CHARACTERIZING SECOND ORDER LOGIC WITH FIRST ORDER QUANTIFIERS

by David Harel in Cambridge, Massachusets (U.S.A.) ${ }^{1}$)

1. Introduction

In [1] and [2] it is shown that the language consisting of formulae of the form $Q M$, where Q is a partially ordered quantifier prefix (Henkin prefix, abbreviated poq) and M is a quantifier-free matrix, is equal in expressive power to Σ_{1}^{1} (notation from Rogers [3]). Extending the language to allow the attachment of poq's to formulae as an additional formation rule (together with, say, \wedge and \neg), yields Δ_{2}^{1} (see [1]). This extension seems, however, to destroy the natural character of the semantics of poq's which existed in the case $Q M$. We yiew the semantics differently in the extended case, giving rise to an extension Q consisting of formulae of the form $P M$, where the prefix P is a well formed string of alternating poq's, and M is a quantifier-free formula. The semantics of formulae of Q is given in terms of conventional second order logic. It is then shown that in fact Q is equal in expressive power to full second order logic, by establishing a correspondence between alternating second order quantifiers and alternating poq's. This result supplies an alternative characteristic of second order logic using only (partially ordered) first-order quantification.

2. Definitions

We assume throughout that a fixed second order language L is given, and we freely use $x, x_{1}, x_{2}, \ldots, y, \ldots, u, \ldots, v, \ldots$ to stand for variables, and $f, f_{1}, f_{2}, \ldots, g, h, \ldots$ to stand for function symbols.

We define the language \boldsymbol{Q} as follows:
A partially ordered quantifier prefix (poq) is a tuple of the form

$$
\begin{equation*}
\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{m} ; \beta\right) \tag{*}
\end{equation*}
$$

where β is a function which associates with each y_{i} for $1 \leqq i \leqq m$, a tuple, with elements taken from $\left\{x_{1}, \ldots, x_{n}\right\}$. Intuitively, for a poq Q, we will be using $\langle Q\rangle$ to mean that the x 's are universally quantified and the y 's existentially, but that each y_{i} depends only on the elements of $\beta\left(y_{i}\right)$.

A prefix is defined recursively as follows: $\langle Q\rangle$ is a prefix for any poq Q, and $\neg P_{1}$ and $P_{1} P_{2}$ are prefixes for any prefixes P_{1} and P_{2} such that P_{1} and P_{2} have no variables in common.

A matrix is a quantifier-free formula of L.
A well formed formula of Q is a formula of the form $P M$, where P is a prefix and M a matrix.

[^0]The semantics of Q will be defined by gathering that part of a prefix P which essentially quantifies over second order variables, on the left, and attaching the other (first order) part of P to the matrix M. For the reader familiar with the standard semantics given in [1] and [2], this step can be seen to be a natural one, once he is willing to admit that the x_{i} 's in (*) are artificial constructs which serve to help define the existential second order character of a single poq.

The second order part of $P($ sop $(P))$ and Skolem form of P and $w(s f(P, w))$ are defined recursively for any prefix P and wff w in L as follows: If Q is a poq of the form (*) then

$$
\operatorname{sop}(\langle Q\rangle)=\exists f_{1}^{Q} \ldots \exists f_{m}^{Q}
$$

where the f_{i}^{Q} are new function symbols.

$$
\operatorname{sop}(\neg P)=d u a l(\operatorname{sop}(P))
$$

where $d u a l(\exists j \pi)=\forall f d u a l(\pi)$ and $d u a l(\forall f \pi)=\exists f d u a l(\pi)$ for any second order prefix π, and dual of the empty prefix is defined to be empty.

$$
\operatorname{sop}\left(P_{1} P_{2}\right)=\operatorname{sop}\left(P_{1}\right) \operatorname{sop}\left(P_{2}\right)
$$

Similarly, if Q is of the form $\left(^{*}\right)$ then

$$
s f(\langle Q\rangle, w)=\forall x_{1} \ldots \forall x_{n}\left(w^{Q}\right)
$$

where w^{Q} is w with $f_{i}^{Q}\left(\beta\left(y_{i}\right)\right)$ substituted for every free occurrence of y_{i} in w.

$$
s f(\neg P, w)=\neg s f(P, w), \quad s f\left(P_{1} P_{2}, w\right)=s f\left(P_{1}, s f\left(P_{2}, w\right)\right)
$$

Given a model I for L we say that I satisfies $P M$ (written $I \vDash P M$) iff $I \vDash \operatorname{sop}(P) \operatorname{sf}(P, M)$, in the usual second-order sense.

A prefix P will be called a Σ_{i}^{1} prefix and denoted by $P^{\langle i\rangle}$, if $\operatorname{sop}(P)$ is a Σ_{i}^{1} quantifier. prefix in the usual sense (see [3]); similarly, a Π_{i}^{1} prefix will be denoted by $P^{[i]}$.

3. Results

In order to simplify the exposition of the following, we use the following notational convenience. For sets of formulae S and T of Q and L respectively, we write $S \equiv T$ to express the fact that for any $P M \in S$ there exists $w \in T$ such that $k \equiv \operatorname{sop}(P) s f(P, M)$, and vice versa.

The following theorem establishes a tight link between alternating second order quantifiers in L, and forming compositions of alternating poq's in \boldsymbol{Q}.

Theorem. For $i \geqq 0$,
(a) $\left(\langle Q\rangle P^{[i]}\right) M \equiv \sum_{i+1}^{1}$,
(b) $\quad\left(\neg\langle Q\rangle P^{[i]}\right) M \equiv \Pi_{i+1}^{1}$.

Proof. Surely, given a prefix P^{\prime} of the form $\langle Q\rangle P^{[i]}$, by definition $\operatorname{sop}\left(P^{\prime}\right)$ is a Σ_{i+1}^{1} prefix and $s f\left(P^{\prime}, M\right)$ has no second order quantifiers. Negation gives this direction for (b).

We concentrate on the \leftarrow direction. For $i=0$ (a) simplifies to $\langle Q\rangle M \equiv \Sigma_{1}^{1}$, which is shown in Walkoe [2] and Enderton [1], and negation gives (b).

Assume (a) and (b) hold for $i-1$ where $i>0$. Without loss of generality we can assume that a \sum_{i+1}^{1} formula is given in prenex form, $w: \exists f_{1} \ldots \exists f_{h} \alpha R$, with matrix R and Π_{i}^{1} prefix α. (The dual case where we are given a Π_{i+1}^{1} formula is treated by carrying out the construction of this proof for its negation and then dualizing the prefix
and negating the matrix.) Now use the inductive hypothesis to come up with $\left(\neg\left\langle Q^{\prime}\right\rangle P^{[i-1]}\right) M^{\prime}$ equivalent to αR. Denoting by $P^{[i]}$ the prefix $\neg\left\langle Q^{\prime}\right\rangle P^{\prime^{[i-1]}}$, we use a generalization of Walkom's technique to construct $\langle Q\rangle$ and M such that $\left(\langle Q\rangle P^{[i]}\right) M$ is equivalent to w :

Let there be n_{j} appearances of f_{j} in M^{\prime}, for $1 \leqq j \leqq k$, and let the arity of f_{j} be m_{j}. Define Q to be the poq

$$
\left(u_{1,1}^{1}, u_{1,2}^{1}, \ldots, u_{1, m_{1}}^{1}, u_{2,1}^{1}, \ldots, u_{n_{1}, m_{1}}^{1}, u_{1,1}^{2}, \ldots, u_{n_{k}, m_{k}}^{k} ; v_{1}^{1}, \ldots, v_{n_{1}}^{1}, v_{1}^{2}, \ldots, v_{n_{k}}^{k} ; \beta\right)
$$

with $\beta\left(v_{s}^{j}\right)=\left(u_{s, 1}^{j}, \ldots, u_{s, m_{2}}^{j}\right)$, where all the various v 's and u 's stand for new variables not appearing in $P^{[i]} M .\langle Q\rangle$ can be comprehended more easily by visualizing it as reading "for every $u_{1,1}^{1}, \ldots, u_{1, m_{1}}^{1}$ there exists v_{1}^{1}, and also, independently, for every $u_{2,1}^{1}, \ldots$ etc.".

$$
\left(\begin{array}{cc}
\forall u_{1,1}^{1} \ldots . \forall u_{1, m_{1}}^{1} \exists v_{1}^{1} \\
\forall u_{2,1}^{1} \ldots & \forall u_{2, m_{1}}^{1} \exists v_{2}^{1} \\
\ldots & \ldots \\
\forall u_{n_{1}, 1}^{1} \ldots & \forall u_{n_{2}, m_{1}}^{1} \exists v_{n_{1}}^{1} \\
\ldots & \ldots \\
\ldots & \ldots \\
\forall u_{1,1}^{k} \ldots & \forall u_{1, m_{k}}^{k} \exists v_{1}^{k} \\
\ldots & \ldots \\
\forall u_{n_{k}, 1}^{k} & \ldots \forall u_{n_{2}, m_{k}}^{k} \exists v_{n_{k}}^{k}
\end{array}\right]
$$

We now transform M^{\prime} into a matrix M of the form $T \rightarrow\left(S \wedge M^{\prime \prime}\right)$ by the following process: T is taken to be the formula

$$
\bigwedge_{j=1}^{k}\left(\bigwedge_{h=1}^{n_{j}-1}\left(\left(\bigwedge_{p=1}^{m_{j}} u_{h, p}^{j}=u_{h+1, p}^{j}\right) \rightarrow v_{h}^{j}=v_{h+1}^{j}\right)\right)
$$

which essentially states that all the "lines" of $\langle Q\rangle$ which correspond to some f_{j} define the same function.

We now consider the appearances of the t_{j} 's in M^{\prime}, working "from within". These $q=n_{1}+\ldots+n_{k}$ appearances can be ordered by dependency, starting with those in which some f_{j} is applied to f-free terms. Define $M_{0}^{\prime \prime}$ as M^{\prime} and S_{0} as true. Assume the r^{\prime} th appearance in the above order is $f_{j}\left(t_{1}, \ldots, t_{m_{j}}\right)$, which in $M_{r-1}^{\prime \prime}$ has already been modified to $f_{j}\left(t_{1}^{\prime}, \ldots, t_{m_{j}}^{\prime}\right)$. Then $M_{r}^{\prime \prime}$ is defined to be $M_{r-1}^{\prime \prime}$ with the appropriate v_{h}^{j} substituted for this appearance, and S_{r} is

$$
S_{r-1} \wedge \bigwedge_{s=1}^{m_{j}}\left(u_{h, s}^{i}=t_{s}^{\prime}\right)
$$

Take $M^{\prime \prime}$ to be $M_{q}^{\prime \prime}$, and S to be S_{q}. This process completes the construction of $\left(\langle Q\rangle P^{[i]}\right) M$.

We now argue that $\vDash w \equiv \operatorname{sop}(P) s f(P, M)$ with $P:\langle Q\rangle P^{[i]}$ and $M: T \rightarrow\left(S \wedge M^{\prime \prime}\right)$. By definition, $\operatorname{sop}(P)=\operatorname{sop}(\langle Q\rangle) \operatorname{sop}\left(P^{[i]}\right)=\exists g_{1} \ldots \exists g_{q} \operatorname{sop}\left(P^{[i]}\right)$ for some new function symbols g_{j}, and

$$
\begin{aligned}
s f(P, M) & =s f\left(\langle Q\rangle, s f\left(P^{[i]}, T \rightarrow\left(S \wedge M^{\prime \prime}\right)\right)\right) \\
& =\forall u_{1,1}^{1} \cdots \forall u_{n_{k}, m_{k}}^{k}\left(\neg s f\left(P^{\langle i\rangle}, T \rightarrow\left(S \wedge M^{\prime \prime}\right)\right)^{Q}\right),
\end{aligned}
$$

where $P^{\langle i\rangle}$ is $P^{[i]}$ with the leading negation dropped. For the sake of the following remarks we abbreviate $\exists f_{1} \ldots \exists f_{k}$ to $\exists f, \exists g_{1} \ldots \exists g_{q}$ to $\exists g$ and $\forall u_{1,1}^{1} \ldots \forall u_{n_{k}, m_{k}}^{k}$ to $\forall u$. Surely $\forall u\left(\neg s f\left(P^{\langle i\rangle}, T \rightarrow\left(S \wedge M^{\prime \prime}\right)\right)^{Q}\right)$ is, by virtue of T not containing any variable appearing in $P^{\langle i\rangle}$, logically equivalent to $\forall u \neg\left(T^{Q} \rightarrow s f\left(P^{\langle i\rangle},\left(S \wedge M^{\prime \prime}\right)\right)^{\varphi}\right)$ or $\forall u\left(T^{Q}\right) \wedge \forall u\left(-\neg^{s} f\left(P^{\langle i\rangle}, S \wedge M^{\prime \prime}\right)^{Q}\right)$. Careful application of the definitions involved establishes the additional fact that $\forall u\left(\neg s f\left(P^{\langle i\rangle}, S \wedge M^{\prime \prime}\right)^{Q}\right)$ is in fact logically equivalent to $\neg^{s f}\left(\boldsymbol{P}^{\langle i\rangle},\left(M^{\prime}\right)_{f}^{g}\right)$ where $\left(M^{\prime}\right)_{f}^{g}$ is M^{\prime} with the corresponding new function symbols g_{1}, \ldots, g_{q} replacing the q appearances of the symbols f_{1}, \ldots, f_{i}.

Using the inductive hypothesis, we have to show that the following two formulae are equivalent:

$$
w_{1}: \exists f \operatorname{sop}\left(P^{[i]}\right) \neg \operatorname{sf}\left(P^{\langle i\rangle}, M^{\prime}\right) \text { and } w_{2}: \exists g \operatorname{sop}\left(P^{[i]}\right)\left(\forall u\left(R^{Q}\right) \wedge \neg s f\left(P^{\langle i\rangle},\left(M^{\prime}\right)_{f}^{g}\right)\right) .
$$

Indeed, $I \neq w_{1}$ asserts the existence of an assignment of k functions to the symbols f_{1}, \ldots, f_{k} satisfying $\operatorname{sop}\left(P^{[i]}\right)$ sf($\left.P^{[i]}, M^{\prime}\right)$. To obtain $I \vDash w_{2}$, simply assign to $g_{1}, \ldots, g_{n_{1}}$ the function assigned to f_{1}; to $g_{n_{1}+1}, \ldots, g_{n_{1}+n_{2}}$ the function assigned to f_{2}; etc. Trivially $\forall u\left(R^{Q}\right)$ is satisfied, and hence $I \vDash w_{2}$. Conversely, if $I \vDash w_{2}$, $\forall u\left(R^{Q}\right)$ forces the assignment to g_{1}, \ldots, g_{q} to be such that $g_{1}, \ldots, g_{n_{1}}$ are assigned the same function; $g_{n_{1}+1}, \ldots, g_{n_{1}+n_{2}}$ are assigned the same function; etc. This assignment of k functions to the g 's, when transformed appropriately to the f_{j} 's yields. $I=w_{1}$.

As an example of the technique of the proof of the theorem, take w to be $\exists f_{1} \exists f_{2} \alpha R$, and M^{\prime} to be of the form $M^{\prime}\left(f_{1}\left(g(x), f_{2}(y)\right), f_{2}\left(f_{1}\left(f_{2}(z), x\right)\right)\right)$, involving these two terms and possibly other f_{i}-free terms. Using new variable symbols v_{j} and u_{j}, we take $\langle Q\rangle$ to be $\left\langle u_{1}, \ldots, u_{7} ; v_{1}, \ldots, v_{4} ; \beta\right\rangle$, with $\beta\left(v_{1}\right)=\left\{u_{1}, u_{2}\right\}, \beta\left(v_{2}\right)=\left\{u_{3}, u_{4}\right\}$ and $\beta\left(v_{j}\right)=$ $=\left\{u_{j+2}\right\}$ for $3 \leqq j \leqq 5$, more vividly displayed as

$$
\left(\begin{array}{c}
\forall u_{1} \forall u_{2} \exists v_{1} \\
\forall u_{3} \forall u_{4} \exists v_{2} \\
\forall u_{5} \exists v_{3} \\
\forall u_{6} \exists v_{4} \\
\forall u_{7} \exists v_{5},
\end{array}\right\rangle
$$

and M as

$$
\begin{aligned}
& \left(\left(u_{1}=u_{3} \wedge u_{2}=u_{4}\right) \rightarrow v_{1}=v_{2} \wedge . u_{5}=u_{6} \rightarrow v_{3}=v_{4} \wedge . u_{6}=u_{7} \rightarrow v_{4}=v_{5}\right) \rightarrow \\
& \left(\left(y=u_{5} \wedge z=u_{6} \wedge g(x)=u_{1} \wedge x=u_{4} \wedge v_{3}=u_{2} \wedge v_{4}=u_{3} \wedge v_{2}=u_{7}\right) \wedge R\left(v_{1}, v_{5}\right)\right) .
\end{aligned}
$$

Corollary. $\boldsymbol{Q} \equiv \mathbf{L}$.
Proof. The previous theorem establishes the equivalence in expressive power, of L and a subset of the wff's of Q. Conversely, by the definition of $I \vDash P M$, every wff of Q is equivalent to a formula of $L . \square$

References

[1] Enderton, H. B., Finite partially ordered quantifiers. This Zeitschr. 16 (1970), 393-397.
[2] Walkoe, W. J., Finite partially ordered quantification. J. Symb. Logic 35 (1970), 535-555.
[3] Rogers, H., Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York 1967.

[^0]: ${ }^{1}$) The author is indebted to W.J. Walkoe, A. R. Meyer, A. Shamir and a referee for comments on previous versions. The idea for this paper was motivated by work with V. R. Pratt related to program semantics. This research was partially supported by the National Science Foundation under contract No. MCS 76-18461.

