dyy> — Doy
i=2j+1
Hence by Lemma 5.2 (with =1 here and below),
2j—1

Y D+ z diD;<a '(Dy +Dy+2—a)— Dy

i= () i=2j+1

=a~1(2‘a—(a—1)D2,»”l _(az—l)D?_]).

Now
D, y=aDy+ D =(a+1)Dy;+ Dyjy— D;;.
Since D,; > —10),;,, we thus get
=D, <Dy + Dy — =(a+1)D,;.

Thus —(a—1)Ds; S(az—l)Dz,-, hence

..

2j-1

I D+ S dD<a'(2-a).

i=2j+1

Let a, be the negative root of £2+(a-2)¢—a=0 (a is the positive root).

aa>=—a, a+a-=2—a. Therefore

a'2-a)=a Y a+a)=a (a—-aa)=1—a"",

59

Then
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proving the right-hand side of (v). For the proof of the left-hand side, write

2j-1 k
) Dl+ Z diDi?a-l(Dzj—]+D2j+2_a)_D2j
. i=1 i=2j+1

=aAl(D2,'_]—(a"'1)D21'+2_‘a)

=l-a=a+ta,—1=a(l-a H—-1=-a"". O

Proof of (vi}. For proving (vi) we use d;,,>1 and Lemma 5.1 to get

=

k
dlDi<2D2j+l + Z aD(2j+l)+(2i—l) =D2j+l +D2j+2k+l < D2j+ls
=1

125+ 1

t

and. as zbove, Zf:z;u d;D;> —D,;. Hence by Lemma 5.2,

2y k
2D+ ¥ diDi<a”I(D2j+D2j+l+2_‘a)+D2j+l
i 1= 3541
2j+1
=a'|(D21+,+D2,+2+2—C¥)= Z Disl_a“l’
i=0

1

where the last inequality follows as in the proof of (v). On the other hand,

2 k
X D,+ 2: d,[),>al(D2,+D2,“+2'—a)"Dgl
0 to 2y

=a "(2—a—(a—1)Dy+ Dsyy)
za '(2-a—(a-1)Dy+D)=0>~a"". n

Proof of (vii). For proving (vii) we again start with Lemma 5.1:

A k
}_. dD, =3, aDu,um:.‘ l)=D2j+2kH_D2j+l<_D2]+l'v

re 2y 2 =1

e

k A
Y dD= Y abizyioyvii1 = Dajyakez — D:,+:> =Dyj.a.
- 2 =1

Thus

t u
A
+
(1=

dD,<a "(Dy+ Dy +2—a)= Day,,

i)+

1w

=da ‘(2_(Y+D2”"‘(a“l)Dzlz,l)
<a 'Q-a+Dy—(a—-1)D))

=a+a—aa=1—-(a—1Ya—-1).
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1-(a—1)(a-1)<2-a7},

proving the right-hand side of (vii). In the other direction,

2j k
.2_:0 D+ Y d.D;> a—](Dzj+D2j+l+2'—a)'_D2j+2

i=2j+2
= a-‘(2—a —(a - I)Dzi_(az— 1)D2f+1 ).
We proceed in a way similar to the proof of (v):

D, >=(a+1)Dajy + Dy;— Dsyjs gy,

hence

=D5;> Dsjixt Drjoy— Dyj=(a+1)Dyjiy s
SO

~(a—1)Dy;—(a’*—1)D3;., =0.
Hence

25 k
YD+ Y dD>a'Q-a)=1-a"'. 0O
=27+2

=0 i
Proof of (viii). Finally we prove (viii) by writing

d;D, <

_ aDj-y+ziony = Dajyak -y = D,;  <—Dsj,.
i i

it
it

i 1

Since d;,> 1,

k k
. iz:'aj D> 2D2i+i§1 aD2j+2i—' = D2/+ D2i+2k > DZ/’-
Thus
251 K
Z D,‘+ Z d,-D,-<a_l(D31_1+D3j+2—a)—ng_,
i=0 i=2j

=a '(2—a—(a—1)Dy; 1+ D))

<a 'Q2-a—-(a—-1)D_,+D,)

=1<2-a”’,

since a > 1. In the other direction,

21 k
X D,+ Z d,‘Di>aml(Dzl‘,Al+D2]'+2_a)+D2}

i=0 i=2j

2]
=a‘l(D2,'+D2i+1+2~'a)= Z D,->1‘”Cl”l,

i=0

as in (vii). O]
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Proof of Property 1. The first part of Property 3 implies that if R,(n) ends in
01...leven orin cl...lodd, then also R,(E,) = R,(n) ends in the same strings.
The second part of Property 3 implies that if R;(n) endsin 01 ... lodd, then R,(E,)
en:ds in O1...12even; and if R,(n) ends in cl...leven, then R,(E,) ends in
3.4 ...aorin cl...120dd. Since the sets {E,: n=0} and {H,: n =0} are com-
plementary, the latter set of numbers has representations which are the complement
of the representations of the former set. This proves Property 1. [

Proof of Property 2. For proving Property 2, note that the transformation of f
defined in its statement is a bijection since it has an inverse f~': Shift f(R,(E,))
right; if d,=2, then put d, < d,+1 (d,d, is the right trailing end of f(R,(E,))).
This evidently produces E,. Moreover, by Property 1, the sets {R,(E,): n=0} and
{f(R,(E,)): n=0} are complementary.

We now proceed by induction. The assertion is true for n=0. If it is true for all
n<m, then f(R,(E,))# R,(H,), n<m. In fact, I,(f(R,(E,))) is the smallest
number of {H,} not yet obtained for n<m. If H, #I,(f(R,(E,))). then
1(f(R,(E,,))) can never be obtained for n > m, contradicting the complementarity
of {R,(E,)} and {f(R,(E,)}. O

Now suppose we are given a position (x, v) withO=<x =<y (a > 1). We may assume
(x, y) # (0,0). To obtain a strategy based on Properties 1. 2 and 3, compute R,(x).
If it ends in one of the strings (iv) or (v) of Property 1, then x = H, for some k =0,
and a winning move is (x, y) - (I, (f '(R,,(x))), x)e P. If R,(x) ends in one of the
strings (i), (i) or (iii) of Property 1, then x = E, for some k = 0. If y> 1,(f(R,(x))).
then the move (x. y) - (x, I(f(R,(x)))) € P is a winning move. If y=L,(f(R,(x))).
then (x, y)e P, so we cannot win when starting from the given position (x, y). If
x =y, then the move (x, y) > (0, 1) € P is winning. Finally, if x <y <I,(f{R,(x))),
thenlet m=[(y—x—1)/a]. If R,(m)endsin0l...levenorcl...lodd (1 <c<
a). then E, =1,(R,(m)) by Property 3. Otherwise E,, =1,(R,(m))+1. In either
case a winning move is (x, y)>(E,,., E,,+tam+1)e P. The strategy for a=1 is
similar and is therefore omitted.

The complexity analysis of this algorithm is very similar to that performed at
the end of [3]. and is based on the fact that p.~Kg""', where K =a/\/a2+4~
g=Ya+~va +4). Since n~ log, (x/K) and g increases with a, this strategy
implementation, which requires n = O(log x) steps, is more efficicnt than even the
algebraic one of Section 3 when a is large.

In order to consolidate the above strategies of misére Wythoff games as well as

those of normal Wythoff games, we now proceed to introduce the notion of a cedar
tree.

6. Cedar trees

Relative to a simple continued fraction @ =[1, a,, a-. . ..] we define the following
subclass of binary trees. The subclass consists of continued fraction representation
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trees (cedar trees). A cedar tree C,, ;=C,, 4(a) Qf order m is defined as follow

CaL 1> LAl L Sand P 77 2 L3 8 L

(i) For m<0 or d =d,, outside the range (1, v s Am+1)s Cna i1s empty.

(i) For 1=d=d,, <a,,,, and m=0, the root of L,m,d is any representation of

the form (d,, ..., d,.).
Note that the order m of the tree is the index m of the least significant nonzero
digit d,, of the representation of the tree’s root. The root of the left subtree is the
representation (d,,...,d,+,,d,—1,1) of order m—1 (m=1). If d=d,, <a,4,-
then the root of the right subtree is the representation (d,, ..., d,, +1) of order m.
If d,=a,+ . then the root of the right subtree is the representation
(dy,...,d,,0,1) of order m—2 (m=2). This inductive definition is illustrated
schematically in Fig. 1 for the case m =2 and a;=4. If the root of C, , is the
representation (d,,), we denote the tree by Cona. Fig. 2 illustrates the unique cedar
tree C3 ,([1, 3]) in which the numbers above and below the nodes should be ignored
for the moment.

We now derive two subfamilies of trees from the family of cedar trees. A p-tree
T,.q derived from a cedar tree C,, 4 is the p-interpretation of C,, 4. that is, every
node of C,, , is replaced by its p-interpretation to make up T,, 4. Similarly, a g-tree
Tma derived from C,, 4 is the g-interpretation of C,, 4, but with one proviso: since
to<a, (see Theorem 4.1 above) and the nodes of C, 4 ending in a, are precisely
the leaves of C,, 4, the form of a 7,, 4-tree is that of T,,,, but without the leaves of
the latter. Thus a T, 4-tree turns into a 7, 4-tree in the fall, after having shed all
its leaves, and the process is reversed in the spring! The notation C,, carries over
to T\, 4 and 7., in an obvious manner.

For example, the numbers above the nodes in Fig. 2 are the p-interpretations of
the nodes. Replacing the nodes of C5,([1,3]) by these p-interpretations gives
T9, ([1. 3]). The numbers under the nodes of C%,, ([1, 3]) are the g-interpretations.
So pruning the leaves of C5,([1,3]) and replacing its remaining nodes by their
g-interpretations gives 79, ([1, 3]).

We need the following definitions. The rightmost (leftmost) descendant v of a
node u is the descendant at the end of a chain of right (left) descendants of u which
has no further right (left) son. (Note that v is not necessarily a leaf.) A label of an
edge (u, v) of a cedar tree is a bit 0 or 1 attached to the edge according to whether
v is a left or right son of u. If w is any vertex of a cedar tree and (e,,...,e,) is
the path of edges between the root and w, then m +1 is the length of the path and
(Cryenoncn)ef{0, 1} is the trace tr(w) of w, where ¢ is the label of edge e

Fig. 1. The inductive construction of a cedar tree for m=2, a;=4.
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(1=si=<m). The order of the sequence is such that c, is the label of the edge e,
from the root to its son, and ¢, is the label of the edge e,, leading into w. Note
that the trace of the root of a cedar tree is the empty sequence. If tr(u)=
0, cz,...,¢), then tr(v) =tr'(u) =(cs, ..., ¢) is a left shift of tr(u). Also tr(u) =
tr'(v) = (0, c3,. .., ) is a right shift of tr(v).

The basic properties of cedar trees and some other properties needed for the
applications are enunciated in the ‘cedar tree ten commandmen:s’ Theorem 6.1
below.

The reader may find it useful to verify the properties on the cedar tree of Fig. 2
while reading the theorem.

Theorem 6.1. Let a =[1,a,, a,,...] be an irrational number and C,, ;= C,, 4{«) a
cedar tree (d=d,,, m=0). For assertions (ix) and (x) we assume: a,=a (l =1)
where a is any positive integer (since the proof rests on Lemma 5.2), y=a ', and
we restrict attention to a cedar tree C°, ,(a).

(i) Let u be any node in C,, 4 or in the T,, 4 or 7,, 4-tree derived from C,, 4. Then
every node in the left subtree of u is smaller than u and every node in the right subtree
of u is larger than u.

(i) The trees C,, 4 and T,, 4 have p,,.,—(d—1)P,,— 1 nodes each and 7, 4 has
qm+1—(d—1)q,,— 1 nodes.

(iii) Every number from among {1,2,. .., P,.,— 1} appears exactly once m y
and every number from among {1,2,...,q,..,— 1} appears exactly once in 7\, , .

(iv) Pruning the leaves of C,, 4 and replacing the nodes by their q-interpretations
gives 7,,, 4. Moreover, the number of leaves of c,,,; (0r T,,1) iS P+t — Gma+1; this number
is q,, if a;=a (i=1, a any positive integer).

(v) Let R,=(d,,...,dcs1,d) be a node of C, 4 with d,#0, k>0. Then
the leftmost descendant of the right subtree of R,, if any, is R,=
(dys. s diey,di,0,...,0,1) (k—1 intervening 0’s), and I,(R,)=I,(R,)+1. The
rightmost descendant of the left subtree of R, is

Ri=(d,,...,dvs,,d—1,a,,0,...,0,a,) (kodd)

or
(d,,....,dk.;.],dk“l,ak,o,...,az,O) (keven).

In either case, I,(R;)=1,(R,)—

(vi) The longest path from the root of C,,, to a leaf has length L,, —).,"H,] a;; the
shortest path has length |, =a,+m (if a;>1 for i=1) or |3(m+3)| (if a;=1 for
i=1).

(vii) If tr(u)=(0, ¢2,..., ) for u in C,, . then there exists a node v in o
with tr(v) =tr'(u)=(ca, . . ., ¢), and v is a left shift of u. Conversely, if v is a node
in C%,, ending with 0 and tr(v) =(c,,. .., c), then the right shift u of v is in CY.
and tr(u)=(0,c¢,..., Cy).

9
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iviii) If R,(n) ends in an even number of zeros in Ch1, then tr(R,|na))=
i1 R,(n)). Otherwise tr(R,|na|) is tr(R,(n)) followed by O and as many 1’s as
possible until a rightmost descendant is reached.

(ix) Let u be a node in C%,, ending in a digit t with tr(u)=(0,c,,...,c). If
t < a, then there exists a node v in C‘,’,,,, with tr(v)=(c5,..., C, 1,0,...,0) (maximal
number of trailing 0’s until a leftmost descendant is reached) and v=u', except that
the last digit 0 of v is replaced by 1. Suppose a > 1. If t> 0, then there exists a node
vin CY,, with tr(v)=(cz,..., ,0,1) and v=u’, except that the last two digits
(1,0) of v are replaced by (t—1,2). Conversely, if v and tr(v) have the specified
forms, then (0, ¢, ..., c) is the trace of a node in C?., which is the right shift v"
of v with the last digit t of v" replaced by t+1, if the last digit of v is 2.

(x) IfR,(n) endsinQ1...1levenorincl...lodd (1 <c<a), then tr(R,|na +
y}]) =tr(R,(n)). Otherwise tr(R,|na + y]) is triR,(n)) followed by 1 (n>0).

Proof. (i) We prove the result for T,,,. The proof for 7,,, and C,, 4 is the same.
If win T, , has the form K,,,,+dp,, for some 1<d=<a,,., where R,(K,,.,) has
the form(d,,...,d,.,), then it follows from the definition of cedar trees that every
node in the right subtree of u contains the summand K,,., +dp,,, in addition to
other summands. The left subtree T’ of u has root v=K,,,;+(d~=1)p,+ Ppm+1.
Assuming the result inductively for T, the largest node of T’ is a rightmost
descendant of v, whose value is

Km«rl+(d_ l)pnx+ampn1~l+am~2pm~3+' T =Km+l+dpm_l<u

by Lemma 4.2.

(ii) Again we prove the asscrtion for T, 4 only. Since obviously T,,, and T, 4
have the same number of nodes, it suffices to restrict attention to Tff,,d. We proceed
by induction on m for any d. A iree T 4 has obviously a,—d+1=p,—(d—1)p,—1
vertices. Given T%,; (m=1). Each of the nodes dp,.,(d+1)p,., ..., @+ P in the
branch emanating from the root on the right has a left subtree of the form T, ,
(see Fig. 3). The number of nodes in the branch and in the (a,,.,—d+1) left
subtrees is (a,.,—d+1)p, by the induction hypothesis. In addition, the node
d,, . P, has a right subtree of the form T,,_,,, which has p,, ., —1 nodes. Hence
the total number of nodes of T, is

(ar;1+l®-d+ ])pm+pm 1 l :'pnnl_(d‘])pm‘ l

(iii) Once again we prove the result for T, only. From (i) it follows that the
smallest element in T, is the leftmost descendant which is evidently 1. The largest
clement is the rightmost descendant, and it is @, P+ @y Prn—2F" " * =Pm+1— 1
by Lemma 4.2. It also follows from (i) that all values in T, 4 are distinct. Since the
number of nodes is p,,.;—1 by (ii) and all are in the range [1, p,,.;— 1], every
integer in this range must appear precisely once in T, ,. (Induction on m without
using (i) and Lemma 4.2 could have been used as an alternative proof.)
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Fig. 3. The first few branches of T9, .

(iv) The first part was already proved. By (ii), the number of leaves of T,,, is
(Pm+1= 1) =(gm+1=1) = Pms1—Gm+1. For a=[1,d] we have p;=q;+q;-, (i=0).
This is indeed the case for i =0 and 1 by inspection. Assume true for i<n (n=2).
Then

Pn = apn—-l +pn-—2 = a(qn—l +Qn‘2) +(Qn~2+an3) = qn +qn—l .

(v) The results directly follow from the definition of cedar trees and from
Lemma 4.2.

(vi) It suffices to compute the longest and shortest path from the root of
TY, ,—rather than C,,,—to aleaf. By inspection, Ly=ly=a,,Li=a,+a,,l, =, +1.
Since L,,-,=L,, > we have (see Fig. 3 in which we now put d=1),

Lm =max{1 + Lm—‘l » A+ 1 +Lm—l} =Am+ +Lm‘I )

~m+1

andtheresult L,, =Y., a; follows by induction on m. Since also l._,=1,_,wehave,
lm = mln{l + Im—»l 1 am+i’ + lmv2}~
If a,>1 (i=1), then, assuming the result inductively, we get that [, =

min{a, +m, a,.,+a,+m—-2}=a,+m+min{0, a,,.,—2}=a;+m. If a;=1 (i=1),
then

=141, =1+ 3(m+1)] = [3(m+3)]

by the induction hypothesis.

(vii) For traces of length 1. tr(u) = (c,) = (0). The desired vertex v in this case
is the root with the empty trace. Moreover, u =(0,1,0,..., 0) (m — 1 trailing zetos)
and v=(1,0,0,...,0) (m trailing zeros), and so v is a left shift of w. Given u with
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tr(u) = (0, cs, ..., cx) (k=2). By the induction hypothesis on the trace length, for
the father u, of u with tr(u,) =(0, c,, ..., cx—1), there exists a node v, with tr(v,) =
(Cs,...,Ck-1), and v, is a left shift of u,. Thus if u,=(d,,...,d;,0,...,0),d,#0
(I trailing zeros), then v, =(d,,...,d;. 0,...,0) {I+1 trailing zeros). If u is a left
son of u,, then >0 and so a fortiori v, has a left son v. The trace of u is then
(0,¢5,...,¢) (cx=0) and that of v is (¢3,...,¢). Moreover, u=
d,,...,d—1,1,0,...,0) (I-1 trailing zeros) and v has the same form but with
[ trailing zeros, and so v is a left shift of . A similar argument holds if u and v
are right sons of u; and v, respectively.

Now let v be a node ending in zero and let u be the right shift of v. Since
I(u) < 1,(v), (iii) implies that I,(u) appears in T}, ,, the p-tree derived from C%, ;.
Hence u appears in C%,,. Since I,(v) < pp+1, we have I,(u) < p,,. Hence if tr(v) =
(C2e....c) and tr(u)=(by, bs, ..., b), then b, =0. By the first part of (vii), we
know that the left shift v of u has trace (b,,...,b)=(cs,...,cx). Hence u has
trace (0, c-,. ..., ).

{viii) The result follows from [3, Theorem 4]. The first part of that theorem
implies that if R,(n) ends in an even number of zeros, then R,|na|=R,(n) is
represented by a single node of Cy, ;. The second part of the theorem and (v) imply
that if R,(n) ends in an odd number of zeros, then i, | na ] is a rightmost descendant
of the left subtrce of ¥,(n), which implies the result.

(ix) From (vii) we know that the left shift w=u' is in C},, and tr(w)=
(Counnn, ¢ ). If t<"a, then w has a right son x, hence a leftmost descendant v of x
(which may be x itself). Clearly tr(v)=(c.,...,¢.1,0,...,0); and [,(v)=
I,(w)+1 by (v). This implies that replacing the last digit of w by 1 gives v, completing
the proof of the first part. For proving the second part, note that since w ends in
0. w has a left son y. If >0, then y ends in t—1, 1. Since a > 1, y has a right son
zwhichendsint—1, 2, and tr(z)=(cs,..., ¢, 0. 1). The converse of the first two
parts is clear.

(x) The result directly follows from Property 3. [

7. Some uses of cedar trees

7.1 Search decision trees

A tree T, ([1]) is the decision tree of a so-called Fibonacci search (see, e.8..
Knuth [6. Section 6.2.1]). More generally, a tree T, ([1.d]) (a=1 any integer)
can be considered as the decision tree of a generalized Fibonacci search algorithm
which. given a table of n numbers in increasing order, starts by comparing the
argument searched for with the (n/g)th number (where g =(p,,.,—1)/p.). and
iterates this procedure on the smaller blocks (see [6, Section 6.2.1, Exercise 20]).
A generalized search in this sense is in fact defined by T, , (a) and by 7%, , (a) for

every real number a. A seemingly first application of such searches is indicated below.
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7.2. Wythoff games

In order to show how cedar trees can be used to consolidate Wythoff game
strategies, it is useful to take stock of the main results obtained so far.

Normal play
We have the following three characterizations of the P-positions (A,, 3,):
(I) A,=mex{A,,B;:0<i<n}, B,=A, +an (n=0).
(I) A,=|na], B,=|nB|, a=(2—a+va*+4)/2,B=a+a (n=0).
(III) (a) {A.} ({B,}) is the set of all numbers whose p-representation relative to
a =[1,d] ends in an (1) even ((2) odd) number of zeros.
(b) R,(B,)=R,(A,).
(c) If R,(n) ends in (i) an even number of zeros, then A, = I,(R,(n)); if
it ends in (2) an odd number of zeros, then A, = I,(R,(n))—1(n=0).

Misere play
We have the following three characterizations of the P-positions (E,, H,):
(IV) (i) For a= 19 (E()’ H()) = (2’ 2)a

E,=mex{E,,H;:0<i<n}, H,=E,+n (n=1).
(ii) Fora>1,

E,=mex{L,,H;:0<i<n}, H,=E,+an+1 (n=0).

(V) (i) Fora=1.(Ey, Hy) =(2,2),(E,, H))=(0, 1),

E.’n(1+V5)], H,=[}n(3+V5)] (n=2).
(i1) Fora>1,

E,=|na+7v|, H,=|nB+8| (n=0),

where a =1(2—a+va +4),

B=a+a.y=a ',8=y+1.

(VD) (i) Fora=1, E,, H, are the same as A,,, B, in (III) above (n=2), except
that (E,. Hy) =(2,2). (E,, H,)=(0,1).

(ii) For a>1, (a) E, is the set of all numbers with p-representation ending
in one of (1) 3,4,...,a, 01...1even, 01...12even, cl...lodd or
cl...120dd (1<c<a), and H, is the set of all numbers with p-
representation ending in one of (2) 01...1lodd, 91...120dd,
cl...leven=2 or cl...12even (n=0). {b) R,(H,) is R,(E,) with
the last digit (zero) replaced by 1 (if the last digit t of R,(E,) is O or
1) or by 2 and ¢ replaced by t—1 (if 1<t<a) (n=0). (c) If R,(n)
endsin (1) 01...levenorincl... lodd, then E, =1, R,(n)). If R,(n)
ends in (2) 01...1odd or in c1...1leven, then E,=I,(R,(n))+1
(n=0).
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Note. Consider the following alternative definition of Wythoftf games. The rules
are as defined in Section 1, with the additional requirement that no player is ever
permitted to move to a position of the form (x, x) (x=0). The player first unable
to move is the loser, his opponent the winner. Then obviously the last position of
the game is (0, 1). Moreover, it is easy to see that this class S, of normal Wythoft
games is equivalent to the class S, of misére Wythoff games according to the
definition of Sectica 1 for every a > 1. But for a =1 we get a different game, whose
F-poszirons are consistent with those for a > 1 rather than different from them. For
the aiternative definition, the above summary for misére play can thus be simplified
b anntting $V(i), V(i) and VI(i), and omitting a >1 in IV(ii), V(ii) and VI(ii).
{Note that the inequalities (v)—(viii) in Section 5 hold also for a = 1; the proofs did
not use a - 1.)

As an ilustration for the alsurnative definition we present the first few P-positions
for a =1 of the alternativels ::>fined game in Table 5. But in the remaining part of
this section we shall resort back to our original definition of misére Wythoff games
given in Section 1.

Tabie 5
The representati - o the fii 1« L-positions (E,, H,) and n in the p and g-systems for a =[i]ir the
lterin oty acfined Wythoff game (a = 1, normal plav).

18 30

n F, M, k) R,(H,) R,in)

HAE NN (SN AN (SR (1) Po P Py Px P2 Py Po qds 4y 4y 4> 4y 4y

138 5 3 2 | 20138 5 3 2 1 & 5 3 2 1 1
1 O ] 4 o0 0 0 0 0 o o0 0 o0 o o0 1 o0 0 0 0 0
I 2 4 I 0 1 0 1 1 0
2 3 ) I 0 0 I 0 0 1 1 0 0
3 5 Y I 0 0 0 1 0 0 0 1 1 0 0 0
1 7 D I 0 1t 0 1 0 1 0 1 1 0o 1 0
h 8 14 P 0 0 0 0 Il 0 0 0 0 1 1 0 0 0 0
6 10 17 F 0 0 1 0 I 0 0o 1 0 1 1 0 0 1 0
7 1t 19 i 0t 0 0 1 0 1 0 0 1 P 0 1 0 0
% 13 22 ]} 0 0 0 0 0 0 0 0 0 0 1 i 0 0 0 0 0
9 I 25 I g 0 o0 I 0 | 0 0 0 1 0 1 1 0 0 0 1 0
o 16 27 1 0 o i g 0 | 0 0 1 (U] I ] 0 0 1 0O 0

I 1 ( 1 I 0 1 0 0 0

We shall now apply cedar trees to consolidate Wythoff game strategies. A
connection between cedar trees and the first, second and third characterizations of
the P-positions is given by the following algorithm:

While traversing a C),, ([1. d]) cedar tree (a = 1) in inorder (see, e.g., Horowitz
and Sahni [5, Section 6.1.1]), put I,(n) of everv node u visited into a list A, B’,
k" or H' according to whether u ends in one of the strings of the form (III)(a)(1),
D) (VDG (a) () or (VD (i)(a)(2). Then A', B'. E" and H' are the beginning

segment . of  an A, = [na|-sequence, a B, =|nB]-sequence, an E,=
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[na + ] -sequence and an H, = |nB+85]-sequence. There are some ‘boundary
conditions’: The A,, B, sequences have to be preceded by A,=0, B,=0; the E,
sequence by E,=0. For a =1, the E, and H, sequences should be replaced by the
A, and B, sequences (n = 2) and preceded by (E,, E,) =(2,0) and (Hy, H,) =(2,1).
In practice, this procedure may be simulated vithout actually constructing
Ch.1([1, d]): Start with a vector (0,...,0) (m+1 0’) and, by ‘adding 1°, cycle
through all representation vectors up to (a0a0. .. b), where b=a (meven), b=0
(m odd).

The correctness of this algorithm is a direct consequence of the strategies summar-
ized above and the fact that an inorder traversal of a cedar tree with property (i)
of Theorem 6.1 sorts the entries in increasing lexicographic order.

A more intimate connection between cedar trees and the third characterizations
of the P-positions will now be presented. We assume a > 1 for misere play, since
for a=1 *he strategy is the same as for normal play except that the first two
P-pos.uons are different.

Given a position (x, y) in a normal or misére Wythoff game. We may assume
0<x<y, since for x=0 and for x =y, the situation is quite clear. Let m be the
smallest positive integer satisfying p,,> x, and let u=R,(x). We can compute u
and tr(u) simultaneously by ‘searching for u’ in an (imaginary) p-tree with root
P, proceeding in binary search tree fashion: ‘Turn left’ (‘right’) whenever x is
smaller (larger) than the current node z. This simply means that if z=Y., dp,
(d, #0), then ‘turning left’ amounts to replacing d; by d,—1 and adding p; ,
(k=1); and ‘turning right’ means replacing d, by d, +1 (if d, <ay.,) or adding
Pi—> (if dy =iy, k=2).

The following algorithm is based on representations. Other variants, based on
traces or a mixture of traces and representations can easily be formulated. An
algorithm based on traces instead of represcntations has the advantage that binary
sequences rather than representations are being handled and compared.

Statements in parentheses and in brackets refer to normal and misére play
respectively. Comments appear in curly brackets.

Algorithm

Step 1. {Compute u}. Using the above search method, compute u = R,(x).

Step 2.{x = (B,)[H,1}.If u ends in a string of the form ((11I)(a)(2)) [(VI)(ii)(a)(2)],
make the move (x, y) - (I,(w), x) € P, where w=u" [with the rightmost digit ¢ of
u" replaced by t+1 if the rightmost digit of u is 2]. End.

Step 3. {x=(A,)[E,]}. Denote by (s, ) the two rightmost digits of w. If u ends
in a string of the form ((IlI)(a)(1)) [((VD)(ii)(a)(1)], let v=wu if (t<a) [¢=0 or 1]
(v=u except that (s+1,0)« (s, 1) if t=a) [v=u except that t—1< 1 if t>1].
Compute I,(v)=n Then (B,)[H,]J=x+an [+1]. If y=(B,)[H,], then (x,y)e P.
End.

Step 4. {y>(B,)[H,1}. If y>(R,)[H,], make the move (x, y) > (x, (B,)[H,])) € P.
End.
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Step 5. {(A,<y<B,)E,<y<H,]}. Compute d=|(y—x [-1])/a]. Using the
above search method, compute w=R,(d). If w ends in a string of the form
((II(c)(1)) [(VD(c)(1)], make the move (x, y) = (I,(w), I,(w)+ad [+1]) € P. End.
If w ends in a string of the form ((III)(c)(2)) [(VI)(c)(2)], make the move ((x, y) >
(IL(w)—1, I,(w)+ad—1)e P) [(x, y) > (I,(w) +1, I,(w) + ad +2) € P]. End.

Verification. We shall verify the algorithm for mis¢re play only, since the argument
for normal play is very similar. '

In Step 2 we have x = H,, for some n =0 by Property 1. The node w constructed
in Step 2 is R,(E,) by the inverse of Property 2. In Step 3 we have x=E, by
Property 1. The inverse of Property 3 implies that I,(v)=n; and H,=x+an+1
by Theorem 2.1. The correctness of Step 4 is obvious. The correctness of Step 5
follows from Property 3 and Case 2 of part (ii) of the proof of Theorem 2.1. It
only remains to show that there is a node w in C),, satisfying w=R,(d). This
follows from

...—-l -""1 Hn_—En—l :

=pn<E, {sincea>1=>E, = |na| =n}

=X <P =G+ G {by the last part
of Theorem 6.1(iv)}

= aqm +qmv| = qm+l .

Hence d=<g,,,,— 1, so d appears in 7,,, by Theorem 6.1(iii), hence R,(d) appears
. ()
in C%,,.

The complexity of the algorithm is the same as that of the algorithm based on
the arithmetic characterization, and the space requirement is also limited to O(log x).

Note. An earlier paper of the present author [3] originally contained the analysis
of normal Wythoff games and the basic theory of cedar trees and their use for
consolidating normal play. Since the two referees of [3] recommended to publish
the cedar tree part separately, the present paper resulted, to which we have added,
however, the misere analysis, which, as shown above, is also consolidated by means
of cedar trees.
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