
J. LOGIC PROGRAMMING 1985:1:1-15 1 

HORN CLAUSE QUERIES AND GENERALIZATIONS* 

ASHOK K. CHANDRA** AND DAVID HAREL+ 

D A logic program consists of a set of Horn clauses, and can be used to 
express a query on relational data bases. It is shown that logic programs 
express precisely the queries in YE+ (the set of queries representable by a 
fixpoint applied to a positive existential query). Queries expressible by logic 
programs are thus not first-order queries in general, nor are all the first-order 
queries expressible as logic programs. Several ways of adding negation to 
logic programs are examined. The most general case is where arbitrary 
first-order formulas (with “nonterminal” relation symbols) are allowed. The 
resulting class has the expressive power of universally quantified second- 
order logic. a 

1. INTRODUCI-ION 

Kowalski [12] has introduced a programming language based on predicate calculus. 
A computation in this language is analogous to a resolution-driven attempt at 
proving a theorem of the form “atomic formula C follows from sentences C,, . . . , Cm”. 
In [12], as well as in subsequent papers on the topic, e.g., [l, 6,7], the sentences C, are 
taken to be (closures of) Horn clauses in the predicate calculus; i.e., each C, is of the 
form 

(VF)(A V,B, v .** V,B”) 

for some atomic formulas A, B,, where F consists of all variables appearing in A and 
in the Bj. Such a sentence is usually written simply as 

A 6 B1,..., B,,, 

*A preliminary version of this paper, “Horn Clauses and the Fixpoint Query Hierarchy,” appeared in 
the ACM Symp. on Principles of Databare Systems, 1982. 

**IBM Thomas J. Watson Research Center, P. 0. Box 218, Yorktown Heights, NY 10598. 
?Research of this author supported in part by a Bath Sheva Fellowship. 
Address correspondence to Prof. David Hare], Department of Applied Mathematics, The Weizmann 

Institute of Science, Rehovot, Israel. 

THE JOURNAL OF LOGIC PROGRAMMING 

OElsevier Science Publishing Co., Inc., 1985 
52 Vanderbilt Ave., New York, NY 10017 0743-1066/85,‘$03.30 



2 A. K. CHANDRA AND D. HAREL 

omitting the quantifiers. This approach forms the basis for the programming 
language PROLOG [14,15] (see also [4] for an extended bibliography). 

In van Emden [6] and in many of the papers in [8], the programming language of 
Horn clauses is viewed as a language for defining and querying relational data bases. 
The predicate symbols in such a Horn program P are regarded as the names of 
relations in a database B. If &is some new designated predicate symbol, then the set 
of constant tuples d for which &TO(a) is provable from P is taken as the response of 
the query represented by P when applied to B. 

In this paper the expressive power of the query language H of Horn programs is 
investigated (a brief justification for considering the query capabilities of Horn 
clauses, rather than their defining capabilities, can be found in Hare1 [9]). It is shown 
that the set of queries expressible in this language is properly contained in the set FP 
of Chandra and Hare1 [5] that consists of queries representable using first-order 
operators (3, V , -,) and fixpoint operators. In fact, Horn queries are precisely YE+, 
which is the set of queries representable by a fixpoint applied to a positive existential 
query [5]. Since FP is closed under complements but YE+ is not (because its queries 
are all monotone), it follows that FP strictly contains H. Also, since H can express 
the transitive closure query that is not a first-order query [2], it follows that the 
expressive power of H is independent of the first-order queries. 

Several generalizations are possible that allow greater expressive power. The most 
simple of these preserves the resolution-based motivation behind choosing just Horn 
clauses [12]. For example, we define II’ to be Horn clause queries extended to allow 
negation applied only to the terminals; i.e., atomic formulas of the form 
TR(tI,..., t,) are allowed among the premises of clauses. The class H’ is readily 
seen to express precisely the queries in YE, which is the set of queries representable 
by a fixpoint applied to any existential query. A more powerful generalization is 
obtained by allowing negated nonterminals in the premises as well. Care has to be 
exercised here in defining the semantics, however. For instance, what should be the 
meaning of the following program: {SO(x) + E(x); &(x) + 4O(x)}? This prob- 
lem can be finessed by requiring that there be no “cycles” when negated nontermi- 
nals appear. We define a class C of clausal programs having this property. These 
programs turn out to express precisely the fixpoint queries FP. 

Since a set of Horn clauses can be viewed simply as a conjunction of implications, 
i.e., as a particular kind of first-order formula with nonterminals, one may ask what 
happens if arbitrary first-order formulas with nonterminals are allowed as programs. 
This case is also studied using one particular semantics. The resulting queries turn 
out to be those expressed by universally quantified second-order logic. 

2. HORN CLAUSE QUERIES 

The following definition of the language H of Horn clause queries is a simplified 
version of that appearing in, e.g., [1,7] tailored for uninterpreted relational data 
bases. First some definitions. 

Let there be given a countable universal domain U. A relational database (data 
base for short) of type 5 = (a,, . . . , a,), k 2 0, ai 2 0, is a tuple B = (D, R,,. .., Rk) 
where D, the domain of B (sometimes denoted D(B)) is a finite nonempty subset of 
U, and for 1 I i I k, Ri c Dal. A query Q of type 5 + b is a partial function from 



HORN CLAUSE QUERIES AND GENERALIZATIONS 3 

the set of databases of type a to subsets of Ub such that Q(B) c (D(B)jb whenever 
it is defined. In other words, a query produces a finite relation on the domain of its 
argument. For this paper we take b 2 1. Minor changes are needed to handle the 
case b = 0 as well. 

In order to define the language H, we call elements of U constunts, and assume we 
have an unlimited supply of terminal relation symbols &, I&, . . . , and nonterminal 
relation symbols So, &, . . . of various nonnegative arities, and variables x, y, z, x1,. . . . 
We assume that = and # are special binary terminal relation symbols. A term is 
either a variable or a constant. For an nary relation symbol & (resp. & = , # j and 
terms t,, . . . , t,, lZ(t,, . . . , t,) (resp. S(tl,. . . , t,), t, = t,, t, # tz) is an atomic formula. 
An atomic formula of the form S(tl,. . . , I, j Is called a nont&minal atomic formula. 
Denote by r the set of all variable-free atomic formulas. A clause C is an expression 
of the form 

A + B1,..., B,,, ’ 

n 2 0, where A, the conclusion of C, is a nonterminal atomic formula, and B,, . . . , B,, 
its premises, are atomic formulas. A clause with conclusion A will also be called an 
A-clause. A program P of H is a finite nonempty set of clauses in which there are no 
occurrences of constants. 

A valuation 6 is a function from variables to constants, and if A is an atomic 
formula, A8 is the result of replacing in A each variable x by d(x). A valuation B is 
called D-restricted for D c U if e(x) E D for every x. We will think of a valuation B 
as being defined on constants too, with 6’(d) = d for each d E U. 

The intuition behind a program P can be described as follows. P represents the 
conjunction of its clauses. Each clause A + B,, . . . , B, is taken to stand for the 
universal closure of the implication (B, A B2 A * . * A B,) 3 A, and the set of tuples 
in a nonterminal relation S is taken to be those 2 appearing in any atomic formula 
of the form S(d) whose truth is a consequence of P. 

More formally, let P be a program of H with terminal relation symbols from 
among =,# R , _-1,. . ., I&, the latter of arity ai,. . ., uk, respectively. Let B = 

CD, R,, . . . , Rk) be a database of type 5 = (a,, . . . , uk). Define a set TB c I? by 

TB= 6 Tp, 
p-0 

where 

T,= {B;(d,,..., d,)(l<ilk; djED forl<j<ai;(dl,...,d,,)ERi} 

u{=(d,d)(dED} 

u{#(d,d’)Jd,d’~D,d#d’} 

T *+ 1 = T, U { A810 is a D-restricted valuation such that A + B,, . . . , B, is in 

P and B,LJ E q for 1 I i I n} . 
It is obvious that T, is finite since P is finite, and hence includes only a finite 
number of relation symbols, and the only atomic formulas considered in the Tp are 
those in which all terms are constants in the finite set D. 

In order to view P as representing a query on relational databases, one needs to 
identify one of the nonterminal relation symbols of P as the carrier that produces 



4 A. K. CHANDRA AND D. HAREL 

the result. The carrier will usually be denoted by &. Thus, if & is of arity b we 
define Query,, the query (of type Z --, b) represented by P, simply by 

Query, ( B ) = TB/So 
where 

T_&= {(d,,...,d,)lS(d,,...,d,)E 7”) 

for any nonterminal S of arity a. We also say that Query, is dejinable by P. 

Example 2.1. Let P, consist of the clause 

&(x5 Y) +&(x9 Z>? R&T Y), 

and let B, = (D, R,, R2) be a relational data base of type (2,2). By the construction 
above one can see that for p > 1, T, = T,, and TI - TO = {&,(a, b)la, b E D and 
there is c E D such that (a, c) E R, and (c, b) E R2}. In other words, P, represents 
the query of type (2,2) --, 2 that produces the relational composition of R, and R 2, 
denoted R, 0 R,. 

Example 2.2. Let P2 consist of the clauses 

s&, v> + x =y, 

Scl(X~ Y) +- &(x7 4&(Z? Y), 

and let B, = (D, R,) be a database of type (2). One can show that TI - TO = 

{&(a, a)la E D> and T,,, - Tp = {&(a, b)l(a, b) E R, 0 R, 0 + . . 0 R,, p times, de- 
noted R,P}. Thus Queryp2( B) = TC( B) = R:, where RT is the reflexive transitive 
closure of R,. Note: the first clause of P2 could equivalently be written simply as 

Scl(x, x) + 9 with the right-hand side being empty. 

3. SIMPLIFYING THE FIXPOINT STRUCTURE OF H 

The definition of Query, in the previous section is closely related to the “oper- 
ational” semantics of SLD-resolution [12]. Using the latter approach one concludes 
that S(d) follows from P if the assumption that _S(d) is false (written as the 
negative clause + S(d)) is refutable from P using SLD-resolution. A step in the 
refutation procedure corresponds to adding an element to T,, 1 (see [l, 71). 

The outcome of P2 in Example 2 can be viewed differently as the least relation S 
satisfying the fixpoint equation S = 1 U (R, 0 S), where I = {(d, d )(d E D }. This 
least jixpoint approach has indeed been rigorously established as an equivalent 
definition of the semantics of Horn clause programs (see [l, 71). 

Specifically, a program P can be thought of as consisting of a series of mutual 
relational equations. The values of the nonterminals are then taken to be the 
appropriate parts of the least solution, i.e., the least fixpoints. 

Example 3.1. To illustrate mutual definitions, consider P3: 

so(~,Y)-=Y 

s&9 Y) +- &,(x9 z>,s,(z, Y> 

SkG Y) + R,(x, Z),So(G Y>. 

Here one can show that Query,%( D, R,, R2) = (R, 0 R,)*. 



HORN CLAUSE QUERIES AND GENERALIZATIONS 5 

Our goal is to show that programs in H represent precisely the set of queries YE+ 
of [5], consisting essentially of a single relational fixpoint operator applied to a 
positive first-order existential query. The main observation needed to show this is the 
possibility of simulating a mutual fixpoint definition by a simple one. For any 
program P in H we show in this section how to construct an equivalent program P, 
having only one instrumental nonterminal &, from which the carrier & of P, is 
obtained directly by a simple projection. 

The idea is to make & “wide” enough to contain all of the information in the n 
nonterminals of P in addition to a “code”, of width O(logn), which indicates for 
each tuple which one of the nonterminals in P it corresponds to. A careful choice of 
the code for & helps overcome a technical difficulty when the domain of the 
database has only one element. 

We first describe a preliminary construction for the case n = 2. Let P involve 
only the two nonterminals & and ,Sr, of arities b and b,, respectively, and let S be a 
new relation symbol of arity max(b, b,) + 2. Without loss of generality we can 
assume that b, 2 b. Let b, = b + q. For an atomic formula A appearing in P, define 
A + as follows: 

A A is terminal (case 1) 

A+= S(i,X,u,u’) 

i 

A=&(I) (case 2) 

S(K u, u’) A =S,(U) (case 3), 

where (XJ = q, and u, u’ and the elements of X are new variables. Now, construct Pt 
by replacing each clause C of the form A + B,, . . . , B, in P by C+, constructed as 
follows. First, form A++ B[, . . . , B,‘. Then for each atomic formula A, B,, . . . , B,,,, 
if the transformation to the + version was by case 2 above (respectively, case 3) add 
the atomic formula u = u’ (respectively, u # u’) to the premises. The final clause 
obtained in this way is C+. 

Example 3.2. Consider P3 of Example 3.1, the construction yields P3+: 

S(x, Y? u1, u2) +-x =y, u1= ,929 

s(x, Y, u3, u4) +- &(% z),S(z, y, u5, & u3 = 04, u5 + u, 

Sk Y? u7, us) + R,(x, z),s(z, y, u9, qo), u7 + us, u9 = UlO. 0 

The following can be proved routinely by induction on p from the definitions of 
Tp, TP+ and P+: 

Lemma 3.1. Let P •e be constructed from P as aboue, and let B = ( D, R), 1 D( > 1. Let 
TB = lJ,T, and Ti = U,Tp+ be the sets corresponding to P and P+, giuen B as 
input. Then for every p 2 0 and for every do D ‘, F E Dq, and g, f E D where g # f, 

dE q/s, $f (J,Cf,f)E T,+/_s, (1) 

(C)E T,/S, ti (&@,f,g)E T,+/_s. (2) 

In other words, if I = {(d, d)(d E D} then 

T,+,‘_S=(T,/s,xDqxl)u(T,/&x(D2-I)). 

Note that the restriction on the size of D in the lemma prevents D2 - I from being 



6 A. K. CHANDRA AND D. HAREL 

empty, and hence makes possible the representation for &. Now, given P, denote by 
P,, the program 

with carrier S,. Call a database with domain D trivial if )DJ = 1. As a direct 
corollary of Lemma 3.1 we have: 

Lemma 3.2. For every nontrivial database B, QuerypO( B) = Query,(B). 

The construction of P+ from P can easily be extended to the general case of n 
nonterminals, by taking S to be of arity m + [(logn) + 1 (logarithms are base 2) 
where m is the maximum of the arities of the nonterminals. The additional 
r = [(log n) + 1 components of S are used to encode the numbers between 0 and 
n - 1 by asserting (and consequently adding to the premises) equalities and non- 
equalities between their values. With variables v, vO, ui, . . . , u~_~, the “all-equal” 
code v = v?_~, v = v~_~, . . . , v = uo, is reserved for the carrier S,. In general, the code 
for S, consists of r - 1 atomic formulas A r_2,. . . , A,; and if the binary representa- 
tionof i is jr_2,_.. , j,, then A, is v = vk if j, = 0, otherwise A, is v # vk. The final 
program P,, which is equivalent to P over nontrivial data bases is obtained similarly 
by projection: 

Po=P+u{~o(x)~gx,xl ,..., x1)}. 

We would now like to remove the restriction on the size of the domain, admitting 
trivial databases too. As an illustration of a typical difficulty, consider the following. 

Example 3.3. Let P4 be 

Sib, Y) + Rib, 4,s,(z, Y) 

In constructing P4f the first clause is transformed into 

S(x, y, u, ug) + R,(x, z),S(z, Y, 0’3 ub), u = q), u’ + u;. 

Now, since the rightmost atomic formula is never satisfied in a trivial database, the 
value of so in ( P4)o (i.e., P4f with the projection clause) will be 9, whereas it should 
be {(d, d)} whenever R, = {(d,, d)}. 

A clause C is l-derived from a program P in H if it is obtained by simultaneously 
replacing, in a clause C’ of P, each nonterminal atomic formula S(X) from among 
the premises by the premises of an S-clause C” in P, C” # C’, after appropriately 
renaming the variables of C” to match the elements of X and to be otherwise distinct 
from those of C’. C is n-derived from P, n > 1, if it is l-derived from P U Z, where 
Z is the set of all clauses m-derived from P, for all m c n. Identifying clauses which 
are the same up to consistent renaming of variables, we let 

P* = P U { CIC is p-derived from P and n < IPI}. 

Clearly, by the convention just adopted, P* is finite, hence a program of H. 



HORNCLAUSEQUERIESANDGENERALIZATIONS 7 

Example 3.4. Consider P4 of Example 3.3. P2 consists of the following clauses in 

addition to the ones in P4: 

&(x9 v) + &lx, 217 &,(G uM,(u, v> 

S&, Y) + R2C-V Z)? z =y 

&,(A Y> +- &2(x, z>, e,(z, u)J& v) 

S,(x, Y> + &(x2 z), R,k u), u =Y 

S,(x, Y> + &(x9 z), R*(G u), R,(uASOtw, Y> 

S&, Y) + &(X7 z), R,k u), R,(uAS,(w, Y) 

&(x, u) + &(x2 z>, R,(z, u>, R&W),W =.Y 

the first three of which are l-derived and the rest 2-derived, from P4. 

Clearly, since all we have done is to add clauses that are consistent with P, we 
have: 

Lemma 3.3. For every database B, Queryp.( B) = Queryp( B). 

However, we can now prove 

Theorem 3.4. Let (P*)’ be constructed from P* as described above for P, and let 
P1=(P*)+u{&(x)+~(x,x,,..., 

Q==vAB)- 
x,)}. Then for every database B, Query,,(B) = 

PROOF. For nontrivial B the result follows from Lemmas 3.2 and 3.3. Also, since, 
for trivial B (as illustrated in Example 3.3), all that can go wrong in the construction 
of (P*)+ is the loss of information, we obtain QuerypI c Query,(B). 

Let B be a trivial database with domain {d }. Each relation symbol can thus take 
onatmosttwovalues,~and{d}={(d,..., d)}. According to which of these is the 
case we shall say that the relation symbol is 08 or on, respectively. To prove that 
Query,(B) c QueryPI( B), assume that Query,(B) = {d}, i.e., that at some point in 
the construction of the sets Tp for P, &, becomes on. Let p be the smallest such 
index, i.e., there is an S-clause C in P, free off , all of whose premises are on in 
T p_l, but SO (which, as a consequence, is on in T,) is on in no Tpr for p’ <p. 
However, this means that there is an &,-clause C’ that is p-derived from C, which 
has no nonterminal premises, and in which all premises are on in B. 

We now argue that p < JPJ, for if p 2 IP( then some clause in P is used twice in 
the substitution process in an essential way (i.e., contributing to the length of the 
derivation process). Since there are only two possible values for the nonterminal in 
the conclusion of such a clause, the subderivation involving each such double usage 
can be “folded” by performing the substitutions following the second immediately 
after the first. This change can have no effect on the final outcome of & but shortens 
the derivation, contradicting the minimality of p. 0 

4. H--YE+ 

We first summarize some concepts of first-order queries and fixpoints. We will use a 
slightly modified version of the notation from [5]. The reader is urged to consult [5] 
for precise definitions. 



8 A. K. CHANDRA AND D. HAREL 

From any first-order formula a(X) over relation symbols = , # , &, l&, _ . . and 
with, say, k free variables X, one obtains a first-order query Q, whose value on a 
data base B (of the right type) is 

Q,(B)={d~(D(B))~l@(d)istrueinB}. 

The set of first-order queries is denoted by F. Let E denote the set of existential 
queries representable by first-order formulas of the form 

where @ is quantifier-free. Let E+ be the set of positive existential queries defined as 
E, except that Cp contains no negations. For example, the formula (3z)(&i(x, z) A 
Z&(z, y)) in E+ represents R, 0 R, (compare with Example 2.1). 

If Cp is a first-order formula involving relation symbols from among 

s, &I, Ri,..., ZZk then the formula 

(F.Y&S)cp 

(where all occurrences of S in Cp are positive, i.e., under an even number of 
negations) represents the query obtained by first taking the least fixpoint of the 
equation S = cP(s) and then matching the elements of .? with the components of 
the resulting relation. Thus Z can be used to force equality between some of the 
components of the fixpoint. Here the arity of S, the length of t, and the number of 
free variables in @ are equal.’ Hence, if the relation symbols free in such a formula 
* (S is bound in (t.YS)@) are &,.. ., Rk of arities a= (a,,. . ., a,), and \1/ has b 

free variables (the number of distinct variables in 2) then \k represents a query of 
type Z + b. YE+ (resp. YE, YF) is the set of queries of this form where @ is in E+ 
(resp. E,F), i.e., representable by one application of the Y operator to a positive 
existential formula (resp. existential formula, any formula) of first-order logic. 

Example 4.1. The reflexive transitive closure query TC is in YE+ since it is 
represented by 

*,: ((x3 Y).YS)(W(X =Y v@,(x, z> AS(z, Y))). 

The similarity of this formula for TC and the program Pz of Example 2.2 is the 
core of our main result: 

Theorem 4.1. A query is definable by a program of H iff it is in YE+. 

PROOF. If-part. For a query Q in YE+ represented by a formula @‘, define the 
program Pa in H inductively as follows: if Cp is x = y then P@ is {Z&,(x, y) +- x = y }. 

- - - - 
Similarly for # and R;(z). Let @(X, y,.?) = @i(x, y) A $(x, z). For i = 1,2 let P, 
be P@, with the new relation symbol 5, replacing &. Then 

P~=P,UP,u{So(x,Y,~)tSl(x,y),S2(X,~)}. 
- - - - - - 

Similarly, if O(Z, y, z) = @i(x, y) V $(x, z), then 

~,=P,UP*U{So(x,Y,~)t_S,(x,y)}U{_S,(x,y,~)tS2(X,~)}. 

‘It is necessary to show the equivalence of this version of the language and the slightly more elaborate 
one of [5], in which fixpoint formulas were of the form (,?.YS( Z))Q( E, j). 



HORN CLAUSE QUERIES AND GENERALIZATIONS 9 

If Q(X) = 3y@i(X, y), then 

Finally, if @(.Z)=(T.YS)QP,(I), then 

PQ can easily be seen to represent Q. 
Only-ifpart. Given a program P in H, form the equivalent program PI = (P*)+ 

u {&(.Q + S(F x1,. . *, x1)} of Section 3. Here X = (x1,. . . , x,). The part of P, we 
are interested in is (P”)’ from which we now construct a formula QP of the form 
((X7 Xl,. * *, x1). Y&)9, where JI is a positive existential formula. Observing that the 
free variables of Qpp are only those of 2, and that the choice of the “all-equal” code 
for &, in (P’)’ enables us to simulate the projection clause of P, in OP, the latter 
will easily be seen to represent the same query as P,, and hence by Theorem 3.4, the 
same query as P. 

To construct \k notice that S is the only nonterminal in (P*)‘, say its arity is r. 
First consistently change the variables of all the clauses of (P*)+ so that all 
conclusions are precisely S( jj), where J = ( yt, . . . , y,) is a tuple of new variables. 
This can be done simply by replacing each clause &( zt, . . . , z,) + B,, . . . , B, by the 
clause &( yl,. . . , y,) + B,, . . . , B,, z1 = yl,. . , z, = y,. Let the resulting set of clauses 
be {S(y)+&,..., B,,.,},lsi<p,O<n,. Now define \k to be the formula 

(W( v A Bi,$ 
1 sisp O<J<n, 

where U consists of all variables in the above set of clauses except for those in jj. 
This construction is very similar to that given in [l] for constructing the “IF version” 
associated with a Horn-clause program. The reader should be able to see without 
difficulty that the fixpoint equation associated with a, is essentially a conjunction of 
the meanings of the clauses of (P*)+, as described in the introduction 0 

Example 4.2. The two directions in the proof above, if applied, respectively, to 
the representations P2 and \k, of TC in Examples 2.2 and 4.1, yield (almost) one 
another. To be precise one obtains the following: 

p*,: So(x, Y) + S(x, v) 
S(& Y) + S*(& v) 
_sl(% Y) + SAX, Y, z) 
&(x, Y, z) + &(X> v) 
&(A Y, 2) * &(x, Y, z) 
&(x, Y) +- x ‘Y, 
SAX, Y1 z) t &(x3 z), S(G Y> 
Sdx, z) + R,(& z> 

@‘p,: ((x3 Y).Ks)((3Z)(X =Y v C&(x, z) AS(z, Y)N>. 

The proof of Theorem 4.1 can be used to show that YE+ is closed under its basic 
operations. This is done by translating from YE+ to H using the “if” part of the 



10 A.K.CHANDRAANDD.HAREL 

proof and then translating the new program (which involves the operation consid- 
ered) back to YE+ using the “only-if’ part. One can prove this way that 

Proposition 4.2. YE+ is closed under conjunction (A), disjunction (V ), composition 
(o), andfixpoint (Y). 

5. GENERALIZATIONS 

The queries in YE+ do not contain, and are clearly not closed under negation (or 
complementation, denoted 7). In fact, the trivial query of type (1) + 1 which 
complements its argument, yielding D - R when applied to B = (0, R), is not 
expressible in YE+; and hence not in H either. Such minor “weaknesses” can be 
removed by defining the class I-I’ of Horn clauses augmented with negated terminals. 

A literal is an atomic formula (R(t,, . . . , t,), S(tl,. . . , t,), t1 = t2, t, # t2), or has 
the form -Z2(tl,..., t,). An extended clause C is an expression of the form 

A + B,, . . .) B,,, n 2 0, where A is a nonterminal atomic formula and the Bis are 
literals. A program P of H’ is a finite nonempty set of extended clauses without 
constants. A program P represents a query Query, as defined for H (Section 2) with 
the proviso for negations (by adding the set {,&,(d,, . . . , d,,)l(d,, . . . , da,)4 Ri} to 

T,). 

Theorem 5.1. A quev is definable by a program of H’ i’it is in YE. 

The proof is as that for Theorem 4.1. One needs to check that Lemma 3.3 and 
Theorem 3.4 also hold for programs in H’. 

Even with this extension, H’ cannot represent all first-order queries. The obvious 
feature missing is universal quantification. Let UNIV be the query of type (1) + 1 
whose value on B = (D, R) is given by 

ifR=D 
otherwise. 

This is a first-order query: { xlVyR(y)} (for technical reasons we are not allowing 
queries of type (1) -+ 0, otherwise we could have defined UNIV to have just a 
“ yes/no” value). 

Theorem 5.2. UNIV is not in YE. 

This follows from the following property of queries in YE: 

Lemma 5.3. Let B = (D, RI, . . . , Rk), B’. = (D’, R;, . . . , R;) be databases of the same 

type (a,,..., a,J, with D C D’, and for all i, Ri = R: f~ Dal. Then if Q is in YE, 

Q(B) = Q(B’). 

PROOF. Let Q be represented by 

where the arity of 8 is n and J=(y,,..., y,). Here @ is quantifier free, and 3 



HORNCLAUSEQUERIESANDGENERALIZATIONS 11 

- - 
appears only positively in Cp. The least lixpoint S satisfying S( 7) =_X@(S, x, yJ on 
thedatabaseB isgivenbyS= US, where S,,= { }, and S,+i = {d]X@(Si,?i,d)is 
true in B}. Let S’, S,! be the corresponding sets for B’. We show by induction on i 
that Si c S,! (hence S c S’, from which the lemma follows). It is true for i = 0 where 
S, = SA = { }. Let Sic q, and suppose do S,,,. Hence for some vector Z of 
elements in D, @(S,, 2, d) is true in B. Since for all other relation symbols I& 
appearing in a’, relations Ri, R: are identical on the elements of 2, 2, and Cp is 
quantifier free, it follows (by an easy induction on. the structure of a) that 
@(S,, Z, 2) is true in B’. Now, as S occurs only positively in a’, Cp is monotone in the 
relation for S, hence @(S,f, e, d) is true in B’, and do S*!+ I. Thus Si+ i c S:+ t, which 
completes the induction and the proof. 0 

PROOF OF THEOREM 5.2. Let B = (D, R), B’ = (D’, R’), where D = R = R’ = {d }, 
and D’ = {d, d’}. Now UNIV(B) = {d}. If UNIV were in YE, by Lemma 5.3, 
{ d } c UNIV( B’), which is false since UNIV( B’) = { }. 0 

There seem to be at least two ways to generalize H’. One is by allowing the 
negation of nonterminal symbols and introducing some notion of order on the 
“evaluation” of programs. The other is by attempting some semantics for general 
first-order formulas with nonterminal relation symbols considered as programs. We 
now consider the first possibility. 

Let P, and Pz be programs in I-I’, and let Pi be P2 with all nonterminals 
renamed to be distinct from those of P,. In particular, assume that the n-ary carrier 
of Pi is SA. If R is an nary terminal of P, not appearing in P2 (and hence not in Pi 
either) we define the new program P1( &/,P,) to be P, U Pi U {R(F) +- 7S’o(X)} 
for some n-tuple of variables X. J$ now becomes a nonterminal in P1( &/, P2), and 
may be systematically renamed to some new S,. The idea is simply to allow the 
complement of the H’ query P2 to be used in the H’ query PI. Let C be the language 
obtained from H’ by inductively allowing new programs P,( B/- P2) for programs 
PI and P2. 

Since a program in C can be partially ordered into subprograms Pi such that 
Pi < P, iff Pi contains an occurrence of 7P,, the semantics of programs in C becomes 
straightforward: given B = (D, R), evaluate the P,(B) in some order consistent with 
< , substituting in the process D” - P,(B) for E whenever P,( &/-, P,) occurs. 

Next we need to define the general notion of fixpoint queries [5]. Special cases 
(YE+, YE,YF) have already been defined. The class FP of jixpoint queries is de- 
fined using Jixpoint formulas, which can be of one of the following forms: 

R(xjl, . . . 9 Xi,), S(Xi,9. ’ * > xi,)9 1 cpi, @i v op,, Qp, A @p,, 3x.a1, V’x.@,, (2.YS)@(X), 
where & is an n-ary terminal relation symbol (or is = , # ), S is an n-ary 
nonterminal relation symbol, x, x1,, . . . , xi, are variables, @i, $ are fixpoint for- 
mulas, a(Z) is a fixpoint formula with n distinct free variables E and with S 
appearing only positively in it, and Z is a vector of n (not necessarily distinct) 
variables. Variables of Z are free in (Z. YS)@( X), and X, S are bound in it. A fixpoint 
formula Q(X) with free relation symbols R,, R,, . . . represents a query Q, in the 
obvious way: 

Q,(B)= {d]@(d)istruein B}. 

It remains only to explain the semantics of the least fixpoint operator Y. Given 
(1. YS)@(X), let Z’ be a vector of the distinct variables of Z; say t’ = (zi, . . . , z,), Z = 



12 A.K.CHANDRAANDD.HAREL 

(z;,, . . ., zj,). Also, for 2 = (d, ,..., d,)~ o(B)b, let 2 be (djl ,..., d,,). Now the 
formula (Z.Y,S)@(X) is true for z (as the value for 5’) iff do SO, where SO is the 
smallest relation S c D(B)" such that 2 E S iff Ca( 2) is true in B (with S being the 
relation for S in 0,). 

Theorem 5.4, A query is dejinable by a program of C if it is in FP. 

The proof in one direction is by induction on the structure of programs (and 
using Theorem 5.1); in the other direction by induction on the structure of fixpoint 
formulas. 

A result of Clark [3] (see also [l]) justifies the extension of H to C from an 
operational point of view. Clark shows that the complement of R consists of all 
tuples d such that an attempted proof of R(d) using SLD resolution fails on all 
branches of the proof tree in a finite amount of time. Hence, computing 7 R by this 
“finite-failure” method is a natural extension of the resolution-based method for 
computing queries in H, giving rise to the possibility of using the language C. 

The other possible generalization of H’ mentioned earlier is to allow general 
first-order formulas as programs. A jrst-orderformula with nonterminals @(SO, &, . . .) 
(without free variables) over relation symbols &, &, . . . , Ro, El . . . , = # , and car- 
rier & represents a query Query, given by 

Query,(B)= n{$,]Zlls, ,._., s.t.@(S,,S, ,... )istruein B}. 

Let FN denote the class of such queries. 
It may be seen that this definition is consistent with those for H,H’ (where a 

Horn clause is treated as a universally quantified implication, and a program is a 
conjunction of its clauses). It is not consistent with the definition of C. For example, 

the program {SO(x) + 7,Sl(x); s,(x) + R(x)} represents the query whose value is 
D - R; however, the following formula (with nonterminals) (Vx.-,&( x) -+ SO(x)) A 
(Vx. R(x) + S,(x)) represents the query whose value is always { }. Therefore FN 
does not obviously generalize C. 

In order to characterize the class FN, we need to define the second-order queries. -- 
A universally quantified second-order formula Q(X) has the form V,$.‘k(S, & X), 
where \k is first order, and it defines the query Q, given by (analogous to first-order 
queries): 

Q,(B)= {d]@(d)istruein B}. 

The set of such queries is denoted US. 

Theorem 5.5. FN = US. 

PROOF. To show FN c US, let @(&, &, . . .) represent a query Query, in FN. Then 
let \k(X) denote the formula 

~~~,S,,...(~(S,,S,,...)_S,(X>). 

It is readily seen that Query, = Q,. 



HORN CLAUSE QUERIES AND GENERALIZATIONS 13 

-- 
To show US c FE, let \E be a formula V$.\k’(& B, X) that represents a query Q, 

in US. Then let @(& ,SO) be defined as follows (here S, is a new relation symbol of 
rank 1X1): 

-- 
V_+-% E, Y) 4,(Y)). 

Then it can be seen that Query@ = Q,. 0 

We have defined three generalizations of Horn clause queries H. These include 
the extended Horn clause queries II’, the clausal queries C, and the first-order 
queries with nonterminals FN. These four classes have been characterized by the 
query classes YE+, YE, FP, and US, respectively. The connection between these four 
is given by 

Theorem.5.6. YE+c#YEc#FPc#US. 

PROOF. We only need to show that FP c Z US. We first show that FP c US. It has 
been shown by Immerman [ll] that FP = EoYF. In other words, any query Q in FP 
can be represented by a tixpoint formula \k(X’) with only one fixpoint operator, 
having the form: 

3j’.((X, y).ys)Q,(s, ?). 
- - 

Here Cp is a first-order formula, and X’, y’ are the vectors X, y without repeated 
variables (X’, j7 are disjoint, and (Xl + ljjl= ItI = rank of S). Q can be represented as 
a universal second-order query by the formula ‘k’(3): 

V&3J’.((V2.@(& z) = s( 5)) + S(Z, y)). 
- - 2, 

Here X, y, x ,y’ are as above. Now \k’(X) is equivalent to \k(X) since both are 
equivalent to: 

~~‘.~~.((v~.~(S,I)~S(t))~S(x,y)) 

because \k has a least fixpoint. 
To show FP # US, consider the query ODD of type ( ) + 1 whose value on 

B = (D, R) is: 

if (DI is odd 

otherwise. 

It has been shown [5] that ODD 4 FP (the query used there was called EVEN, with 
EVEN(B)= {( )} if IDJ is even, { } otherwise: this difference is immaterial since FP 
is closed under negation and projection). However, ODD is in US. It can be 
represented by: 

K%(% y, z.s(x, r) G(v, 4) V (3x.VJ+S(x, Y)) v (3X.V_v.lS(Y, 4) 

(the formula states that S cannot be a perfect matching on the elements of D). 0 

6. CONCLUSIONS 

The purpose of this paper has been to characterize the database queries expressible 
in the logic programmin g style. In this style, queries are expressed by programs 
represented by (restricted) first-order formulas that may contain “nonterminal” 



14 A. K. CHANDRA AND D. HAREL 

relation symbols. Such non-terminals do not correspond to the given relations of the 
database, but are rather thought of as “defined” or “programmed” relations. The 
semantics of these nonterminals is particularly clean when the formulas are re- 
stricted to be sets of Horn clauses. The class H of such Horn clause programs is 
shown to express precisely the same queries as YE+: this is the class of queries 
expressible using one fixpoint operator applied to positive existential queries. 

One limitation of the queries expressed by Horn clause programs is that they are 
all monotone, i.e., adding tuples to relations in the database cannot cause any tuple 
in the output of the query to be deleted. This is easily overcome without sacrificing 
the clean semantics by extending Horn clauses to allow negated terminal relation 
symbols as well. Such extended Horn programs H’ express the queries YE contain- 
ing one fixpoint operator applied to (not necessarily positive) existential queries. 

However, it is shown that even H’ cannot express universal quantification. It 
therefore does not express all first-order queries, even though it (even H) expresses 
some queries (e.g., the transitive closure query) that are not first order. 

In this paper we have considered two (noncompatible) ways of extending H’ 
further. One is to allow negated the nonterminals as well, but to impose an order on 
the evaluation of nonterminals. We argue that this extension is in the same spirit of 
resolution-based proofs as Horn clause programs, and show that the resulting 
“clausal programs” C express precisely the fixpoint queries FP (queries closed under 
the first-order operations and fixpoints as well). 

The second, and aesthetically more appealing, way of extending H’ is to allow 
arbitrary first-order formulas with nonterminals as programs yielding FN. A 
semantics consistent with H’ (but not with C) is to take the intersection of all 
solutions for the nonterminals that satisfy the formula. FN is shown to be the same 
as universally quantified second-order logic (without nonterminals) US, and to 
contain FP as a strict subset. This semantics is, however, not very desirable from a 
computational viewpoint, in that it is not apparent how to write efficient programs 
(or a good compiler) since one has to search all subsets of the data base. This 
objection could conceivably be overcome by attaching a different semantics to 
first-order formulas with nonterminals. One possibility here is the following. Let a 
first-order formula @(E, &, &,_. .) re p resent a query whose value on B = (D, II) is 
the set of all d such that S,(d) is provable (in some proof system, e.g., that of 
first-order logic on finite and infinite domains) from Q and the literals corresponding 
to B (if e E Ri (resp. .? $Z Ri) in B, this corresponds to the literal &,( 2) (resp. 
7_Ri( e)), similarly for = , # ). The possibility is in line with the developing area of 
deductive databases; see, e.g., [16]. 

There are interesting connections between the work presented here and the theory 
of inductive definability [lo, 131. For instance, the collapsing of mutual fixpoints to a 
single one is used in our proof of H = YE+. A similar result for arbitrary (i.e., not 
necessarily finite) structures appears in [13, Sec. lC]. Also, the results H = YE+, 
H’ = YE, C = FP, and FN = US apply to arbitrary structures as well as to finite 
ones, and the hxpoint queries (FP) are precisely the inductive definitions on Jinite 
structures. 

We would like to thank A. Shamir and M. Van3 for their helpful comments. 



HORN CLAUSE QUERIES AND GENERALIZATIONS 15 

REFERENCES 
1. Apt, K. R. and van Emden, M. H., Contributions to the Theory of Logic Programming, 

J. ACM 29:841-862 (1982). 

2. Aho, A. V. and Ullman, J. D., Universality of Data Retrieval Languages, 6th ACM Symp. 
on Principles of Programming Languages, San-Antonio, TX (Jan 1979) pp. 110-117. 

3. Clark, K. L., Negation as Failure, in: H. Gallaire and J. Minker (eds.), Logic and Data 
Bases, Plenum Press, New York, 1978, pp. 293-322. 

4. Coelho, H., Cotta, J. C., and Pereira, L. M., How to Solve it with PROLOG, Report, 
Laboratorio National de Engenharia Civil, Ministerio da Habitacao e Obras Publicas, 
Lisbon, 1980. 

5. Chandra, A. K. and Harel, D., Structure and Complexity of Relational Queries, J. Corn. 
Sys. Sci. 25:99-128 (1982). 

6. van Emden, M. H., Computation and Deductive Information Retrieval, in: E. J. Neuhold 
(ed.), Formal Description of Programming Concepts, North-Holland, New York, 1978, pp. 
421-439. 

7. van Emden, M. H. and Kowalski, R. A., The Semantics of Predicate Logic as a 
Programming Language, J. ACM, 23:733-742 (1976). 

8. Gallaire, H. and J. Minker (eds.), Logic and Data Bases, Plenum Press, New York, 1978. 
9. ~6~e~6~, Review on Logic and Data Bases, Computing Reviews #36,671 (Aug 1980), pp. 

10. Harel, D. and Kozen, D., A Programming Language for the Inductive Sets, and 
Applications, Information and Control, to appear. [Also Proc. ICALP 82, Aarhus, 
Denmark (July 1982).] 

11. Immerman, N., Relational Queries Computable in Polynomial Time, 14th Ann. A CM 
Symp. on Theory of Computing. San Francisco, CA, May 1982, pp. 147-152. 

12. Kowalski, R., Predicate Logic as a Programming Language, Proc. IFIP Cong. 1974, 
North-Holland, Amsterdam, 1974, pp. 569-574. 

13. Moschovakis, Y. N., Elementary Induction on Abstract Structures, North-Holland, New 
York, 1974. 

14. Roussel, P., PROLOG: Manuel de Reference et d’Utilisation, Report, Groupe de IA, 
UER Luminy, Univ. d’Aix-Marseille, France (1975). 

15. Clocksin, W. and Mellish, C., Programming in PROLOG, Springer-Verlag, Berlin, 1981. 

16. Gallaire, H., Minker, J., and Nicolas, J.-M., Logic and Databases: A Deductive Ap- 
proach, Computing Surveys 16: 153-185 (1984). 


