Euclid and Wythoff games

Aviezri S. Fraenkel Computer Science and Applied Mathematics Weizmann Institute of Science Rehovot, Israel

April 10, 2005

Abstract

Two characterizations of the Sprague-Grundy function values of Euclid's game, in terms of the winning strategy of the generalized Wythoff game, are given.

 ${\bf Keywords}:$ Euclid's game, Wythoff's game, Sprague-Grundy function

Both Euclid and the generalized Wythoff game with parameter $n \in \mathbb{Z}_{>0}$ (abbreviated as GW_n) are two-person games played on two integers (x, y). Their moves, however, are quite different. In Euclid, the integers remain positive throughout; a move consists of decreasing the larger number by any positive multiple of the smaller, as long as the result remains positive. The player first unable to move loses [4]. A polynomial-time algorithm for computing the Sprague-Grundy function (g-function) for Euclid is given in [5].

The game GW_n is played over $\mathbb{Z}_{\geq 0}$. The moves are of two types: removal of any positive integer from *one* of the numbers; or removal of k > 0 from one and $\ell > 0$ from the other, subject to $|k - \ell| < n$ for fixed $n \in \mathbb{Z}_{>0}$. The player unable to move because the position is (0, 0) loses. See [3] for three algorithms for the 0s of the g-function, two of which are polynomial in the logarithmic size of the two piles. The case n = 1 is the classical Wythoff game, see e.g., [7], [2], [8].

For both games we assume throughout, without loss of generality, that $x \leq y$, except when stated otherwise.

For $n \in \mathbb{Z}_{\geq 0}$, let ϕ_n be the larger of the two roots of $z - z^{-1} = n$. Then $\phi_n = (n + \sqrt{n^2 + 4})/2$, $\phi_n^{-1} = (-n + \sqrt{n^2 + 4})/2$. It follows from [5] that for Euclid, g(x, y) = n precisely for all y in the closed integer interval $[\lceil \phi_n x \rceil, \lfloor \phi_{n+1} x \rfloor]$. For computing the g-function it thus suffices to compute the boundary points $\lfloor \phi_n x \rfloor$. (For $n \in \mathbb{Z}_{>0}$, $\lceil \phi_n x \rceil = 1 + \lfloor \phi_n x \rfloor$; $\phi_0 = 1$, ϕ_1 the golden section.)

In this note we present two characterizations of the extremal points $\lfloor \phi_n x \rfloor$, which also reveal, incidentally, a curious connection between the strategies of GW_n and Euclid.

From the identity $(1+z)^{-1} + (1+z^{-1})^{-1} = 1$, which holds for all reals $z \notin \{0, -1\}$, it follows that the two sequences $\bigcup_{k=1}^{\infty} \lfloor k(1+z) \rfloor$ and $\bigcup_{k=1}^{\infty} \lfloor k(1+z^{-1}) \rfloor$ are complementary with respect to $\mathbb{Z}_{>0}$ if z is a positive irrational number. For $n \in \mathbb{Z}_{>0}$, let $\alpha_n = 1 + \phi_n^{-1}$, $\beta_n = 1 + \phi_n$. Then $\alpha_n^{-1} + \beta_n^{-1} = 1$, $\beta_n - \alpha_n = n$, so $\{(A_x, B_x) : x \in \mathbb{Z}_{\geq 0}\}$ is the set of all 0-values of g for GW_n, where $A_x = \lfloor \alpha_n x \rfloor$, $B_x = \lfloor \beta_n x \rfloor$ ([3], §3). They are the second-player win positions of GW_n, also called P-positions. Further,

$$A_x = \max\{A_i, B_i : 0 \le i < x\}, \ B_x = A_x + nx \quad \forall x \in \mathbb{Z}_{\ge 0},$$
(1)

where mex(S) for any set $S \subset \mathbb{Z}_{\geq 0}$, $S \neq \mathbb{Z}_{\geq 0}$, is the smallest nonnegative integer not in S. We have proved,

Theorem 1 Let
$$n, x \in \mathbb{Z}_{>0}$$
. Then $\lfloor \phi_n x \rfloor = B_x - x$, where B_x is given by (1).

Thus the *g*-value n-1 of Euclid, $n \in \mathbb{Z}_{>0}$, is given in terms of the *P*-positions (1) of the generalized Wythoff game with parameter *n*. (Using (1) we can also compute B_{x+1}, B_{x+2}, \ldots via A_{x+1}, A_{x+2}, \ldots .)

The second characterization of $\lfloor \phi_n x \rfloor$ is obtained by means of an exotic numeration system. It could be done in terms of the numeration system induced by α_n , as in [3]. But the result is nicer using a numeration system based on ϕ_n . For stating it, we recall a few basic facts from the theory of continued fractions [6]. Let α be an irrational number with simple continued fraction expansion $\alpha = [a_0, a_1, a_2, \ldots]$ where $a_0 \in \mathbb{Z}$, $a_i \in \mathbb{Z}_{>0}$ for i > 0. Its convergents $[a_0, a_1, \ldots, a_k]$ satisfy

$$p_{-1} = 1, \ p_0 = a_0, \ p_k = a_k p_{k-1} + p_{k-2} \quad (k \ge 1),$$

 $q_{-1} = 0, \ q_0 = 1, \ q_k = a_k q_{k-1} + q_{k-2} \quad (k \ge 1).$

The *q*-numeration system is the numeration system based on the denominators q_i of the convergents of α . For any $N \in \mathbb{Z}_{>0}$, N can be written uniquely in the *q*-system in the form:

$$N = \sum_{i=0}^{m} d_i q_i, \ 0 \le d_0 < a_1, \ 0 \le d_i \le a_{i+1}, \ d_i = a_{i+1} \Longrightarrow d_{i-1} = 0 \ (i \ge 1).$$
(2)

For the present case we introduce also an *alternate* q-numeration system, denoted by q'-system, which is identical to the q-system, except that $d_0 < a_1$ is replaced by $d_0 \leq a_1$. Then some integers have two representations: one with $d_0 < a_1$, and the other with $d_0 = a_1$. In these cases we always select the latter. Then any $N \in \mathbb{Z}_{>0}$ can be written uniquely in the form (2) with $d_0 < a_1$ replaced by $d_0 \leq a_1$.

For $i \geq -1$, let $D_i = \alpha q_i - p_i$. From the theory of continued fractions it is known that

$$-1 = D_{-1} < D_1 < D_3 < \ldots < 0 < \ldots < D_4 < D_2 < D_0 = \alpha - a_0.$$

Lemma 1 For $j \ge -1$, $m \ge 1$, $D_j + \sum_{i=1}^m a_{j+2i} D_{j+2i-1} = D_{j+2m}$.

This follows from the fact that $D_j + a_{j+2}D_{j+1} = D_{j+2}$, and D_{j+2} can be added to the next term $a_{j+4}D_{j+3}$ to give D_{j+4} , etc. A formal proof is given in [3], §5.

Note that for $n \in \mathbb{Z}_{>0}$, $\phi_n = [n, n, n, ...]$ is the simple continued fraction expansion of the irrational number ϕ_n .

Extending a notation of [1], a number in the q- or q'-system of ϕ_n (n > 0) is called *evil* if it ends in an even number of 0s. Otherwise it is *odious*. Given a number $N = \sum d_i q_i$ in the q- or q'-system, the number $\mathcal{L}(N) = \sum d_i q_{i+1}$ is the *left shift* of N. By induction we see that $q_m = p_{m-1}$ for $m \ge 1$.

Lemma 2 Let $n \in \mathbb{Z}_{>0}$. Every positive integer is evil in the q'-system of ϕ_n .

Proof. It is readily seen that for every $m \ge 0$, $n \sum_{i=0}^{m} q_{2i} = q_{2m+1}$. Hence any odious representation ending in $d_{2m+1}, 0, \ldots, 0$ $(2m+1 \text{ trailing 0s}), d_{2m+1} \ne 0$, can also be represented in the evil form ending in $(d_{2m+1}-1), n, 0, n, 0, \ldots, 0, n$, and only the latter is legitimate in the q'-system.

Theorem 2 Let $n, x \in \mathbb{Z}_{>0}$. If $x = \sum_{i=0}^{m} d_i q_i$ in the q'-system for suitable $m \ge 0$, then $\lfloor \phi_n x \rfloor = \sum_{i=0}^{m} d_i p_i = \sum_{i=0}^{m} d_i q_{i+1}$. In particular, $\lfloor \phi_n x \rfloor$ is odious.

Proof. By Lemma 2, every $x \in \mathbb{Z}_{>0}$ has an evil representation of the form $x = \sum_{i=0}^{m} d_i q_i, 0 \le d_i \le n$ in the q'-system. It suffices to show that $0 < x\phi_n - \sum_{i=0}^{m} d_i p_i < 1$, since then $\lfloor \phi_n x \rfloor = \sum_{i=0}^{m} d_i p_i$. By Lemma 1, for $t = \lceil m/2 \rceil$ we have, $x\phi_n - \sum_{i=0}^{m} d_i p_i = \sum_{i=0}^{m} d_i D_i \le n \sum_{i=0}^{t} D_{2i} = D_{2t+1} - D_{-1} < -D_{-1} = 1$. Further, $\sum_{i=0}^{m} d_i D_i \ge n \sum_{i=0}^{t} D_{2i+1} - D_1 + D_0 = D_{2t+2} - D_1 > 0$.

Consequences. (i) For $n, x \in \mathbb{Z}_{>0}$, represent x in the q'-system of ϕ_n . Then $y = \mathcal{L}(x)$ is the largest lattice point satisfying g(x, y) = n - 1, and $y_1 = 1 + \mathcal{L}(x)$ is the smallest lattice point such that $g(x, y_1) = n$. The set $\mathcal{L}(x), x \ge 1$, is the set of all odious numbers in the q-system of ϕ_n .

(ii) For computing $y = \lfloor \phi_n x \rfloor$ it suffices to express x in the q'-system of ϕ_n . Its left shift is y (which can also be expressed in terms of the x-th P-position of GW_n). This computation is clearly polynomial in the succinct input size $O(\log x)$. The points $\mathcal{L}(x), x \ge 1$, and $1 + \mathcal{L}(x)$ straddle the ray $y = \phi_n x$ from below and above respectively with all the lattice points closest to that ray.

(iii) To win in a sum of games from a position (x, y), $x \leq y$, the winner has to move, at each stage, to (x, y') (possibly y' < x), satisfying g(x, y') = n for specified n (0 for a single game). Since x, n are given, the above method yields immediately the value y' = y - kx, where k is the smallest positive integer such that $y - kx \leq \mathcal{L}(x)$ and x is represented in the q'-system of ϕ_{n+1} .

References

 E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways for your Mathematical Plays, Vol. I & II, Academic Press, London, 2nd edition: vol. 1 (2001), vol. 2 (2003) (of four volumes), A K Peters, Natick, MA, 1982.

- [2] H. S. M. Coxeter, The golden section, phyllotaxis and Wythoff's game, *Scripta Math.* 19 (1953) 135–143.
- [3] A. S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly 89 (1982) 353–361.
- [4] T. Lengyel, A Nim-type game and continued fractions, *Fibonacci Quart.* 41 (2003) 310–320.
- [5] G. Nivasch, The Sprague-Grundy function of the game Euclid, 2004, submitted.
- [6] C. D. Olds, Continued Fractions, Random House, New York, 1963.
- [7] W. A. Wythoff, A modification of the game of Nim, Nieuw Arch. Wisk. 7 (1907) 199–202.
- [8] A. M. Yaglom and I. M. Yaglom, *Challenging Mathematical Prob*lems with Elementary Solutions, Vol. II, Holden-Day, San Francisco, translated by J. McCawley, Jr., revised and edited by B. Gordon, 1967.