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Abstract

We formulate three reasonably short game rules for three two-pile
take-away games, which share one and the same set of P-positions.
This set is comprised of a pair of complementary homogeneous Beatty
sequences together with (0, 0). We relate the succinctness of the game
rules with the complexity of the P-positions by means of a notion
dubbed k-invariance.

1 Introduction

Let us recall the rules of d-Wythoff [10], d a fixed positive integer. The
available positions are (x, y), x and y non-negative integers. The legal moves
are

(I) Nim type: (x, y) → (x − t, y), if x − t ≥ 0 and (x, y) → (x, y − t), if
y − t ≥ 0; t > 0.

(II) Extended diagonal type: (x, y) → (x − s, y − t) if |t − s| < d and
x− s ≥ 0, y − t ≥ 0; s > 0, t > 0.

This game is a so-called impartial take-away game [2], vol. 1. We restrict
attention to normal play, that is, the player first unable to move loses. For
our games it means that the player called upon to move from (0, 0) loses.
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Rules (I) and (II) imply that d-Wythoff is a so-called invariant [5, 16]
(take-away) game, that is, each available move is legal from any position as
long as the resulting position has non-negative coordinates. Every move in
any invariant game is an invariant move. In this note we study another type
of take-away game, where certain positions have some local restrictions on
the set of otherwise invariant moves. Such games are called variant [5, 16].
We define these notions in Section 4.

Central to our investigation is Beatty’s Theorem [1] (predated by Lord
Rayleigh [19]): Let β > 2 be an irrational number and define its complement,
β̂, by β̂−1 + β−1 = 1 so that β̂ = β/(β − 1). This clearly implies 1 < β̂ <
2 < β. Let An = bnβ̂c, Bn = bnβc, A = ∪n≥1{An}, B = ∪n≥1{Bn}.
Beatty’s Theorem then asserts that A and B are complementary sets, that
is, A ∪ B = Z≥1, A ∩ B = ∅. Since β > β̂ > 1, the (homogeneous) Beatty
sequences (An) and (Bn) are strictly increasing.

1.1 Three Games

We formulate three game rules. Let β > 2 be a fixed irrational and let
d = bβc. Fix a pair of non-negative integers (x, y). Recall that Bn = bnβc
for all n:

(G1) The moves are as in Nim on two piles (I), except that, if B∩{x, y} = ∅,
then in addition to the Nim-type move a player may also take away
s ∈ {0, . . . , d} from the other pile in the same move. This game is
denoted by β-Nim.

(G2) The moves are as in d-Wythoff, subject to (I) and (II), except that
if B ∩ {x, y} 6= ∅, then only Nim-type moves (I) are permitted. This
game is denoted by β-Wynim.

(G3) The moves are as in d-Wythoff, subject to (I) and (II), except that
if B ∩ {x, y} 6= ∅, then the pair (s, t), with s and t as in (II), cannot
belong to the pair of β-triangles defined by

{(x, y), (y, x) | (x, y) ∈ {(1, bβc), (2, bβc), (2, bβc+ 1)}}.

This game is denoted by βT-Wynim.

The name Wynim derives from Wythoff-Nim; in (G3) the T in βT stands
for Triangles. The main result of this note is as follows:
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Theorem 1. The set of P-positions of β-Nim, β-Wynim and βT-Wynim is
the same. It is

P :=
⋃
n≥0

{(An, Bn)}
⋃
n≥0

{(Bn, An)},

where An = bnβ̂c, Bn = bnβc.

We prove this result in Section 3. In Section 4 we develop the distinc-
tion between invariant and variant games and relate our findings to certain
complexity issues. In the section to come we give some examples.

2 Examples and tables of P-Positions

In the proof of the main result and in the examples of sets of P-positions to
come, we use the following illustrative notation:

Notation 1. For every n ≥ 0,
(i) ∆An := An+1 −An, ∆Bn := Bn+1 −Bn are the gaps.
(ii) ∆n := Bn −An.
(iii) ∆2

n := ∆n+1 −∆n.

For some (invariant) take-away games on two heaps where short formulas
for both the rules and the P-positions are known, such as [10, 12, 14], the
coordinates of the P-positions are defined via certain algebraic numbers
together with the floor function. Our first example rather uses a well known
transcendental number.

Example 1. In the game of π-Wynim, a player may move as in Nim on two
piles (I), or, if the position does not contain a coordinate of the form bπnc,
deviate at most bπc − 1 = 2 positions from the ‘main diagonal’ as given by
the game d-Wythoff, that is use (II) with d = 3. The result of this note
implies that the P-positions of this game are the set

∪n≥0{(bπ̂nc, bπnc), (bπnc, bπ̂nc)},

the first few of which are displayed in Table 1.

Example 2. Example 1 illustrates Theorem 1 for a member of our second
game family, β-Wynim. A further example: Let d = 2 in the formula
β = (2 +d+

√
d2 + 4)/2 (see d-Wythoff and paper [10]) and with β̂ = β−d.

Then β =
√

2 + 2, β̂ = β − 2; note that bβc = 3 as in Example 1. The
first few P-positions are shown in Table 2. Since β − β̂ = d = 2, we have
∆n = dn = 2n, so ∆2

n = d = 2 for all n ≥ 0, and the β-triangles, as in (G3),
for both these games, will be {(1, 3), (2, 3), (2, 4)} ∪ {(3, 1), (3, 2), (4, 2)}.
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Table 1: The first few P-positions (An, Bn) for β-Nim, β-Wynim and βT-Wynim,
β = π = 3.14159 . . ..

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

An 0 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 24 26 27 29 30 32 33 35 36 38 39 41 42

Bn 0 3 6 9 12 15 18 21 25 28 31 34 37 40 43 47 50 53 56 59 62 65 69 72 75 78 81 84 87 91

∆n 0 2 4 5 7 8 10 11 14 15 17 18 20 21 23 25 27 29 30 32 33 35 37 39 40 42 43 45 46 49

∆2
n 2 2 1 2 1 2 1 3 1 2 1 2 1 2 2 2 2 1 2 1 2 2 2 1 2 1 2 1 3 1

Remark 1. It is remarkable that, for β = (2 + d+
√
d2 + 4)/2, d-Wythoff

has the same set of P-positions as our three games. In particular, for d = 1,
1-Wythoff is the classical Wythoff game [2]. For d = 2, the first few P-
positions of the games are displayed in Table 2. In [4] it was shown that
from the classical Wythoff game no move can be deleted while preserving
the set of P-positions of the classical Wythoff game. In the present note,
Wythoff moves were deleted, and the P-positions are still preserved. The
difference is that in [4] only invariant moves were permitted. See section 4
for more on the latter topic.

3 Proof of the Main Result

We preface the proof of Theorem 1 by collecting some facts on the sets {An}
and {Bn}.

Proposition 1. For every n ≥ 0,
(i) The only possible gap pairs are

(∆An,∆Bn) ∈ {(1, bβc), (1, bβc+ 1), (2, bβc), (2, bβc+ 1)}.

(ii) ∆2
n = ∆Bn −∆An.

(iii) ∆2
n ∈ {bβc − 2, bβc − 1, bβc}.
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Table 2: The first few P-positions (An, Bn) for 2-Wythoff, β-Nim β-Wynim and
βT-Wynim; β as in Example 2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

An 0 1 2 4 5 7 8 9 11 12 14 15 16 18 19 21 22 24 25 26 28 29 31 32 33 35 36 38

Bn 0 3 6 10 13 17 20 23 27 30 34 37 40 44 47 51 54 58 61 64 68 71 75 78 81 85 88 92

Proof. (i) This is a well known result.

(ii) ∆2
n = (Bn+1 − An+1) − (Bn − An) = (Bn+1 − Bn) − (An+1 − An) =

∆Bn −∆An.

(iii) Follows directly from (i) and (ii). �

Example 3. Notice that in Example 1, Table 1, ∆2
n assumes all three

possible values {1, 2, 3} = {bβc−2, bβc−1, bβc}. In Example 2, ∆2
n assumes

only the value 2 = bβc − 1.

Proof of Theorem 1. Since our games are acyclic, it suffices to demon-
strate the following two properties for each game:

P → N: Every move from any position of the form

(An, Bn) or (Bn, An) (1)

results in a position outside (1).

N → P: Given any position outside (1), there exists a move into (1).

For the direction P → N we use the same argument for the games (I)
β-Nim and (II) β-Wynim, namely: Suppose that we play from a position
of the form (1). The game rules imply that only Nim type moves (I) are
permitted so that by complementarity, there is no move to a position of the
same form.
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For game (III) βT-Wynim, we have to show that both (i) (An, Bn) →
(Am, Bm) and (ii) cross moves (An, Bn) → (Bm, Am) are blocked for every
0 ≤ m < n.

(i) By Proposition 1, (Bn −Bm)− (An −Am) = ∆n −∆m ≥ ∆n −∆n−1 =
∆2

n−1 ∈ {bβc − 2, bβc − 1, bβc} where the ≥ follows from the fact that

β > β̂, which implies that ∆i is a non-decreasing function of i. Therefore
the move (An, Bn) → (Am, Bm) is either blocked by the triangle move re-
striction of βT-Wynim (if ∆2

n−1 ≤ bβc), or by the bβc-Wythoff constraint
(if ∆2

n−1 ≥ bβc).

(ii) Notice that this move is possible only if An > Bm. Now (Bn − Am) −
(An−Bm) = ∆n+∆m. Similarly to (i), if ∆n+∆m ∈ {bβc−2, bβc−1, bβc},
this forces m = 0 and n = 1 so that the move is blocked by the β-triangle
move restriction; otherwise by the bβc-Wythoff constraint.

For the direction N → P, let (x, y), 0 ≤ x ≤ y be a position not of the
form (1). We assume first that this position has a coordinate of the form
Bn, so for each game it suffices to show that a Nim type (I) move suffices
for moving into (1). If x = Bn then move y → An. If y = Bn and x > An

then move x → An. If y = Bn and x < An, complementarity implies that
there exists m < n such that either x = Am so the move y → Bm restores
(1); or else x = Bm, so the move y → Am does it.

Hence we may assume that both x and y are in A, say x = Am ≤ An = y.
If y > Bm, then the Nim type (I) move y → Bm suffices for each game. We
may therefore assume that

x = Am ≤ An = y < Bm. (2)

Since each of (Ai) and (Bi) is strictly increasing, a Nim type move to a
position (1) does not exist, so we have to find a (II) extended diagonal type
move for the games β-Wynim and βT-Wynim. Observe that for both these
games, this type of moves is now unrestricted with k = bβc.

Let d := y − x. Then d = An − Am < Bm − Am = ∆m. By Propo-
sition 1, ∆i grows from 0 to ∆m as i grows from 0 to m, in steps ∆2

i =
∆Bi −∆Ai ∈ {bβc − 2, bβc − 1, bβc}, bounded above by bβc. Hence there
exists j such that 0 ≤ d−∆j < bβc. Then move (x, y)→ (Aj , Bj). We need
to show three things: (i) j < m, (ii) y > Bj , (iii) |(y−Bj)−(Am−Aj)| < bβc.

(i) ∆j ≤ d = y −Am < Bm −Am = ∆m. Since ∆i is an increasing function
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of i, we have j < m.

(ii) y = Am + d > Aj + d ≥ Aj + ∆j = Bj .

(iii) |(y −Bj)− (Am −Aj)| = |(y −Am)− (Bj −Aj)| = |d−∆j | < bβc.

On the other hand, for the game β-Nim and a position of the form in (2),
by Proposition 1 (i) a nearest lower P-position is attainable by an extended
‘horizontal’ Nim-type move. Precisely, since ∆Bn ∈ {bβc, bβc + 1} we can
lower y = An to Bi, where i ≥ 0 is such that Bi < An < Bi+1, and x = Am

to Ai, that is move (Am, An) → (Ai, Bi). By the (I) Nim type move we
have to show that Ai < Am. But the definition of i together with (2) give
Bi < An < Bm which, by i < m, implies Ai < Am.

Thus the set P is indeed the set of P-positions for our three games. �

4 The notion of k-invariance and game complexity

Let us continue our brief discussion of variant versus invariant games from
the introduction and Remark 1, and relate it to the complexity of numbers
and games. We think of an integer as the simplest number, followed by the
rationals, algebraic numbers and transcendental numbers, the most complex
numbers.

Our three games are, in fact, ‘minimally variant’ in the sense that all
their positions can be partitioned into precisely two sets, namely,

{(Ai, Aj) | i, j ∈ Z>0} and {(Bi, Aj), (Ai, Bj), (Bi, Bj) | i, j ∈ Z≥0},

such that, for each game, for each set, the possible moves are invariant.
This observation motivates a weakening of the notion of invariance to k-
invariance, k ∈ Z>0.

Definition 1. Let X be a subset of the set of positions (j-tuples of non-
negative integers) of a game G on j heaps. Then m (also a j-tuple of
non-negative integers, but not all 0) is an invariant move in X, if for all
x ∈ X, x−m is an option, provided x−m is a position in G.

Definition 2. Let G be a game and X a subset of all positions in G. Then
m is a variant move in X if there exist x, y ∈ X such that both x−m and
y −m are positions in G, x−m is an option but y −m is not.

Definition 3. Let k ∈ Z>0. A game G is k-invariant if
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• its set of positions can be partitioned into k subsets, such that, within
each subset X, each allowed move is invariant in X;

• for any partition tXi of G’s positions into < k subsets, there is an i
and an m, such that m is a variant move in Xi.

If a game G is not k-invariant for any k ≥ 1, then it is∞-invariant. If k = 1,
then G is invariant (the second item does not apply). If k 6= 1, then G is
variant.

The games in this paper are all 2-invariant. The “mouse game” in [6] is 2-
invariant. However it is known that the ?-operator for invariant subtraction
games [16, 15] produces an invariant game, the “mouse trap” [13], with the
same sets of P-positions as the mouse game. Note that the mouse game is
still 2-invariant; the k-invariance of game rules have got nothing to do with
the possibility of existence of l-invariant games for l < k, for a given set of
P-positions (such definitions appear to need special attention). The game
Mark [8, 9] is ∞-invariant. Of course, any ∞-invariant game is variant.

Let γ = β − β̂. It appears that the complexity of γ, the simplicity of
the game rules and the size of l are related. If γ = l is an integer, there are
simple game rules, (I) and (II), and the game is invariant (Example 2). For
our three games, γ is not necessarily an integer, the game rules are longer
and the 1-invariance is replaced by 2-invariance. To shed more light on these
suggested relationships, it might be well to investigate whether γ rational,
algebraic [5, 17], or transcendental has any effect on the length of the game
rules and k-invariance.

We close this section with a conjecture which requires a little background.
The succinct input size of a given ordered pair of integers (x, y) is log(xy).

The time complexity of deciding whether a given ordered pair (x, y) is of the
form (An, Bn) is polynomial in log(xy), see [10], §3. In [16, Main Theorem]
it is demonstrated that, given the set P in Theorem 1, there is an invariant
game for which the time complexity of determining whether a given ordered
pair (s, t) is a legal move is exponential in log(st). In [5, 17] polynomial
time invariant game rules are determined for the set P when γ is restricted
to some specific algebraic numbers of degree 2.

We make the following related conjecture.

Conjecture 1. Let β > 2 be irrational. Let Q = ∪n≥0{(An, Bn)} ∪n≥0

{(Bn, An)} where (An)n≥1 and (Bn)n≥1 are complementary Beatty sequences
and suppose that γ = β − β̂ transcendental, A0 = B0 = 0. Let G be an
invariant game, with polynomial time complexity in log(xy), for finding a
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move from each N-position (x, y) into a P-position. Then the set Q, is not
the set of P-positions of G.

Perhaps this conjecture holds even if γ is algebraic, or even if γ is a
non-integer rational number. Perhaps it holds even if the Beatty sequences
A and B are not complementary [9]. By the results of this paper, we know
that the conjecture is false if we replace invariance by 2-invariance.

The notion of k-invariance is also interesting in a somewhat different
context. In [18] certain k-invariant 2-heap subtraction games with a finite
number of (variant) moves are studied and it is showed that they embrace
computational universality.

Many heap games in the literature have move-size dynamic rules (e. g.
Fibonacci nim), blocking maneuvers (e. g. blocking Wythoff nim), depend
on positions moved to, rather than position moved from, and so on, and
new variations yet to come. The notion of k-invariance in this paper is only
intended as a small guide for a larger classification in the future.

5 Discussion

We have formulated three reasonably short game rules for three 2-invariant
games, which have identical sets of P-positions. Suppose that we fix β and
then increase the density of the pairs of sequences from 1 to say an arbi-
trary number ζ > 1 (or decreases to a density < 1) where α is defined via
1/α + 1/β = ζ. (That is, for all β, α 6= β̂.) Given candidate P-positions
as above, is there still a short/succinct but non-trivial way of formulating
the game rules without disclosing both irrationals or/and the joint density
of the sequences? It is unknown to us whether or not there exist invariant
rules for such games, see [16], [9]. Is it possible to find 2-invariant rules
in the sense of this note? As another remark, observe that neither β̂ nor
the density 1 is disclosed in the presentation of the rules of our games in
this note. In [16] invariant game rules are given for candidate P-positions
constructed from complementary Beatty sequences, but not in a single case
have we found a succinct description. In this note we have chosen to re-
move the nice condition of invariance (and reverted to 2-invariance) from
the game rules and, maybe even more notably, one of the coordinates of
the candidate P-positions is disclosed within the game rules. This could be
argued to be a severe drawback in a definition of the rules of a game. But,
on the other hand, we were able to give a very succinct formulation, without
a complete trivialization of game rules, for all complementary homogeneous
Beatty sequences and these are uncountably many. For other investigations
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that relate Nim and Wythoff, see [3], [11].
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