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n stones, and its relation to the Ulam-Warburton ellular automaton, is pre-sented.Keywords: Combinatorial game theory, impartial games, Nim, Sprague-Grundy theory, Ulam-Warburton ellular automaton.1. IntrodutionCombinatorial game theory studies perfet information games in whih there areno hane devies (e.g. die) and two players take turns moving alternately. Herewe are onerned with games under normal play, where the last player to movewins. This paper is self ontained; see [1, 2, 5℄ for bakground and [6℄ for a survey.Readers �uent in ombinatorial game theory may wish to proeed to the subsetion1.2.1.1. bakground on relevant ombinatorial game theoryThe options of a game are all those positions whih an be reahed in one move.Using the standard notation for ombinatorial game theory of [2℄ where Left andRight are the players, games an be expressed reursively as G = {GL | GR} where

GL are the Left options and GR are the Right options of G. We distinguish betweenmultiple meanings of the word game by using the words ruleset and game. The wordruleset has a onrete meaning related to some partiular set of rules (what is alleda �game� informally). The word game, by ontrast, has the abstrat mathematialmeaning de�ned by Conway [2, 5℄. When we speak of the value of a game, we are1



2 LIM IS NOT SLIMemphasizing that it is being onsidered in this latter sense, as an algebrai objetwhih an be ompared for equality with, or added to, other games.An example of a ombinatorial ruleset is the lassi game of nim, �rst studied byC. Bouton [3℄. nim is played with piles of stones. On his turn, eah player anremove any number of stones from any pile. The winner is the player who takesthe last stone. nim is an example of an impartial ruleset: Left options and Rightoptions are the same for the game and all its followers. The values involved in nimare alled nimbers (or stars):
∗k = {0, ∗, . . . , ∗(k − 1) | 0, ∗, . . . , ∗(k − 1)}It is a surprising fat that all impartial rulesets take only nimbers as values (Sprague-Grundy Theory, see [7, 11℄).The minimum exluded value of a set S is the least nonnegative integer whih isnot inluded in S and is denoted mex(S). The nim-value of an impartial game G,denoted by G(G), is given by
G(G) = mex{G(H) : H is an option of G}.The value of an impartial game G is the nimber ∗G(G). The game G is a previousplayer win, i.e. the next player has no good move, if and only if G(G) = 0. If agame is a previous player win, we say it is a P-position. If a game is a next playerwin, we say it is a N -position. The set of P-positions is noted P and the set of

N -positions is noted N .The nim-sum of two nonnegative integers is the exlusive or (XOR), written ⊕,of their binary representations. It an also be desribed as adding the numbersin binary without arrying. The disjuntive sum of games H and K is written
G = H +K. In this game, the player to move must hoose one of H and K andmake a legal move in that game. One important result about impartial games isthe following: if G = H +K, then G(G) = G(H)⊕ G(K) (see [1, 2, 5℄).1.2. The game of limThis paper studies the impartial ruleset lim with very simple rules proposed byJorge Nuno Silva 1. In [9, 10℄, there is a orret onjeture about the P-positions,but no proof is presented.There are 3 piles. A player takes the same number N of stones from 2 piles andadds N stones to the third. The last player wins (i.e. we onsider the normalplay version). There is a board game implementation of lim has a board gameimplementation. The players move a pile of hekers diagonally in one of the threediretions depited. If a player moves Southwest or Northeast, he an move anumber of ells smaller or equal to the number of hekers of the pile and, whenthe move is �nished, the player removes that number of hekers from the pile. Ifa player moves Northwest, when the move is �nished, the player adds the numberof hekers that is equal to the number of traveled ells. See Figure 1.1Etymologial note: the name lim, aside from rhyming with nim, is an aronym for Laura eManuel, the names of Silva's hildren (the Portuguese word e �and� is pronouned /i/).
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Figure 1. Moves in the board game implementation of lim.In this paper a omplete analysis of lim is presented. Theorem 4.1 gives a formulafor the nim-values of lim. This formula intermixes the ordinary sum and the nim-sum, and thus our analysis neessitates establishing some lemmas on how these twonotions of sum interat, whih we do in setion 2. Moreover, it is very onvenientfor the analysis of lim to introdue an equivalent ruleset lim', a sort of oordinatetransform of lim: it turns out that we an use nim moves to �nd good moves inlim'. This is the subjet of Setion 3.We also enumerate the P-positions of lim and onnet it to the Ulam-Warburtonellular automaton in Setion 5, exhibiting a bijetion between P-positions of limwith n stones and ells born in a region of this automaton on tik n.2. Nim, sums, and nim sumsIn this setion we prove some useful general results relating the usual sum andsubtration to the nim sum, ulminating with Lemma 2.4 on nim.Lemma 2.1. Let a, b and c be nonnegative integers. Then,(1) a+ b = a⊕ b+ 2(a⊙ b)(2) a+ b+ c = a⊕ b⊕ c+ 2(a⊙ b+ a⊙ c+ b⊙ c)− 4(a⊙ b⊙ c)where ⊙ is the bitwise produt (i.e. AND).Proof. For the �rst item we just observe that nim sum anels repeating bits inbinary expansions of a and b. So, in order to obtain the usual sum from nim sum,we have to add the repeating bits twie.Again, the nim sum for three summands anels repeating bits in binary expansionsof a, b and c. It is easy to see that a bit of the binary expansion of (a⊙ b+ a⊙ c+
b ⊙ c) − 2(a ⊙ b ⊙ c) is 1 if and only if a, b and c, for that bit, have two or three1s (there are repetitions). So, in order to obtain the usual sum from nim sum, wehave to add (a⊙ b + a⊙ c+ b⊙ c)− 2(a⊙ b⊙ c) twie. �



4 LIM IS NOT SLIMLemma 2.2. Let a, b be nonnegative integers. Then,
a− b 6 a⊕ b 6 a+ bProof. a ⊕ b 6 a + b is trivial, as we an argue with the previous lemma. For theseond inequality,

b+ (b ⊕ a) = b⊕ (b⊕ a) + 2(b⊙ (a⊕ b)) = a+ 2(b⊙ (a⊕ b)) > aSo, a− b 6 a⊕ b. �The next lemma is our most tehnial. Those not reading in depth may wish toskip ahead to Lemma 2.4, where it is used.Lemma 2.3. Let d be a positive integer, and suppose given four expressions for das a signed sum of distint powers of two: that is, let εi,ℓ ∈ {−1, 0, 1} satisfy
d =

∑

i>0

εi,ℓ2
ifor eah ℓ = 1, . . . , 4. Suppose that there is no i > 0 suh that εi,1εi,2εi,3εi,4 = 1.Let i0 be the maximal index suh that εi0,1 + εi0,2 + εi0,3 + εi0,4 is odd. Then, atleast one of the εi0,ℓ equals 1.Proof. We �rst ompare two suh expansions of d, say with oe�ient sequenes

{εi,1} and {εi,2}. Let i be the greatest index at whih εi,1 di�ers from εi,2. Withoutloss of generality we may take εi,1 > εi,2. The di�erene εi,1−εi,2 must equal 1; if itwere greater, then sine∑i

j=0 εj,12
j =

∑i

j=0 εj,22
j = d, subtrating the disagreeingterms εi,ℓ would yield

i−1
∑

j=0

(εj,1 − εj,2)2
j 6 −2 · 2i,whih is impossible sine,

i−1
∑

j=0

(εj,1 − εj,2)2
j >

i−1
∑

j=0

−2 · 2j = −2(2i − 1).Moving on to the (i−1)th terms, an argument of the same type shows that εi−1,1−
εi−1,2 6 −1: if instead this di�erene were > 0, the remaining terms would have tomake up a disrepany of size 2·2i−1, and ould not. Likewise, if εi−1,1−εi−1,2 = −1,then another similar argument shows εi−2,1 − εi−2,2 6 −1. And one an ontinueiteratively, onluding that if εk,1 − εk,2 = −1 for all k = i − 1, i − 2, . . . , j, then
εj−1,1 − εj−1,2 6 −1.Also, we an not have εk,1 − εk,2 = −1 for all k = i − 1, i − 2, . . . , 0 beause
∑i−1

j=0 2
j < 2i so, for some k < j, we have εk,1 − εk,2 = −2.Taking up the situation of interest with all four expansions εi,ℓ, let i be the maximalindex suh that any εi,ℓ is nonzero. Sine d is positive, εi,ℓ ∈ {0, 1} for eah ℓ. Thenumber of ℓ suh that εi,ℓ equals 1 annot be 4 by hypothesis, and if it is 1 or 3then our onlusion is immediate with i0 = i. So we may assume there are twosuh ℓ, without loss of generality that εi,1 = εi,2 = 1 and εi,3 = εi,4 = 0.



LIM IS NOT SLIM 5Now let us examine the remaining oe�ients εk,ℓ with k < i. By the above,onsider i0 the �rst bit suh that εi0,1 − εi0,3 = −2 or εi0,2 − εi0,4 = −2. Say that
εi0,1 − εi0,3 = −2. Therefore, εi0,1 = −1 and εi0,3 = 1. Also, we an not have
εi0,2 − εi0,4 = −2 beause, by the assumptions of the theorem, εi,1εi,2εi,3εi,4 6= 1.So, it is mandatory that either εi0,2 = −1 and εi0,4 = 0 or εi0,2 = 0 and εi0,4 = 1.This ompletes the proof beause i0 is indeed the maximal bit sought and at leastone of the εi0,ℓ equals 1. �Lemma 2.4. Consider a, b, c nonnegative integers and 0 < d 6 a⊕ b⊕ c. Then,the nim position (a+ d, b+ d, c+ d) has a move to a nim position of Grundy value
(a⊕ b⊕ c)− d.Proof. It is enough to prove that we an not have simultaneously the followingthree inequalities:







((a⊕ b⊕ c)− d)⊕ (b + d)⊕ (c+ d) > a+ d
((a⊕ b⊕ c)− d)⊕ (a+ d)⊕ (c+ d) > b+ d
((a⊕ b⊕ c)− d)⊕ (a+ d)⊕ (b + d) > c+ d.To justify this fat, say that ((a⊕b⊕c)−d)⊕(b+d)⊕(c+d)< a+d. If so, we havea nim move from (a+d, b+d, c+d) to ((a⊕b⊕c)−d)⊕ (b+d)⊕ (c+d), b+d, c+d)with Grundy value (a⊕b⊕c)−d. So, if we prove that at least one of the inequalitiesfails, the lemma is proved.Let biti(x) denote the ith bit of the binary expansion of an integer x. De�ne theintegers εi,ℓ ∈ {−1, 0, 1} by
εi,1 = biti(a+ d)− biti(a)

εi,2 = biti(b+ d)− biti(b)

εi,3 = biti(c+ d)− biti(c)

εi,4 = biti(a⊕ b⊕ c)− biti((a⊕ b⊕ c)− d)Of ourse, ∑i εi,ℓ2
i = d for ℓ = 1, . . . , 4.There is no i suh that εi,1εi,2εi,3εi,4 = 1, beause that would imply that an oddnumber of biti(a), biti(b), biti(c), and biti(a⊕ b⊕ c) were 1. Therefore Lemma 2.3applies to the εi,ℓ.Eah εi,ℓ is odd if and only if the nim-sum of the two bits subtrated in its de�nitionis odd, so the i0 of the Lemma 2.3 equals the index of the leading 1 bit in

(a+ d)⊕ a⊕ (b + d)⊕ b⊕ (c+ d)⊕ c⊕ (a⊕ b⊕ c)⊕ ((a⊕ b⊕ c)− d),whih therefore equals the leading 1 bit in
(a+ d)⊕ (b + d)⊕ (c+ d)⊕ ((a⊕ b⊕ c)− d).At last, suppose none of a+ d, b+ d, or c+ d have their i0th bit equal to 1. Then

εi,ℓ 6= 1 for ℓ = 1, 2, 3, so εi,4 = 1, implying that biti0(a⊕ b ⊕ c) = 1. But then anodd number of biti0(a) and biti0(b) and biti0(c) equal 1, so an odd number of εi,1and εi,2 and εi,3 are odd, ontraditing the de�nition of i0.



6 LIM IS NOT SLIMIn onlusion, in i0, the leading 1 bit of
(a+ d)⊕ (b + d)⊕ (c+ d)⊕ ((a⊕ b⊕ c)− d),at least one of the i0th bits of a+ d, b+ d, and c+ d must be 1.This su�es to argue that one of the initial three inequalities must fail. Say thatwe have the i0th bits of a + d, b + d, c + d, and ((a ⊕ b ⊕ c) − d) equaling 1, 1,

0, and 1. In that ase, both the �rst and seond inequalities fail. And a similarargument for the other ases leads to, at least, one failed inequality. This ompletesthe proof. �Example 2.5. Consider the triple (41, 30, 23) and d = 15. Beause 41⊕ 30⊕ 23 =
32 > 15 > 0, the hypotheses of Lemma 2.4 are satis�ed. So, it is possible to �nda nim move from (41 + 15, 30 + 15, 23 + 15) = (56, 45, 38) to a nim position withGrundy value 32 − 15 = 17. To �nd suh a move we an perform the followingalulations:(1) ((41⊕ 30⊕ 23)− 15)⊕ (30 + 15)⊕ (23 + 15) = 17⊕ 45⊕ 38 = 26(2) ((41⊕ 30⊕ 23)− 15)⊕ (41 + 15)⊕ (23 + 15) = 17⊕ 56⊕ 38 = 15(3) ((41⊕ 30⊕ 23)− 15)⊕ (41 + 15)⊕ (30 + 15) = 17⊕ 56⊕ 45 = 4.In this example, all the three inequalities 56 > 26, 45 > 15 and 38 > 4 hold(all the three inequalities of the proof failed). So, there are three good possibil-ities: (56, 45, 28) −→ (26, 45, 28), (56, 45, 28) −→ (56, 15, 28) or (56, 45, 28) −→
(56, 45, 4). ♦3. The game of lim'In this setion we introdue and analyze the ruleset lim' whih is equivalent tolim. lim' is played on triangles (A,B,C) (that is A + B > C, A + C > B and
B + C > A) suh that A + B + C ≡ 0 mod 2 and a move onsists of subtratingfrom a single side length an even number less or equal than this side length. Thereare several lassial variations of nim; subtration games are played like nim butthe players an only remove a number of stones from a pile if it is an element ofa given subtration set {s1, . . . , sk} ([1, 2, 5℄, for more information). lim' is thesubtration game played on triangles de�ned as above whose subtration set is theset of positive even numbers.Lemma 3.1. lim and lim' are equivalent ombinatorial rulesets.Proof. Consider the digraphs (P, E) and (P′, E′), where P and P

′ are the sets ofverties representing the positions of lim and lim' and E and E′ are the edgesorresponding to the moves of eah ruleset. We want to prove that the digraphsare isomorphi.Consider ψ : P → P
′ suh that ψ(a, b, c) = (A,B,C) where A = b + c, B = a + c,

C = a + b. It is easy to see that (A,B,C) is a triangle suh that A + B + C ≡ 0mod 2, so that the image of ψ indeed lies in the set of lim' positions.First, we observe that ψ is a bijetion. To wit, ψ(a, b, c) = ψ(a′, b′, c′) ⇒ (b +
c, a+ c, a+ b) = (b′ + c′, a′ + c′, a′ + b′) and elementary linear algebra shows that
b + c = b′ + c′, a + c = a′ + c′ and a + b = a′ + b′ implies a = a′, b = b′



LIM IS NOT SLIM 7and c = c′. Also, onsider an arbitrary (A,B,C) ∈ P
′. Let a = (−A + B + C)/2,

b = (A−B+C)/2, and c = (A+B−C)/2. Beause all the frations are nonnegativeintegers ((A,B,C) is a triangle and A + B + C ≡ 0 mod 2), we have (a, b, c) ∈ Pand ψ(a, b, c) = (A,B,C).As for the edges of our digraphs, onsider the lim move (a, b, c) −→ (a−k, b−k, c+
k). Of ourse, we have k 6 a, k 6 b, 2k 6 a + b = C, and A + B + C − 2k ≡ 0mod 2. Also, (A,B,C − 2k) is a triangle beause C − 2k + A = a + b − 2k +
b + c = B + 2b − 2k > B and the same argument for C − 2k + B > A. So,
(A,B,C) −→ (A,B,C − 2k) is a legal lim' move. Conversely, onsider the lim'move (A,B,C) −→ (A,B,C−2k). It is mandatory that (A,B,C−2k) is a triangle.So, C − 2k+B > A⇒ k 6 (−A+B +C)/2 = a (and similarly k 6 b). Therefore,
(a, b, c) −→ (a− k, b− k, c+ k) is a legal lim move. The onlusion is that an edgeis in E if and only if the orrespondent edge is in E′. We have a graph isomorphismand this ompletes the proof. �To be expliit, here again are the orrespondenes from moves in lim to moves inlim':(1) (a, b, c) −→ (a−k, b−k, c+k) is identi�ed with (A,B,C) −→ (A,B,C−2k)(2) (a, b, c) −→ (a−k, b+k, c−k) is identi�ed with (A,B,C) −→ (A,B−2k, C)(3) (a, b, c) −→ (a+k, b−k, c−k) is identi�ed with (A,B,C) −→ (A−2k,B,C).So, a omplete analysis of lim' provides a omplete analysis of lim. The followingproposition is suh a omplete analysis.Proposition 3.2. Let (A,B,C) be a lim' position. If (A−g)⊕(B−g)⊕(C−g) = gthen (A,B,C) has G-value g.Proof. We will prove the theorem following the usual indution in A+B+C. Thebase ase A = B = C = 0 is trivial. We will show that a position we have assertedto have G-value g has no option of the same G-value, and has an option of G-value
h for eah 0 6 h < g.The former is lear: if lim'(A,B,C) and lim′(A − k,B,C) had the same G-value
g, so would the nim positions (A− g,B − g, C − g) and (A− k − g,B − g, C − g),whih they annot.Let 0 6 h < g. Consider (A − g,B − g, C − g) and d = g − h. We have 0 < d 6

(A− g)⊕ (B − g)⊕ (C − g) = g. So, we are in the onditions of Lemma 2.4. It ispossible to �nd a nim move from (A−g+d,B−g+d, C−g+d)=(A−h,B−h,C−h)to a position with G-value g − d = h. There exists k suh that the nim sum of
(A− k − h,B − h,C − h) is h.Now, let us see that (A − k,B,C) is a lim' position and k is a nonnegative evennumber. To begin, B +C > A− k beause B +C > A. Also, beause A− k− h =



8 LIM IS NOT SLIM
h⊕ (B − h)⊕ (C − h) implying A− k = h+ (h⊕ (B − h)⊕ (C − h)),

(A− k) +B

= (h+ (h⊕ (B − h)⊕ (C − h))) +B

> (h⊕ (h⊕ (B − h)⊕ (C − h))) +B

= ((B − h)⊕ (C − h)) +B

> ((C − h)− (B − h)) +B

= C.We have used Lemma 2.2 in the previous manipulations. Similarly (A−k)+C > Bso, (A− k,B,C) is a triangle.Also, the nim sum of (A− k−h,B−h,C−h) is h. A simple parity analysis allowsus to observe that (A − h) + (B − h) + (C − h) ≡ h mod 2, and therefore k mustbe even.Finally, beause k is even, (A− k) +B + C ≡ 0 mod 2 and (A− k,B,C) is a lim'position. Now, using indution, the G-value of this position is h beause the nimsum of (A− k − h,B − h,C − h) is h.
�4. G-values of lim positionsTheorem 4.1. Let (a, b, c) be a lim position. Then,

G(a, b, c) =
1

2

(

(a+ b+ c)− (a⊕ b⊕ c)
)

.This theorem solves lim ompletely; Example 4.2 below illustrates this in pratie.We observe that the P-positions of lim are all those positions (a, b, c) suh that theusual sum oinides with nim sum. This observation was �rst published in [9℄ as aonjeture, without proof.Proof. As seen in Lemma 2.1, 1
2

(

(a + b + c) − (a ⊕ b ⊕ c)
)

= (a ⊙ b + a ⊙ c + b ⊙
c)− 2(a⊙ b⊙ c) and the ith bit of its binary expansion is 1 if and only if the binaryexpansions of a, b, and c, for that bit, have two or three 1s (there are repetitions).Let g = 1

2

(

(a+ b+ c)− (a⊕ b⊕ c)
). Exhaustively we an observe that

biti(g) = biti(a+ b− g)⊕ biti(a+ c− g)⊕ biti(b+ c− g).In fat,(1) If biti(a) = 0, biti(b) = 0, and biti(c) = 0, then biti(g) = 0 and
biti(a+ b− g)⊕ biti(a+ c− g)⊕ biti(b+ c− g) = 0⊕ 0⊕ 0 = 0;(2) If biti(a) = 1, biti(b) = 0, and biti(c) = 0, then biti(g) = 0 and
biti(a+ b− g)⊕ biti(a+ c− g)⊕ biti(b+ c− g) = 1⊕ 1⊕ 0 = 0;(3) If biti(a) = 1, biti(b) = 1, and biti(c) = 0, then biti(g) = 1 and
biti(a+ b− g)⊕ biti(a+ c− g)⊕ biti(b+ c− g) = 1⊕ 0⊕ 0 = 1;(4) If biti(a) = 1, biti(b) = 1, and biti(c) = 1, then biti(g) = 1 and
biti(a+ b− g)⊕ biti(a+ c− g)⊕ biti(b+ c− g) = 1⊕ 1⊕ 1 = 1.



LIM IS NOT SLIM 9But biti(g) = biti(a+ b− g)⊕biti(a+ c− g)⊕biti(b+ c− g) implies naturally that
(a + b − g) ⊕ (a + c − g) ⊕ (b + c − g) = g. By Proposition 3.2, this implies that
G(A,B,C) = g where A = b+ c, B = a+ c, C = a+ b and (A,B,C) is the relatedlim' position. This �nishes the proof. �Example 4.2 (An example of playing lim). Consider the game lim(22, 33, 40) +
∗17. By Theorem 4.1,

G(22, 33, 40) =
(22 + 33 + 40)− (22⊕ 33⊕ 40)

2
= 32.Therefore, in order to win the game, we must �nd a move in the lim omponent to

∗17.The related lim' position is (33+40, 22+40, 22+33) = (73, 62, 55). Let h = 17, inorder to use Proposition 3.2, we must �nd a nim move in (73− h, 62− h, 55− h) =
(56, 45, 38) to ∗17.The nim move (56, 45, 38) 7→ (26, 45, 38) is suh a move. This was obtained sub-trating k = 30 from the �rst pile 56 so, in the original lim position, we will add
15 to the �rst pile.Returning again to lim, we must add 15 to the �rst omponent of the lim position.Thus lim(22, 33, 40) 7→lim(37, 18, 25) obtains the desired ∗17. ♦5. Enumeration of P-positions of limTheorem 5.1. Consider Pn = {(N1, N2, N3) ∈ P : N1 + N2 + N3 = n} the setof P-positions of lim with n stones. Then, for n = 0, |Pn| = 1, and for n > 0,
|Pn| = (3w(n)−1 + 1)/2, where w(n), the binary weight of n, is the number of 1s inthe binary expansion of n.Proof. If n = 0, the result is trivial.Consider n, a positive integer. To ount the P-positions suh thatN1+N2+N3 = n,we must distribute the bits of the binary expansion of n among the three numbers
N1, N2, N3. There are 3w(n) ways to aomplish this.This generates 6 repetitions for positions with at most one zero and 3 repetitionsfor positions with two zeros. Beause there are exatly 3 positions with two zeros,avoiding repetitions brings our ount to

3w(n) − 3

6
+

3

3
=

3w(n)−1 + 1

2
.

�The sequene (3w(n)−1 + 1)/2, the number of P-positions of lim with n stones(inluding the sinks (0, 0, n)), is the sequene A079318 in the Online Enylopediaof Integer Sequenes [8℄, losely related to Ulam's ellular automaton. We proeedto explain this relation.



10 LIM IS NOT SLIMUlam-Warburton Cellular Automaton. The ells are the squares in an in�nitesquare grid, and the neighbors of eah ell are de�ned to be the four squares whihshare an edge with it. At stage 0, a single ell is turned ON. Thereafter, a ell ishanged from OFF to ON at stage n if and only if exatly one of its four neighborswas ON at stage n − 1. One a ell is ON it stays ON. Figure 2 gives the �rstseveral stages.

b

Figure 2. Stages 0 through 7 of the evolution of the Ulam-Warburton struture.In [12℄, Rihard P. Stanley proposed the following problem. Let L be the integerlattie in R
d, i.e., L is the set of points (x1, x2,. . ., xd) with all xj ∈ Z. Considera graph L with vertex set L by delaring two lattie points to be adjaent if thedistane between them is 1. De�ne a sequene S0, S1, . . . of subsets of L indutivelyas follows: S0 = {(0, 0, ..., 0)} and Sn = {P ∈ L \

⋃

0<k<n Sk : P is adjaent toexatly one element of ⋃0<k<n Sk}. Let S be the full subgraph of L whose vertiesare S =
⋃

Sn. Thus, P ∈ S is adjaent in S to P ′ ∈ S if and only if the distanebetween P and P ′ is 1.(a) Charaterize Sn.(b) How many elements are in Sn?Later, in [4℄, Robin J. Chapman gave some answers. We onentrate on the speialase d = 2 whih is studied in the present work.(a) Consider the binary expansion n =
∑k

j=1 2
rj , r1 > r2 > . . . > rk >

0. Consider v1 = (1, 0), v2 = (0, 1), v3 = (−1, 0), and v4 = (0,−1).
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Sn is exatly the set of lattie points P that an be represented as P =
∑k

j=1 2
rjvj suh that vj 6= −vj−1 for j > 1. For example, (3, 2) = 4(1, 0)+

2(0, 1) + 1(−1, 0), so (3, 2) ∈ S7.(b) |Sn| = 4 · 3w(n)−1.The last expression and Theorem 5.1 let us guess a relation between the Ulam-Warburton struture and Pn. In fat, it is possible to onstrut a one-to-one or-respondene between Pn and an otant of the UW ellular automaton.Consider n =
∑k

j=1 2
rj and P ∈ Sn with the representation ∑k

j=1 2
rjvj . Let(1) a =

∑k

j=1 αj2
rj where

αj = 1 if vj = (1, 0) or (vj−1 = (−1, 0) and vj = (0,−1)); αj = 0 otherwise(2) b = ∑k

j=1 βj2
rj where

βj = 1 if vj = (0, 1) or (vj−1 = (0,−1) and vj = (−1, 0)); βj = 0 otherwise(3) c = ∑k

j=1 γj2
rj where

γj = 1 if (vj = (−1, 0) and vj−1 6= (0,−1)) or (vj = (0,−1) and vj−1 6=
(−1, 0)); γj = 0 otherwiseWe have (a, b, c) ∈ Pn and a > b > c.Conversely, we have the following inverse assoiation:Consider (a, b, c) ∈ Pn, a > b > c, and n = a+ b+ c =

∑k

j=1 2
rj .(1) If 2rj is a bit of the binary expansion of a then(a) if the already attahed vj−1 = (−1, 0), vj = (0,−1)(b) vj = (1, 0) otherwise(2) If 2rj is a bit of the binary expansion of b then(a) if the already attahed vj−1 = (0,−1), vj = (−1, 0)(b) vj = (0, 1) otherwise(3) If 2rj is a bit of the binary expansion of c then(a) if the already attahed vj−1 = (1, 0) or vj−1 = (0,−1), vj = (0,−1)(b) if the already attahed vj−1 = (0, 1) or vj−1 = (−1, 0), vj = (−1, 0)We get the related P =

∑k

j=1 2
rjvj in the otant of the UW ellular automaton.For example, (6, 3) ∈ S15 beause 15 = 8+ 4+ 2+ 1 and (6, 3) = 8(1, 0)+ 4(0, 1)+

2(−1, 0)+ 1(0,−1). Following the one-to-one orrespondene, this ell is related to
(8 + 1, 4, 2) = (9, 4, 2) ∈ P15.We observe that, as expeted, |Sn| = 4 · 3w(n)−1 is onsistent with Theorem 5.1. Infat, �rst we take out four ells belonging simultaneously to two otants, after wedivide the result by eight and, �nally, we add one ell:

4 · 3w(n)−1 − 4

8
+ 1.Simplifying, this is the result obtained in Theorem 5.1.



12 LIM IS NOT SLIM6. Final remarks on enumerating positionsWe have seen in the previous setion that the P-positions of lim are enumeratedby sequene A079318 in OEIS, losely related to Ulam's ellular automaton.The rules of lim only allow for positions to have three piles. An enumeration of the
P-positions of nim with 2n stones, allowing for an arbitrary number of piles, is quitedi�ult. However, in view of the relationship between lim and three-pile nim, it isnot unexpeted that Theorem 5.1 relates to enumeration of three-pile P-positionsin nim. Sequene A128975 in OEIS nearly enumerates these positions but it insistson three positive piles, exluding the positions of the form (n, n, 0): that is, it ountsthe unordered triples of positive integers (A,B,C) with A+B+C = n, whose nimsum is zero. If n > 0 then (A,B,C) is a P-position of nim with 2n stones and atmost 3 piles if and only if (A,B,C) is a P-position of lim' with A+B+C = 2n (weare inluding the ases (n, n, 0)). In fat, if (A,B,C) is a P-position of lim' then,by Proposition 3.2, A ⊕ B ⊕ C = 0 and, onversely, if (A,B,C) is a P-position ofnim, it is neessary that A+ B + C ≡ 0 mod 2 and (A,B,C) is a triangle (if not,there would be a bit spoiling the fat that A⊕B ⊕ C = 0).To ount the P-positions of nim with 2n stones and at most 3 piles, we just need toount the P-positions of lim' with A+B +C = 2n. Beause of the equivalene oflim and lim', this is the same as ounting the P-positions of lim with a+b+c = n.Therefore, Theorem 5.1 provides the solution; for n > 0, (3w(n)−1 + 1)/2 is thenumber of di�erent P-positions of nim with 2n stones and 2 or 3 piles, and thenumber of these P-positions is given by OEIS sequene A079318.Along these lines, here is a problem for future work: is there a generalization oflim, allowing arbitrarily many piles, whih would aid in solving the open problemof desribing the number of P-positions of nim with 2n stones and any number ofpiles?Aknowledgments. The work reported here was largely arried out at the 2012Games at Dal meeting, whih we thank Rihard Nowakowski for organizing. Wealso thank David Wolfe for useful disussions.Referenes[1℄ M. Albert, R. Nowakowski, D. Wolfe. Lessons in Play: An Introdution to CombinatorialGame Theory. A. K. Peters, 2007.[2℄ E. Berlekamp, J. Conway, R. Guy. Winning Ways. Aademi Press, London, 1982.[3℄ C. L. Bouton. �Nim, a game with a omplete mathematial theory�, Ann. Math. 3 (2), 1902,35�39.[4℄ R. Chapman. �A Tree in the Integer Lattie�, Amerian Mathematial Monthly, Vol. 105, No.8, pp. 769-771, 1998.[5℄ J. Conway. On Numbers and Games. Aademi Press, 1976.[6℄ A. S. Fraenkel. �Combinatorial Games: Seleted Bibliography with a Suint Gourmet In-trodution�. The Eletroni Journal of Combinatoris, 2012.[7℄ P. M. Grundy. �Mathematis and Games�, Eureka, 1939.[8℄ OEIS Foundation In. (2011), The On-Line Enylopedia of Integer Sequenes,http://oeis.org.[9℄ J. N. Silva. �Notas sobre o problema anterior e LIM�, Boletim da Soiedade Portuguesa deMatemátia, 46, pp. 119-124, 2002.
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