
Rulesets for Beatty Games

Lior Goldberg and Aviezri S. Fraenkel∗

September 14, 2017

Abstract

We describe a ruleset for a 2-pile subtraction game with P -positions
{(bαnc, bβnc) : n ∈ Z≥0} for any irrational 1 < α < 2, and β such that
1/α+ 1/β = 1. We determine the α’s for which the game can be rep-
resented as a finite modification of t-Wythoff ([18], [9]) and describe
this modification.

1 Introduction

The game t-Wythoff (see [18] and [9]) is a two-player game played on two
piles of tokens where each player can either (a) remove any positive amount
of tokens from one pile or (b) remove x > 0 tokens from one pile and y > 0
from the other provided that |x − y| < t where t ≥ 1 is a parameter of the
game. The player first unable to move loses (normal play).

The case t = 1, in which the second type of moves is to remove the
same amount of tokens from both piles, is the classical Wythoff game [22],
a modification of the game Nim. From among the extensive literature on
Wythoff’s game, we mention just three: [3], [9], [23].

We restrict attention to invariant subtraction games, such as t-Wythoff.
An invariant subtraction game is a subtraction game in which every move
can be made from every game position, provided only that every pile retains
a nonnegative number of tokens after the move. Invariant vector games were
defined formally in [15], and further explored in [6]. Furthermore, we assume
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that the piles are unordered. Additional references on invariant subtraction
games are, for example, [19] and [21].

In every finite acyclic impartial game, every position is either an N -
position – a position from which the Next player can win, or a P -position –
a position from which the Previous player can win. Throughout the paper
we consider normal play and thus (0, 0) is always a P -position. It is known
that the P -positions of t-Wythoff are {(bαnc, bβnc) : n ∈ Z≥0}, where α is
given by the continued fraction [1; t, t, t, . . .] and β is such that 1/α+1/β = 1.

In [6] it was conjectured that for every irrational 1 < α < 2, the set
Pα = {(bαnc, bβnc) : n ∈ Z≥0} constitutes the set of P -positions of some
invariant game. The conjecture was proven in [20]. We dub such games
Beatty games . Note that even though the proof given in [20] is constructive,
the ruleset is rather complicated, especially compared to the one of t-Wythoff.
For special cases of α, simpler rulesets appear in the literature. For example,
see [6] for a ruleset for the case α = [1; 1, q, 1, q, 1, q, . . .] (q ≥ 1) or [21] for
α = [1; q, 1, q, 1, . . .] (q ≥ 1). For modifications of Wythoff’s game having
Pα as their set of P -positions, see [17], [4], [14]. We use here the standard

continued fraction notation [a0, a1, a2, . . . ] for a0 +
1

a1 +
1

a2 + . . .

.

The aim of this paper is to suggest compact rulesets for all Beatty games.
That is, for every irrational 1 < α < 2, find a compact ruleset whose corre-
sponding P -positions are Pα. The term “compact” is a little vague. In this
paper we give two different meanings for “compact”: The first is an invariant
game whose moves are precisely those of t-Wythoff, except for some finite
modification. We call such a game MTW (Modified t-Wythoff), defined
precisely in Section 5, Definition 1(i). We will prove the following theorem:

Theorem 1. Let 1 < α < 2 be irrational. Then, there exists an MTW game
whose P -positions are Pα if and only if

α2 + bα− c = 0 for some b, c ∈ Z such that b− c+ 1 < 0. (1)

A consequence of this theorem is that for almost all α, there is no MTW
ruleset. In fact, it will follow from the proof, that the N -positions of the form
(bαnc, bβnc − 1) require infinitely many new moves. This brings us to the
second meaning of “compact”: We show (see Theorem 2) that by adding the
moves from theseN -positions to (0, 0) (together with finitely many additional
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(b) The set F – forbidden subtractions

Figure 1: A Beatty game with α = [1; 2, 3, 4, . . .]

moves) we obtain a ruleset for every irrational 1 < α < 2. Asymptotically,
the moves of t-Wythoff are located on three lines: the x-axis, the y-axis and
the x = y diagonal. The moves described in Theorem 2 are located on 5
lines: the three lines mentioned above, together with the two lines: αx = βy
and βx = αy. This is illustrated in Figure 1(a). Hence the second meaning
we give to “a compact ruleset” is that asymptotically the moves are located
on a finite number of lines (we also prefer to keep this number as small as
possible).

This paper is structured as follows:
Section 2 describes the framework and introduces some notation.
In Section 3 we present the set F – the set of subtractions which connect

one P -position to another. This set plays a crucial role in Theorem 1 and
Theorem 2, as a move can be added to the game if and only if it is not in F .
An example for the set F , for α = [1; 2, 3, 4, . . .], is shown in Figure 1(b)–both
crosses and dots (the differences between them will be explained presently).

In Section 4 we prove Theorem 2. We start with this theorem as it gives
a more general result, and some of the techniques used to prove it are also
used in the proof of Theorem 1.

Section 5 is dedicated to the proof of Theorem 1.
In Section 6 we present a detailed analysis for two special cases of MTW
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rulesets.

2 Preliminaries

A position in the game is denoted by a pair (X, Y ) where X and Y are the
sizes of the piles. A move, that allows a player to take x ≥ 0 tokens from one
pile and y ≥ 0 tokens from the other is denoted by a pair (x, y). We use the
convention that X ≤ Y and x ≤ y. Note that, potentially, there can be two
results of playing the move (x, y) from the position (X, Y ): (X − x, Y − y)
and (X − y, Y − x).

Let V denote the set of all possible subtraction moves:

V = {(x, y) ∈ Z2
≥0 : x ≤ y, 0 < y}.

The ruleset of any invariant game (played on two unordered piles) is a
subset of V. For example, the ruleset of t-Wythoff is

Wy(t) = {(0, y) : y > 0} ∪ {(x, y) : 0 < x ≤ y and y − x < t} ⊆ V.

The set Wy(0) is the ruleset of Nim, while Wy(1) is the ruleset of the
classical Wythoff game.

In this paper, β always denotes α/(α − 1) (so that 1/α + 1/β = 1).
Throughout we assume 0 < α < β, which implies 1 < α < 2 < β.

For x ∈ R, we write x = bxc+ {x} where bxc ∈ Z and 0 ≤ {x} < 1.
Every continued fraction alluded to in the sequel is a simple continued

fraction (with numerators 1, denominators positive integers): [a0; a1, a2, . . .] =
a0 + 1/(a1 + 1/(a2 + · · · )). See, e.g., [16, ch. 10].

3 Forbidden subtractions

When suggesting a candidate for a ruleset V ⊆ V whose P -positions should
be {(bαnc, bβnc) : n ∈ Z≥0}, one must check two things: (a) No P -position
has a P -position follower and (b) Every N -position has a P -position follower.
These two requirements are, in a sense, contrary: (a) bounds V from above
while (b) bounds V from below.

This section deals with (a). In order to check whether (a) holds, construct
the set F ⊆ V of forbidden subtractions – those subtractions that connect
one P -position to another. Then one simply checks that V∩F = ∅. We have
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F = F1 ∪F2 where F1 = {(bαnc − bαmc, bβnc − bβmc) : n > m ≥ 0} and
F2 = {(bαnc−bβmc, bβnc−bαmc) : bαnc > bβmc,m > 0}. See Figure 1(b)
for an example of F . The subtractions of F1 are represented as while those
of F2 are represented as .

Throughout this paper we will frequently use the following observation:

Observation 1. Let n,m, k ∈ Z≥0 such that n − m = k. Then for any
positive real θ, bθnc − bθmc = bθkc + a where a = 1 if {θn} < {θk}, and
a = 0 otherwise.

This follows from bθnc − bθmc − bθkc = −{θn} + {θm} + {θk}. So the
right-hand side must be an integer; in fact, it is either 0 or 1.

In general, the structure of F2 is much more complicated than that of
F1. See [14] for a detailed analysis of F2. Fortunately, this kind of detailed
analysis is not necessary here. Instead, Proposition 1 below will suffice.
We precede the proposition with the following geometric interpretation: the
forbidden subtractions of F2 all lie above the line βx = αy, see Figure 1(b).
We will use this proposition to verify that the moves we add to V are not in
F2.

Proposition 1. If (bαkc, y) ∈ F2 then y ≥ bβkc+1. In addition, if (bαkc+
1, y) ∈ F2 then y ≥ bβkc+ 2.

Proof. Assume that (bαkc, y) ∈ F2. Then there are n > m > 0 such that
bαnc − bβmc = bαkc and bβnc − bαmc = y.

We have bβmc = bαnc − bαkc ≤ bα(n− k)c+ 1. Therefore,

y = bβnc − bαmc = (bβnc − bβkc)− bαmc+ bβkc ≥
≥ bβ(n− k)c − bαmc+ bβkc ≥ as m,n− k > 0

≥ bα(n− k)c − bβmc+ 2 + bβkc ≥ bβkc+ 1.

The second assertion is proven similarly.

Now, consider the set F1. Note that one can write F1 =
⋃∞
k=1 F k

1 ∪ Pα
where F k

1 := {(bαnc − bαmc, bβnc − bβmc) : m > 0, n − m = k}. Fix
k ≥ 1 and consider the set F k

1 . Write x = bαnc − bαmc = bαkc + a where
a ∈ {0, 1} (see Observation 1). Similarly, write y = bβnc−bβmc = bβkc+ b,
b ∈ {0, 1}.

Geometrically, the values of a and b are determined by the position of
the point (u, v) = ({αn}, {βn}) in [0, 1)2 with respect to pk := ({αk}, {βk}).
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Namely, divide [0, 1)2 into four open rectangles Rpk
00, R

pk
01, R

pk
10, R

pk
11 as shown

in Figure 2. For example, Rpk
11 = {(u, v) : u < {αk}, v < {βk}}. Then,

({αn}, {βn}) ∈ Rpk
ij if and only if a = i and b = j. The constraint m > 0

guarantees that {αn} 6= {αk} and {βn} 6= {βk}.
The following proposition provides a criterion for testing whether the

subtraction (bαkc + a, bβkc + b) is in F1. Let D = {({αn}, {βn}) : n ∈
Z≥1} ⊆ [0, 1)2 and let E be its topological closure.

Proposition 2. Let k ∈ Z≥0 and let a, b ∈ {0, 1}. Then, the subtraction
(bαkc+ a, bβkc+ b) is in F1 if and only if either a = b = 0 or E ∩Rpk

ab 6= ∅.

Proof. In this proof we will omit the pk from Rpk
ab and simply write Rab

instead. The case a = b = 0 is trivial so we assume otherwise. Assume that
E ∩ Rab 6= ∅. Since Rab is open, D ∩ Rab 6= ∅. Since D has no isolated
points, |D ∩ Rab| = ℵ0 and thus one can choose ({αn}, {βn}) ∈ D ∩ Rab

with n > k. Choosing m = n − k, we obtain the requested result. For
the second direction note that if (bαkc+ a, bβkc+ b) ∈ F1 then necessarily
(bαkc+ a, bβkc+ b) ∈ F k

1 . The second part of the proof is identical.

Therefore we have to study the set D = {({αn}, {βn}) : n ∈ Z≥1} ⊆
[0, 1)2. The structure of D (or more accurately, of its topological closure,
E) hinges on the rational dependence of α, β and 1. We thus seek solutions
(A,B,C) of the equation

Aα +Bβ + C = 0, where A,B,C ∈ Z. (2)

It is easy to see that the equation has a non-trivial solution if and only if
α is the root of a quadratic polynomial with integer coefficients. In fact, if
(A,B,C) is a solution then α will satisfy Aα2 + (B+C−A)α−C = 0. Note

u

v

R11 R01

R10 R00

pk

b = 0

b = 1

a = 1 a = 0

Figure 2: Determining a, b
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Figure 3: The set E for A = 3 and B = 4
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Figure 4: Proof of Lemma 1 from [6]

that we can choose A,B,C such that gcd(A,B,C) = 1 and A > 0. These
restrictions make the solution unique.

The following proposition is a result of Kronecker’s theorem (see, for
example, [16, Ch. 23]).

Proposition 3. If (2) has no non-trivial solution, then E is the entire [0, 1)2.
Otherwise, E = {(u, v) ∈ [0, 1)2 : Au+Bv ∈ Z}.

An example for the set E, where A = 3 and B = 4 is shown in Figure 3.
As an example of how Proposition 3 and the above discussion may be

used, we give here a short proof of Lemma 1 from [6]. The lemma states that
for α = 1 + (

√
t2 + 4t− t)/2, and n such that bα(n+ 1)c−bαnc = 1, we have

bβ(n+ 1)c−bβnc = 2. The α of Lemma 1 satisfies 1 ·α− t ·β+ (2t− 1) = 0.
Proposition 3 implies that the points of D all lie on t segments, as shown in
Figure 4. Moreover, one can easily check that the point p1 = ({α}, {β}) lies
on the bottom segment. Recall that bα(n + 1)c − bαnc = bαc + a = 1 + a
and bβ(n+ 1)c− bβnc = bβc+ b = 2 + b. Here a = 0 and since Rp1

01 ∩D = ∅,
we must have b = 0. This completes the proof. We remark that Figure 7
in [2] is similar to Figure 4. Also other figures there bear a resemblance to
figures here.

4 A ruleset for an arbitrary α

Let 1 < α < 2 be an arbitrary irrational number. In this section we construct
an invariant game with a rather simple “one-line” ruleset for which the set
of P -positions is Pα. An illustration for such a “one-line” ruleset is given in
Example 1 on page 10.

We will construct the set of moves, Vα, gradually. As we add moves to
the game, we must verify that the moves we add are not in F – this will
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guarantee that no P -position has a P -position follower. Moreover, we will
have to add enough moves such that every N -position will have a P -position
follower, while keeping the game invariant.

The description of the rulesets we suggest (for an arbitrary α) appears
in Theorem 2, which is presented in two parts: Theorem 2(a) deals with the
case β > 3, and Theorem 2(b) deals with the case 2 < β < 3.

4.1 β > 3

For the sake of simplicity, we assume first that β > 4.
Denote t = bβc − 1. Partition the N-positions as follows: N1 is

the set of N-positions of the form (bαnc, bβnc − 1), N2 is the set of
N-positions of the form (bαnc+ 1, bβnc − 1), and N3 is the set of all
other N-positions.

Lemma 1. The ruleset Wy(t) \ {(2, bβc)} does not intersect F and allows
the players to move from any position in N3 to a P -position.

Proof. Propositions 1 and 2 imply that the only move of Wy(t) which might
be in F is (2, bβc) so this move is excluded.

Let (x, y) be an N3-position (x ≤ y). Let n be the maximal integer
for which y − x = bβnc − bαnc + m for some m ≥ 0. As the difference
(bβ(n+ 1)c − bα(n+ 1)c)− (bβnc − bαnc) is at most t+ 1, we have m ≤ t.

If x ≤ bαnc then either x = bαkc or x = bβkc for some k ∈ Z≥0. In both
cases one can move to (bαkc, bβkc) using a Nim move.

Assume now that x > bαnc. Consider the move (x−bαnc, y−bβnc) from
the N -position (x, y) to the P -position (bαnc, bβnc). Note that (y−bβnc)−
(x−bαnc) = m and 0 ≤ m ≤ t. So as long asm 6= t and (x−bαnc, y−bβnc) 6=
(2, bβc), this is a valid move.

If m = t, it follows from the maximality of n that the difference (bβ(n+
1)c−bα(n+1)c)−(bβnc−bαnc) is exactly t+1 (where bβ(n+1)c−bβnc = t+2
and bα(n+ 1)c− bαnc = 1). Therefore, y− x = bβ(n+ 1)c− bα(n+ 1)c− 1.
Thus, (x, y) = (bα(n+ 1)c+ j, bβ(n+ 1)c − 1 + j) for j ≥ 1 (j = 0 gives an
N1-position). Then one can move to (bα(n+ 1)c, bβ(n+ 1)c) (note that the
move in this case is (j − 1, j) and it is valid since β > 4).

The last case we have to consider is (x−bαnc, y−bβnc) = (2, bβc). There
are three possibilities for (bα(n + 1)c, bβ(n + 1)c): (x− 1, y), (x, y + 1) and
(x − 1, y + 1). The first is disposed of by a Nim move. In the second (x, y)
is an N1-position, and in the third it is an N2-position.
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For N1-positions, we simply add the following moves to the game:

Fα = {(bαnc, bβnc − 1) : n ∈ Z≥1},

which allow the player to move directly to (0, 0) (note that as β > 3, none
of these moves is in F ).

For N2-positions, we could add the moves {(bαnc+1, bβnc−1) : n ∈ Z≥1}
as we did with N1, but it is possible to solve this by adding finitely many
moves instead. Take n0 ≥ 2 such that {αn0} > 1−{α}, and add the moves:

{(bαnc+ 1, bβnc − 1) : 1 < n < n0} ∪

∪ {(bαn0c+ 2, bβn0c), (bαn0c+ 2, bβn0c − 1)}.

Consider the N2-position (x, y) = (bαnc+ 1, bβnc − 1). We may assume
that n ≥ n0 (otherwise we move to (0, 0)). If {αn} > 1 − {α} then bα(n +
1)c = bαnc+ 2. Therefore x = bβkc for some k, and so (x, y) is solved by a
Nim move. If {αn} < {αn0}, then we can move to (bα(n−n0)c, bβ(n−n0)c).

We now resume the case β > 3.

Theorem 2(a). For β > 3, there exists a finite set of moves, Sα, such that
the P -positions of the invariant game defined by

Vα =
(

Wy(bβc − 1) \ {(2, bβc)}
)
∪ Fα ∪ Sα

are {(bαnc, bβnc) : n ∈ Z≥0}.

Proof. (i) Assume first β > 4. Choose n0 as above and let

Sα = {(bαnc+ 1, bβnc − 1) : 1 < n < n0} ∪
∪{(bαn0c+ 2, bβn0c), (bαn0c+ 2, bβn0c − 1)}.

The addition of the moves Fα ∪ Sα clearly leaves the game invariant.
(ii) Now let 3 < β < 4. Notice that the only place we used the fact that

β > 4 was to prove that the move (j − 1, j) was valid in the case m = t,
(x, y) = (bα(n + 1)c + j, bβ(n + 1)c − 1 + j). If bβc = 3 and j = 3, then
(j − 1, j) = (2, 3) = (2, bβc) is not a valid move.

Notice that in this case (x, y) = (bα(n + 1)c + j, bβ(n + 1)c − 1 + j) =
(bαnc+ 4, bβnc+ 6), so the move (4, 6) takes care of this case. Observe that
one can choose n0 = 2 as 1−{α} < 2/3 < {2α} and then (4, 6) is already in
Vα.
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Example 1. Let α = [1; 2, 3, 4, . . .] ≈ 1.43313 and β = [3; 3, 4, 5, . . .] ≈
3.30879. We have n0 = 2 and Sα = {(4, 5), (4, 6)}. Therefore, the possible
moves are:

(a) Remove x > 0 tokens from one pile.

(b) Remove x tokens from one pile and y tokens from the other where
|x− y| < 2. The move x = 2, y = 3 is not allowed.

(c) Remove 4 tokens from one pile and 6 tokens from the other.

(d) Remove bαnc tokens from one pile and bβnc−1 tokens from the other.

The ruleset is shown in Figure 1(a) in the introduction.

4.2 2 < β < 3

This case is slightly more complicated, since:

1. Wy(1) is not enough here and we need Wy(2), which in turn has much
more subtractions that are in F and thus should be excluded (previ-
ously we had only one: (2, bβc)).

2. Roughly speaking, the P -positions are more dense in the bβnc direction
and we cannot add all the moves of Fα (since Fα ∩F1 6= ∅).

Start with the ruleset Wy(2), and for now ignore the fact that adding
some of them is illegal. Consider the N -position (x, y). Take the maximal
n such that y − x = bβnc − bαnc + m for m ≥ 0. We have m ∈ {0, 1}.
As in Section 4.1, we may assume x > bαnc. But then one can move to
(bαnc, bβnc).

Now we have to exclude the moves in Wy(2) ∩ F . Note that this is a
finite set of moves. In fact, we will exclude the larger set:

Gα =

{
(bαkc+ z, bβkc+ w) :

k ≥ 1, z, w ∈ {0, 1} and
bβkc+w− bαkc − z < 2

}
.

We have to make sure that for each excluded move in Gα, there is an
alternative move. Let (x, y), n, m be as before and suppose that x = bαnc+
bαkc + z and y = bβnc + bβkc + w for k ≥ 1 and z, w ∈ {0, 1}. Note that
(bα(n+k)c, bβ(n+k)c) is also of the form (bαnc+bαkc+a, bβnc+bβkc+b)
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for a, b ∈ {0, 1}. Figure 5 shows the 8 possible relative positions of the N -
position (x, y) and the P -position (bα(n+k)c, bβ(n+k)c). Note that we can
rule out (a), (d), (f), (g) and (h) since they all contradict the maximality of
n. (b) is solved by the Nim move (0, 1), so we are left with (c) and (e). Once
again the N -positions that require special treatment are N1 ∪N2.

x, bαnc

y, bβnc
N P

(a)

NP

(b)
N

P

(c)

N

P

(d)
N

P

(e)
N

P

(f)

N

P

(g)

N

P

(h)

Figure 5: Relative positions of the
N -position and (bα(n+ k)c, bβ(n+ k)c)

We handle N2 similarly to what we did in Section 4.1. Let n′0 be the
smallest n such that bβnc − bαnc ≥ 2 (smaller n’s do not correspond to N -
positions). Find n0 ≥ n′0 such that {αn0} > 1−{α} and bβn0c− bαn0c ≥ 3.
Then add the moves:

{(bαnc+ 1, bβnc − 1) : n′0 ≤ n < n0} ∪

{(bαn0c+ 2, bβn0c), (bαn0c+ 2, bβn0c − 1)}.

As we mentioned before, N1 is slightly more complicated here, as we
cannot simply add all of Fα. Fortunately, we cannot add (bαnc, bβnc − 1)
only when (bαnc, bβnc − 1) = (bα(n − 1)c + 1, bβ(n − 1)c + 1) and in this
case we can play the move (1, 1). Thus, we add the moves: Fα \ (Fα + (1, 2))
(where Fα + (1, 2) is the set {(bαnc+ 1, bβnc+ 1) : n ∈ Z≥1}).

The above discussion proves:

Theorem 2(b). For 2 < β < 3, there exists a finite set of moves, Sα, such
that the P -positions of the invariant game defined by

Vα = (Wy(2) \Gα) ∪ (Fα \ (Fα + (1, 2))) ∪ Sα

are {(bαnc, bβnc) : n ∈ Z≥0}.

Proof. Choose n′0 and n0 as above and let

Sα = {(bαnc+ 1, bβnc − 1) : n′0 ≤ n < n0} ∪
∪{(bαn0c+ 2, bβn0c), (bαn0c+ 2, bβn0c − 1)}.
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5 Modified t-Wythoff (MTW)

A disadvantage of the description of the ruleset described in Section 4 is that
it involves α explicitly. We can ask the following question: Can we describe
a ruleset that doesn’t involve α?

Of course, cardinality considerations imply that this is not possible for
all α, as we have ℵ different α’s but only ℵ0 finite descriptions of rulesets.

Therefore this will be possible only for a subset of the α’s.
We start with two examples:

Example 2. Let t ≥ 1. For α = [1; t, t, t, . . .], the ruleset of t-Wythoff
satisfies the requirement. That is, α is not mentioned explicitly in the ruleset.

Example 3. In [6], the authors give the following set of moves for α =
[1; 1, q, 1, q, . . .]: Wythoff moves (Wy(1)) except for the moves: (2, 2), (4, 4),
. . . , (2q − 2, 2q − 2); but with the move (2q + 1, 2q + 2) added.

Note that this representation has no “α-dependent” moves. Instead, it is
a finite modification of t-Wythoff. In light of the last example we make the
following definition:

Definition 1. (i) A ruleset V is said to be MTW (Modified t-Wythoff) if it
is of the form V = Wy(t) 4 S where 4 denotes the symmetric difference,
S ⊆ V is a finite subset of moves and t ≥ 1.

(ii) Let 1 < α < 2 be irrational. We say that α is MTW, if there exists an
MTW ruleset whose corresponding P -positions are {(bαnc, bβnc) : n ∈ Z≥0}.

In this section we prove Theorem 1 that was stated in the introduction,
restated here:

Theorem 1. Let 1 < α < 2 be irrational. Then, there exists an MTW
game whose P -positions are Pα if and only if

α2 + bα− c = 0 for some b, c ∈ Z such that b− c+ 1 < 0. (1)

It is easy to see that (1) holds if and only if (2) (see page 6) has a solution
with A = 1 and B < 0.

Proof of Theorem 1. We first prove that if α is MTW then (2) has a
solution with A = 1 and B < 0. Let V be an MTW ruleset for Pα. First,
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consider the case where (2) has a solution with A > 1 and B < 0. Figure 6(a)
shows the set {({αn}, {βn}) : n ∈ Z≥0} in such a case. We focus on n’s for
which the point ({αn}, {βn}) is very close to the point (1/A, 0). Formally,
take a sequence {ni}∞i=1 such that {αni} → 1/A and {βni} → 0 as i→∞.

For these ni’s, consider the N -position (bαnic, bβnic− 1). There must be
a move in V to a P -position (bαmic, bβmic). Let ki = ni − mi ≥ 1. Note
that there can be two moves that take (bαnic, bβnic − 1) to (bαmic, bβmic):
(bαnic− bαmic, bβnic− 1−bβmic) and (bαnic− bβmic, bβnic− 1−bαmic).

For the second type, we have

(bβnic − 1− bαmic)− (bαnic − bβmic) ≈ (β − α)(ni +mi)→∞.

Hence this move can be in V only for finitely many ni’s.
For the first type, we have (bαnic−bαmic, bβnic−1−bβmic) = (bαkic+

a, bβkic+ b− 1) where a, b ∈ {0, 1}.
If (a, b) = (0, 1) then this move is a P -position and therefore cannot be

in V .
Assume that (a, b) = (1, 1). We have {αni} < {αki}. Since ({αni}, {βni})

was chosen to be close to (1/A, 0) we may assume {αni} > 1/A. Hence
R
pki
10 ∩E 6= ∅. Proposition 2 implies that (bαkic+ 1, bβkic+ 0) connects two

P -positions, which means that this move cannot be in V .
For the other two cases (b = 0) we must have {βni} > {βki} > 0 and

this is impossible as {βni} → 0 (as there can be only finitely many different
ki’s).

This completes the proof for the case that (2) has a solution with A > 1,
B < 0. We will now prove the remaining two cases: (a) (2) has a solution
with B > 0 and (b) (2) has no non-trivial solution. In both cases, we can

u

v

1

1

(a) A = 2, B = −4

u

v

1

1

(b) A = 1, B = 2

Figure 6: Proof of Theorem 1(⇒)
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choose a sequence {ni}∞i=1 such that ({αni}, {βni}) → (1, 0) as i → ∞ (see,
for example, Figure 6(b)).

We consider the N -position (bαnic, bβnic − 1). As in the first case, we
only have to consider the moves: (bαnic − bαmic, bβnic − 1 − bβmic) =
(bαkic+ a, bβkic+ b− 1). But, as ({αni}, {βni})→ (1, 0), for all but finitely
many ni’s, we have {αni} > {αki} and {βni} < {βki}. For these ni’s we
have (a, b) = (0, 1), so the move is (bαkic, bβkic), but this is a P -position so
this move cannot be in V .

Second direction Assume that (2) has a solution with A = 1 and B < 0
and denote k = −B. We show how to construct an MTW ruleset for α.

We assume first that β > 3. Note that the set of moves given in Section 4.1
has only one component that is not a finite modification of Wy(bβc−1): Fα.
Let V ′α be the set of moves suggested there, without adding Fα. The set V ′α
satisfies: (a) it is a finite modification of Wy(bβc − 1), (b) V ′α ∩F = ∅ and
(c) it allows the players to move from N2- and N3-positions to P -positions.

Proposition 3 implies that E = {(u, v) ∈ [0, 1)2 : u− kv ∈ Z} = {(u, v) ∈
[0, 1)2 : u = {kv}}. Therefore, the set E consists of k segments as illustrated
in Figure 7 (for B = −4).

To handle N1-positions, find two points pr = ({αr}, {βr}) and ps =
({αs}, {βs}) in D such that D ⊆ Rpr

00∪R
ps
11 (see Figure 7) and add the moves

(bαrc, bβrc−1), (bαsc+1, bβsc). Note that since Rps
10∩D = ∅, Proposition 2

implies that (bαsc + 1, bβsc) /∈ F1. We can use these moves to take care
of (bαnc, bβnc − 1) for n ≥ max{r, s}: if (bαnc, bβnc − 1) is an N1-position
with ({αn}, {βn}) ∈ Rpr

00 then we can move to (bα(n− r)c, bβ(n− r)c) and
if ({αn}, {βn}) ∈ Rps

11 then we can move to (bα(n − s)c, bβ(n − s)c). Now
add a move from Fα for each n < max{r, s}.

We now turn to the case β < 3. Here the only infinite component is
Fα \ (Fα + (1, 2)). We solve it by finding two points pr, ps as before, except

u

v

1

1

pr

ps

Figure 7: The set E with the points pr and ps
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now we have one additional restriction: the move that corresponds to pr
must not be in F . This translates to pr /∈ Rp1

00. It is easy to see that this
additional requirement can also be satisfied.

6 Explicit rulesets

We can now analyze more carefully the finite modification whose existence is
stated in Theorem 1(⇐). We assume A = 1, B < 0 and denote k = −B. Fix
k > 1 (for k = 1 we get t-Wythoff). The α’s which satisfy (1) such that −k =
B = b−c+1 are now parametrized by c ≥ 2k−1. Figure 8 demonstrates how
the points ({α}, {β}) (where k = 3, c ≥ 5) can be obtained by intersecting the
curve induced by 1/α+1/β = 1 and the k segments induced by {α}−k{β} ∈
Z, and shows how c (mod k) determines the segment on which the point lies.

u

v

1

1

c ≡ −1(3)

c ≡ 0(3)

c ≡ 1(3)

bβ
c
=

2

bβ
c
=

3

bβ
c
=

4

5

6

7

8

9

10

Figure 8: The point ({α}, {β}) for k = 3 and different c’s

Example 4. Consider the case k = 3 and c = 5. We have b = 1 and therefore
α2 + α − 5 = 0. Hence, α = (

√
21 − 1)/2 = [1; 1, 3, 1, 3, . . .] ≈ 1.79129 and

β = (
√

21 + 9)/6 ≈ 2.26376. Indeed {α} − 3{β} = 0 ∈ Z and {β} < 1/3.

It is easy to see that bβc = b(c+ 1)/kc. So we can write c = kbβc+ c̃− 1
where 0 ≤ c̃ < k. Table 1 shows the minimal values of r and s such that
D ⊆ Rpr

00 ∪ R
ps
11 for k = 3 (see the proof of Theorem 1(⇐)). It can be seen

from the table that for c large enough, the values of r and s depend strongly
on c̃:

r =

{
1, c̃ = 0

3, c̃ = 1, 2
, s =


2bβc, c̃ = 0

5, c̃ = 1

4, c̃ = 2

.
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For small c’s this analysis does not hold. We therefore focus only on c large
enough, as for small c, each case can be investigated individually anyway.

Note that “large enough c” is equivalent to “small enough {α}”. In
particular, we will assume that we deal with the case β > 3 ({α} < 1/2).

In the rest of this section, we analyze two special cases: c̃ = 0 and
gcd(c̃, k) = 1.

c 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
bβc 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
c̃ 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
r 4 2 6 1 9 4 1 5 4 1 5 3 1 3 3
s 3 7 1 6 2 5 8 2 1 10 2 4 12 5 4

c 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
bβc 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11
c̃ 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
r 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3
s 14 5 4 16 5 4 18 5 4 20 5 4 22 5 4

Table 1: The minimal values for r, s such that D ⊆ Rpr
00 ∪R

ps
11 for k = 3

6.1 Case I: c̃ = 0

Note that we have α = [1; t, tk, t, tk, . . .] and β = [1 + t; tk, t, tk, t, . . .] where
t = bβc − 1. This case can be thought of as a generalization of the case
[1; 1, k, 1, k, . . .] described in [6]. That being said, in this paper we only deal
with the case t ≥ 2.

In this case, the point ({α}, {β}) lies on the bottom segment. From the
continued fraction of β we learn that the smallest i for which {βi} > (k−1)/k
(that is, the point is on the top segment) is i = t(k − 1) + 1. Choose r = 1
and s = t(k − 1) + 2. Since t ≥ 2, ({αs}, {βs}) is on the top segment and
{αs} ≥ {α} which guarantee that D ⊆ Rpr

00 ∪ R
ps
11. For an illustration, see

Figure 9.
Let i ≤ s. Observe that {βi} ≥ {β}. It follows that pi ∈ Rp1

00 ∪ R
p1
10

and thus one of the two moves (bαc, bβc − 1) and (bαc + 1, bβc − 1) takes
care of the N1-position (bαic, bβic − 1). Note that both moves are already
contained in Wy(t), so it remains to add the move (bαsc+ 1, bβsc) to handle
N1-positions with pi ∈ Rps

11.
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u

v

1

1

1
2

3
4

5
6

7
8

Figure 9: The points ({αi}, {βi}) for 1 ≤ i ≤ 8, k = 3, c = 11

It is easy to verify that

bαsc = (t+ 1)(k − 1) + 2, bβsc = (t+ 1)(t(k − 1) + 2).

Recall that in Theorem 2(a) we added moves to deal with N2-positions.
Fortunately, in this special case, whenever (x − bαnc, y − bβnc) = (2, bβc)
(see the proof of Lemma 1), we have (x, y) 6= (bα(n+1)c+1, bβ(n+1)c−1).
This is due to the fact that Rp1

01 ∩D = ∅. Thus, these additional moves are
not necessary.

We proved the following:

Proposition 4. Let α = [1; t, tk, t, tk, . . .] for t > 1 and k > 1. The P -
positions of the game defined by the moves

Wy(t) \
{

(2, t+ 1)
}
∪
{(

(t+ 1)(k − 1) + 3, (t+ 1)(t(k − 1) + 2)
)}

are Pα.

Example 5. Consider the ruleset of t-Wythoff with t = 2 where the move
(2, 3) is excluded but (9, 18) is permitted. It follows from Proposition 4 that
the P -positions are Pα for α =

√
12 − 2 = [1; 2, 6, 2, 6, . . .]. Here k = 3 and

c = 8.

6.2 Case II: c̃ and k are coprime

Note that as long as i{α} < 1 (recall that we assumed that {α} is small
enough), the point ({αi}, {βi}) is on the i · c̃ (mod k) segment (where 0
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is the bottom segment). The smallest i on the top segment is therefore
1 ≤ d < k such that d ≡ −c̃−1 (mod k). Choose s to be the second time it
happens: s = k + d, and choose r = k so that r < s and ({αr}, {βr}) is on
the bottom segment.

We have,

bαrc = r = k, bβrc = kbβc+ c̃ = c+ 1,
bαsc = s = k + d, bβsc = c+ ((c+ 1)d+ 1)/k.

Proposition 5. Suppose that c ≥ 2k2 and gcd(c + 1, k) = 1. Let 1 ≤ d < k
be such that d ≡ −(1 + c)−1 (mod k). Then, the P -positions of the game
defined by the moves

Wy(bβc − 1) \
{

(2, bβc)
}
∪

∪
{

(k + 2, c), (k + 2, c+ 1),

(k + d+ 1, c+ ((c+ 1)d+ 1)/k)
}
∪

∪ {(i+ 1, bi(c+ 1)/kc − 1) : 1 ≤ i ≤ k} ∪
∪ {(i, bi(c+ 1)/kc − 1) : 1 ≤ i ≤ k}

are Pα.

Proof. Note that the fact that c ≥ 2k2 implies that {α} < 1/(2k − 1) and
therefore i{α} < 1 for all 1 ≤ i ≤ k + d. As explained above, in this case we
can choose r = k and s = k + d (see Theorem 1(⇐)).

The basic moves are Wy(bβc − 1) \
{

(2, bβc)
}

. As in the proofs of The-
orem 1(⇐) and Theorem 2(a) we have to deal with N1- and N2-positions.

Let n ∈ Z≥1 and consider the two positions (bαnc, bβnc−1) and (bαnc+
1, bβnc − 1). If n ≤ k we can move directly to (0, 0) for both positions.

For the N1-position, we use the move (bαrc, bβrc− 1) = (k, c) or (bαrc+
1, bβrc − 1) = (k + 1, c) if pn ∈ Rpr

00 or pn ∈ Rpr
10 respectively. Otherwise

pn ∈ Rps
11 and we use the move (bαsc+1, bβsc) = (k+d+1, c+((c+1)d+1)/k).

For the N2-position, we use the move (k + 1, c) if pn ∈ Rpr
00, (k + 2, c) if

pn ∈ Rpr
10 and (k + 2, c+ 1) if pn ∈ Rpr

11.

Example 6. For k = 3 and c = 19 we have α = (
√

301 − 15)/2, bβc = 6,
c̃ = 2 and d = 1. The ruleset that corresponds to Pα is the ruleset of
t-Wythoff with t = 5 where the move (2, 6) is excluded but the following
moves are permitted:

(2, 12), (3, 12), (3, 19), (4, 19), (5, 19), (5, 20), (5, 26).

18



7 Epilogue

Here we wind-up up and motivate.

7.1 Wrapup

In this paper we presented “compact” rulesets for Beatty games. A Beatty
game is an invariant subtraction game, played on two unordered piles of
tokens, whose P -positions are Pα = {(bαnc, bβnc) : n ∈ Z≥0} for some
irrational 1 < α < 2 and β such that 1/α + 1/β = 1.

Theorem 1 shows that the α’s for which there exists a finite modification
of t-Wythoff (for some t ≥ 1) are exactly the algebraic integers of degree 2
with one constraint – the minimal polynomial must satisfy f(1) < 0. The
theorem also explains how to construct such a ruleset for an α with this
property. For some special cases, we explicitly described the ruleset (see
Proposition 4 and Proposition 5).

In Theorem 2 we described a compact ruleset for a game with these
P -positions – this time for any irrational 1 < α < 2. The meaning of
“compact” here was that all the moves lie (asymptotically) on only 5 lines
(see Figure 1(a)).

We remark that in [13] the notion of “k-invariance” was defined, and
simple rulesets were formulated for the case where the P -positions are com-
plementary Beatty sequences and the rulesets are for 2-invariant games. The
moves are located on the same slopes as in Figure 1(a) above. The results of
the present paper suggest that the answer to the Problem at the end of [13]
is negative.

7.2 Background and motivation

The conventional problems in combinatorial games are, given a game, find its
P -positions, or even its Sprague-Grundy function. Is it useful to invert these
problems? In [8] it is stated: “At the BIRS 2011 workshop on combinato-
rial games, A.S. Fraenkel posed the following intriguing problem: Find nice
(short/simple) rules for a(n as yet unknown) 2-player combinatorial game
for which the set P of P -positions are a given pair of complementary Beatty
sequences [1].” Indeed, in [10] the following problem was solved: Given a set
P of candidate P -positions, find a game with compact, succinct game rules
whose set of P -positions is P. Here and below we are concerned with 2-pile
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subtraction games, so P = (A,B). In all references below the sequences A
and B are disjoint, but in [10] even the case where A and B are not dis-
joint was tackled. In [11] the set P consists of m ≥ 3 sequences which were
elsewhere conjectured to be the only ones which are distinct and pairwise
complementary. (Fraenkel conjecture, [7], p. 19.) An extension is given in
[12]. In [8] itself, rulesets for interesting sets P were constructed. The same
holds for [21].

As was noted above, in [20] it was proved that for any pair of complemen-
tary Beatty sequences, there always exists an invariant game having this pair
as its P -positions, proving the conjecture enunciated in [6] about existence of
invariant Beatty games. See also [5], [2]. In this subsection we cited studies
where rulesets for such games (invariant and variant) games were actually
constructed. In the present paper, we characterized the set of α for which
there exist such rulesets, and we also constructed them.

We could have presented this subsection in the Introduction, which would
then have become more cumbersome due to the need to explain and define
the jargon which we have used here freely. Besides, the contents of the paper
stands independently of this subsection.
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[6] E. Duchêne and M. Rigo. Invariant games. Theoret. Comput. Sci.,
411(34-36):3169–3180, 2010.

20



[7] P. Erdös and R. L. Graham. Old and new problems and results in
combinatorial number theory. Université de Genéve, L’Enseignement
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