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Abstract

Two characterizations of the Sprague-Grundy function values of Eu-
clid’s game, in terms of the winning strategy of the generalized Wythoff
game, are given.
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Both Euclid and the generalized Wythoff game with parameter n ∈ Z>0

(abbreviated as GWn) are two-person games played on two integers (x, y). Their
moves, however, are quite different. In Euclid, the integers remain positive
throughout; a move consists of decreasing the larger number by any positive
multiple of the smaller, as long as the result remains positive. The player
first unable to move loses [4]. A polynomial-time algorithm for computing the
Sprague-Grundy function (g-function) for Euclid is given in [5].

The game GWn is played over Z≥0. The moves are of two types: removal
of any positive integer from one of the numbers; or removal of k > 0 from one
and ` > 0 from the other, subject to |k − `| < n for fixed n ∈ Z>0. The player
unable to move because the position is (0, 0) loses. See [3] for three algorithms
for the 0s of the g-function, two of which are polynomial in the logarithmic size
of the two piles. The case n = 1 is the classical Wythoff game, see e.g., [7], [2],
[8].

For both games we assume throughout, without loss of generality, that x ≤ y,
except when stated otherwise.

For n ∈ Z≥0, let φn be the larger of the two roots of z−z−1 = n. Then φn =
(n +

√
n2 + 4)/2, φ−1

n = (−n +
√

n2 + 4)/2. It follows from [5] that for Euclid,
g(x, y) = n precisely for all y in the closed integer interval [dφnxe, bφn+1xc].
For computing the g-function it thus suffices to compute the boundary points
bφnxc. (For n ∈ Z>0, dφnxe = 1 + bφnxc; φ0 = 1, φ1 the golden section.)

In this note we present two characterizations of the extremal points bφnxc,
which also reveal, incidentally, a curious connection between the strategies of
GWn and Euclid.
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From the identity (1 + z)−1 + (1 + z−1)−1 = 1, which holds for all reals z 6∈
{0,−1}, it follows that the two sequences ∪∞k=1bk(1+ z)c and ∪∞k=1bk(1+ z−1)c
are complementary with respect to Z>0 if z is a positive irrational number. For
n ∈ Z>0, let αn = 1 + φ−1

n , βn = 1 + φn. Then α−1
n + β−1

n = 1, βn − αn = n, so
{(Ax, Bx) : x ∈ Z≥0} is the set of all 0-values of g for GWn, where Ax = bαnxc,
Bx = bβnxc ([3], §3). They are the second-player win positions of GWn, also
called P -positions. Further,

Ax = mex{Ai, Bi : 0 ≤ i < x}, Bx = Ax + nx ∀x ∈ Z≥0, (1)

where mex(S) for any set S ⊂ Z≥0, S 6= Z≥0, is the smallest nonnegative integer
not in S. We have proved,

Theorem 1 Let n, x ∈ Z>0. Then bφnxc = Bx − x, where Bx is given by (1).

Thus the g-value n− 1 of Euclid, n ∈ Z>0, is given in terms of the P -positions
(1) of the generalized Wythoff game with parameter n. (Using (1) we can also
compute Bx+1, Bx+2, . . . via Ax+1, Ax+2, . . . .)

The second characterization of bφnxc is obtained by means of an exotic
numeration system. It could be done in terms of the numeration system induced
by αn, as in [3]. But the result is nicer using a numeration system based on
φn. For stating it, we recall a few basic facts from the theory of continued
fractions [6]. Let α be an irrational number with simple continued fraction
expansion α = [a0, a1, a2, . . .] where a0 ∈ Z, ai ∈ Z>0 for i > 0. Its convergents
[a0, a1, . . . , ak] satisfy

p−1 = 1, p0 = a0, pk = akpk−1 + pk−2 (k ≥ 1),

q−1 = 0, q0 = 1, qk = akqk−1 + qk−2 (k ≥ 1).

The q-numeration system is the numeration system based on the denominators
qi of the convergents of α. For any N ∈ Z>0, N can be written uniquely in the
q-system in the form:

N =
m∑

i=0

diqi, 0 ≤ d0 < a1, 0 ≤ di ≤ ai+1, di = ai+1 =⇒ di−1 = 0 (i ≥ 1). (2)

For the present case we introduce also an alternate q-numeration system, de-
noted by q′-system, which is identical to the q-system, except that d0 < a1 is
replaced by d0 ≤ a1. Then some integers have two representations: one with
d0 < a1, and the other with d0 = a1. In these cases we always select the lat-
ter. Then any N ∈ Z>0 can be written uniquely in the form (2) with d0 < a1

replaced by d0 ≤ a1.
For i ≥ −1, let Di = αqi − pi. From the theory of continued fractions it is

known that

−1 = D−1 < D1 < D3 < . . . < 0 < . . . < D4 < D2 < D0 = α− a0.
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Lemma 1 For j ≥ −1, m ≥ 1, Dj +
∑m

i=1 aj+2iDj+2i−1 = Dj+2m.

This follows from the fact that Dj +aj+2Dj+1 = Dj+2, and Dj+2 can be added
to the next term aj+4Dj+3 to give Dj+4, etc. A formal proof is given in [3], §5.

Note that for n ∈ Z>0, φn = [n, n, n, . . .] is the simple continued fraction
expansion of the irrational number φn.

Extending a notation of [1], a number in the q- or q′-system of φn (n > 0)
is called evil if it ends in an even number of 0s. Otherwise it is odious. Given a
number N =

∑
diqi in the q- or q′-system, the number L(N) =

∑
diqi+1 is the

left shift of N . By induction we see that qm = pm−1 for m ≥ 1.

Lemma 2 Let n ∈ Z>0. Every positive integer is evil in the q′-system of φn.

Proof. It is readily seen that for every m ≥ 0, n
∑m

i=0 q2i = q2m+1. Hence any
odious representation ending in d2m+1, 0, . . . , 0 (2m+1 trailing 0s), d2m+1 6= 0,
can also be represented in the evil form ending in (d2m+1−1), n, 0, n, 0, . . . , 0, n,
and only the latter is legitimate in the q′-system. ¥

Theorem 2 Let n, x ∈ Z>0. If x =
∑m

i=0 diqi in the q′-system for suitable
m ≥ 0, then bφnxc =

∑m
i=0 dipi =

∑m
i=0 diqi+1. In particular, bφnxc is odious.

Proof. By Lemma 2, every x ∈ Z>0 has an evil representation of the form
x =

∑m
i=0 diqi, 0 ≤ di ≤ n in the q′-system. It suffices to show that 0 < xφn −∑m

i=0 dipi < 1, since then bφnxc =
∑m

i=0 dipi. By Lemma 1, for t = dm/2e we
have, xφn−

∑m
i=0 dipi =

∑m
i=0 diDi ≤ n

∑t
i=0 D2i = D2t+1−D−1 < −D−1 = 1.

Further,
∑m

i=0 diDi ≥ n
∑t

i=0 D2i+1 −D1 + D0 = D2t+2 −D1 > 0. ¥
Consequences. (i) For n, x ∈ Z>0, represent x in the q′-system of φn. Then

y = L(x) is the largest lattice point satisfying g(x, y) = n−1, and y1 = 1+L(x)
is the smallest lattice point such that g(x, y1) = n. The set L(x), x ≥ 1, is the
set of all odious numbers in the q-system of φn.

(ii) For computing y = bφnxc it suffices to express x in the q′-system of φn.
Its left shift is y (which can also be expressed in terms of the x-th P -position
of GWn). This computation is clearly polynomial in the succinct input size
O(log x). The points L(x), x ≥ 1, and 1 + L(x) straddle the ray y = φnx from
below and above respectively with all the lattice points closest to that ray.

(iii) To win in a sum of games from a position (x, y), x ≤ y, the winner has
to move, at each stage, to (x, y′) (possibly y′ < x), satisfying g(x, y′) = n for
specified n (0 for a single game). Since x, n are given, the above method yields
immediately the value y′ = y− kx, where k is the smallest positive integer such
that y − kx ≤ L(x) and x is represented in the q′-system of φn+1.
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