Euclid and Wythoff games

Aviezri S. Fraenkel
Computer Science and Applied Mathematics
Weizmann Institute of Science
Rehovot, Israel

April 10, 2005

Abstract

Two characterizations of the Sprague-Grundy function values of Eu-
clid’s game, in terms of the winning strategy of the generalized Wythoff
game, are given.
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Both Euclid and the generalized Wythoff game with parameter n € Z-q
(abbreviated as GW,,) are two-person games played on two integers (x,y). Their
moves, however, are quite different. In Euclid, the integers remain positive
throughout; a move consists of decreasing the larger number by any positive
multiple of the smaller, as long as the result remains positive. The player
first unable to move loses [4]. A polynomial-time algorithm for computing the
Sprague-Grundy function (g-function) for Euclid is given in [5].

The game GW,, is played over Z>o. The moves are of two types: removal
of any positive integer from one of the numbers; or removal of k > 0 from one
and £ > 0 from the other, subject to |k — £| < n for fixed n € Z~o. The player
unable to move because the position is (0,0) loses. See [3] for three algorithms
for the Os of the g-function, two of which are polynomial in the logarithmic size
of the two piles. The case n =1 is the classical Wythoff game, see e.g., [7], [2],
[8].

For both games we assume throughout, without loss of generality, that z < y,
except when stated otherwise.

For n € Z>, let ¢,, be the larger of the two roots of z—z~! = n. Then ¢,, =
(n+vn2+4)/2, ¢;1 = (—n ++v/n2 +4)/2. Tt follows from [5] that for Euclid,
g(z,y) = n precisely for all y in the closed integer interval [[¢,z], |dn+12]].
For computing the g-function it thus suffices to compute the boundary points
|¢nz|. (For n € Zso, [¢nz] =1+ |dnz]; ¢o =1, ¢1 the golden section.)

In this note we present two characterizations of the extremal points | ¢,x],
which also reveal, incidentally, a curious connection between the strategies of
GW,, and Euclid.



From the identity (14 2)~! 4 (1 +2z71)~! = 1, which holds for all reals z ¢
{0, -1}, it follows that the two sequences U, |k(1+2)| and U2, [k(1+2z71)]
are complementary with respect to Z~ if z is a positive irrational number. For
n e Z>07 let a,, = 1+¢;1, /Bn = 1+¢n Then 017714» ;1 = 1’ ﬂn*an =n, SO
{(Az,B;) : @ € Z>¢} is the set of all 0-values of g for GW,,, where A, = |, ],
B, = |Bnx] ([3], §3). They are the second-player win positions of GW,,, also
called P-positions. Further,

Ay =mex{A4;,B;: 0<i<a}, By =A, +nx Yz € Z>o, (1)

where mex(S) for any set S C Z>q, S # Z>o, is the smallest nonnegative integer
not in S. We have proved,

Theorem 1 Let n,x € Z~g. Then |¢,x| = B, — x, where B, is given by (1).

Thus the g-value n — 1 of Euclid, n € Z~¢, is given in terms of the P-positions
(1) of the generalized Wythoff game with parameter n. (Using (1) we can also
compute By i1, Byyo,... via Agi1, Agioy... )

The second characterization of |¢,xz]| is obtained by means of an exotic
numeration system. It could be done in terms of the numeration system induced
by ay, as in [3]. But the result is nicer using a numeration system based on
¢,. For stating it, we recall a few basic facts from the theory of continued
fractions [6]. Let a be an irrational number with simple continued fraction
expansion « = [ag, a1, az,...] where ag € Z, a; € Z~q for ¢ > 0. Its convergents
[ag, a1, ..., ax] satisfy

p—1 =1, po = ao, pr = arpr—1 +pr—2 (k>1),

g-1=0, go=1, ¢ = apqr—1 +qr—2 (k>1).

The g-numeration system is the numeration system based on the denominators
q; of the convergents of a. For any N € Z~(, N can be written uniquely in the
g-system in the form:

N = Zdi% 0<do<ai, 0<d; <ay1, di = a1 =d;i—1 =0 (i >1). (2)
i=0

For the present case we introduce also an alternate g-numeration system, de-
noted by ¢'-system, which is identical to the g-system, except that dy < aj is
replaced by dy < a;. Then some integers have two representations: one with
do < ay, and the other with dy = ay. In these cases we always select the lat-
ter. Then any N € Z~ can be written uniquely in the form (2) with dy < a1
replaced by dy < a;.

For i > —1, let D; = aq; — p;. From the theory of continued fractions it is
known that

—1=D_1<D1<D3<...<0<...<Ds<Dy<Dy=0—ayg.



Lemma 1 Forj> -1, m>1, D;+>." aj+2:Djt2,-1 = Djiom.

This follows from the fact that D; 4+ ajy2D;4+1 = Dj12, and Dj4o can be added
to the next term a;4Dj43 to give Dj 4, etc. A formal proof is given in [3], §5.

Note that for n € Z-g, ¢, = [n,n,n,...] is the simple continued fraction
expansion of the irrational number ¢,,.

Extending a notation of [1], a number in the ¢- or ¢’-system of ¢,, (n > 0)
is called ewil if it ends in an even number of 0s. Otherwise it is odious. Given a
number N = Y d;q; in the ¢- or ¢’-system, the number L(N) = Y d;g;+1 is the
left shift of N. By induction we see that ¢, = py,—1 for m > 1.

Lemma 2 Let n € Z~q. Every positive integer is evil in the ¢'-system of ¢,.

Proof. It is readily seen that for every m > 0, n 2?;0 G2i = Q2m+1. Hence any
odious representation ending in doy,41,0,...,0 (2m+1 trailing 0s), doy,41 # 0,
can also be represented in the evil form ending in (d2y4+1—1),n,0,n,0,...,0,n,
and only the latter is legitimate in the ¢’-system. W

Theorem 2 Let n,x € Zso. If ¢ = 31" diq; in the ¢'-system for suitable
m >0, then |ppx| =Y i dipi = > e digiy1- In particular, |¢nx] is odious.

Proof. By Lemma 2, every x € Zs( has an evil representation of the form
z=Y1",digi, 0 < d; <nin the ¢’-system. It suffices to show that 0 < z¢,, —
S, dipi < 1, since then |¢nz] = 7" dip;. By Lemma 1, for ¢t = [m/2] we
have, v, —> it dipi = Soeo diDi <n Yo Dai = Dogp1—D_y < —D_; = 1.
Further, ZZZO d;D; > ’H,Z§=O D2i+1 — D1+ Dy = D2t+2 —D;>0. N

Consequences. (i) For n,x € Z~q, represent x in the ¢’-system of ¢,,. Then
y = L(x) is the largest lattice point satisfying g(x,y) =n—1, and y; = 1+ L(x)
is the smallest lattice point such that g(z,y1) = n. The set L(z), > 1, is the
set of all odious numbers in the g-system of ¢,.

(ii) For computing y = | ¢, x| it suffices to express x in the ¢’-system of ¢,,.
Its left shift is y (which can also be expressed in terms of the z-th P-position
of GW,,). This computation is clearly polynomial in the succinct input size
O(logx). The points L(z), x > 1, and 1 + L(x) straddle the ray y = ¢, 2 from
below and above respectively with all the lattice points closest to that ray.

(iii) To win in a sum of games from a position (z,y), © < y, the winner has
to move, at each stage, to (z,y’) (possibly ¥’ < ), satisfying g(z,y’) = n for
specified n (0 for a single game). Since x,n are given, the above method yields
immediately the value ¢y’ = y — kx, where k is the smallest positive integer such
that y — kxz < L(z) and z is represented in the ¢’-system of ¢, 1.
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