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Following a suggestion of Pratt, we consider propositional dynamic logic in 
which programs are nondeterministic finite automata o~¢er atomic programs and 
tests (i.e., flowcharts), rather than regular expressions. While the resulting version of 
PDL, call it APDL, is clearly equivalent in expressive power to PDL, it is also (in 
the worst case) exponentially more succinct. In particular, deciding its validity 
problem by reducing it to that of PDL leads to a double exponential time 
procedure, although PDL itself is decidable in exponential time. We present an 
elementary combined proof of the completeness of a simple axiom system for 
APDL and decidability of the validity problem in exponential time. The results are 
thus stronger than those for PDL, since PDL can be encoded in APDL with no 
additional cost, and the proofs simpler, since induction on the structure of 
programs is virtually eliminated. Our axiom system for APDL relates to the PDL 
system just as Floyd's proof method for partial correctness relates to Hoare's. 
© 1985 Academic Press, Inc. 

1. INTRODUCTION 

The propositional version of dynamic logic (Fischer and Ladner, 1979; 
Pratt, 1976) is used to reason about the before-after behavior of programs. 
In PDL programs are taken to be regular sets of execution sequences 
represented by regular expressions. An execution sequence is a finite word 
over an alphabet of atomic programs and tests. The choice of a particular 
representation for these regular sets clearly has no influence on the 
expressive power of the language. It is significant, however, in the sense 
that some representations might be more natural or economical than 
others. The regular expressions of PDL are natural and often give rise to 
proofs by induction on their structure. In particular, PDL is known to be 
decidable in exponential time and to admit a complete axiomatization con- 
sisting of a finite set of very natural axiom schemes including one for each 
of the regular operations on programs (see Fischer and Ladner, 1979; 
Pratt, 1979; Kozen and Parikh, 1981; Sherman and Harel, 1983; Harel, 
1984). 

* This paper is a revised and expanded version of a paper presented at the International 
Conference on "Foundations of Computation Theory" held in Borgholm, Sweden, August 
21-27, 1983. 
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Pratt (1981) raised the question of the behavior of a version of PDL in 
which programs are represented by flowcharts. A nondeterministic 
flowchart is simply a finite directed graph with a designated entry node and 
some exit nodes, whose edges are labelled with atomic programs and tests. 
Since such a flowchart can clearly be regarded as the transition diagram of 
a nondeterministic finite automaton, it is immediate that this new version 
of PDL, call it APDL, is equivalent in expressive power to the standard 
version. However, if validity in APDL is decided by translating automata 
into regular expressions and working in PDL, the translation can cost in 
the worst case an exponential in the size of the automaton (Ehrenfeucht 
and Zeiger, 1976). Hence formulas of APDL grow exponentially in length 
when transformed into PDL formulas, resulting in a double-exponential 
time decision procedure. Moreover, the axioms of PDL are unfit for APDL 
unless such a translation is carried out as a preliminary step of each proof. 

Pratt (1981) sketched a tableau-like algorithm for deciding APDL in 
single exponential time, and also indicated, using an algebraic approach, 
how an axiom system for APDL might be constructed, eliminating the 
need for translating into PDL. In independent work, Abrahamson (1980), 
with different motivation, gave a 2 °(n)2°~m~ time decision procedure for PDL 
with m boolean variables. APDL can indeed be expressed succinctly in this 
PDL, implying a 2 °(nl°g(n)) time decision procedure, but, although better 
than two exponentials, this upper bound is still super-exponential. 

In this paper we borrow the motivation and some basic ideas of Pratt 
(1981) and provide an elementary combined proof of the two fundamental 
properties of APDL: exponential-time decidability of the validity problem, 
and completeness of a simple finitary axiom system. The axiom system is in 
a sense simpler than that of PDL as it deals globally with the automata 
rather than with each of the regular operators. The axioms are similar to 
those given by Wolper (1983) for his extended temporal logic. Also, the 
combined proof itself is a simplification of the similar proof we have given 
for PDL (Sherman and Harel, 1983), as it replaces the three clauses for 
regular operators in all inductions on the structure of programs by a single 
clause for an automaton. 

Since regular expressions can be translated easily into automata, with no 
essential growth in size, APDL is a more fuhdamental formalism than 
PDL, and the results are thus stronger than those for PDL. 

The reader will observe that since APDL relates to PDL as flowcharts 
do to structured programs, the axiom system for APDL (and our proof of 
its completeness) relates to that of PDL (and the proof of its completeness) 
just as Floyd's (1967) inductive assertion method for partial correctness 
relates to Hoare's (1969) axiomatic system. This point is also hinted at in 
Pratt (1981). 

We have used the automata approach presented herein to obtain results 
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for some extensions of A P D L  (and hence of PDL) ,  which are discussed 
briefly in Section 4 and which will appea r  separately. In  par t icular  it has 
been used by the second-listed au thor  and A. Pnueli  to prove  exponent ia l  
t ime decidability for P D L  with loop, previously known to be decidable only 
in tr iple-exponential  t ime (Streett, 1982). 

Section 2 of the paper  contains preliminaries and Section 3 contains the 
main  results. 

2. SYNTAX AND SEMANTICS 

DEFINITION. A finite (nondeterministic) automaton over an aphabe t  Z" is 
a 4-tuple Y = (Q ,  q0, r/, F ) ,  where: 

Q is a finite set of states. 

qo e Q is the initial state. 

r/: Q x z ' - - .  2 Q is a transit ion function assigning a set of states to each 
state and letter f rom the alphabet.  

F c  Q is a set of accepting states. 

A word  o e Z'*, o = (Oo.. .  o t 1), is accepted by ~.~ if there exists a sequence 
of states (qo ..... qt) such that  q t e F  and for every i, O<~i<l qi+l e~l(qi, oi). 

Every finite a u t o m a t o n  over  the a lphabet  Z" can be represented as a 
union of (possibly nondeterminis t ic)  a u t o m a t a  of the form (n, i,j, 3) where: 

-- { 1, 2,..., n} is the set of states. 

i e r~ is the initial state. 

j e fi is the final state. 

3: n x n ~ S is a part ial  labeling ( transi t ion) function. 

A word  a ~ S * ,  o =  (or o" -. a t_ l ) ,  is accepted by (n, i,j, 3) if there exists a 
sequence of states (i o ..... it), io = i, i t = j ,  ik • fi, and o k = 6(ik, ik+ 1), 0 <<, k < I. 

Note  that  a nondeterminis t ic  finite a u t o m a t o n  with m states over  a finite 
a lphabet  X, can be represented by a union Of at mos t  m a u t o m a t a  of the 
above form each with n <~ m'LSI states. 

A P D L  is defined over  two sets of symbols:  ~o,  the set of atomic for- 
mulas, and Ho, the set of atomic programs, q9 o and H o are, respectively, 
abst ract ions  of propert ies  of states, and basic instructions such as 
assignment  statements,  which t ransform one state into another .  F r o m  these 
basic a lphabets  we inductively construct  the set • of expressions for com-  
pound  formulas,  representing assert ions abou t  states, and the set H of 
p rograms  representing t ransformat ions  on states by finite au tomata .  
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The following clauses define ~: 

true ~ ~; false ~ qs; ~b o ~ ~, 

i f p ~  and q~q5 then ~ p ~  and (p v q ) E ~ ,  

i f p ~  and ~ / 7  then ( ~ ) p ~ b .  

The following clauses define/7: 

/70 -= 17, 

q~? ~/7 ,  where ~ ? =  {p? ] p ~ } ,  

if ~ = (n, i,j, 6) is an automaton over the alphabet/7o u ~0? then 7 ~/7. 

We use A, - ,  ~ as abbreviations in the standard way and, in addition, 
abbreviate -7 ( 7 )  -Tp as [-c~] p. 

The semantics of APDL is defined relative to a given structure (or model) 
~ '  = (W, 7, p) where: 

W is a set of elements called states, (not to be confused with the sets 
of automata states), 

~: q5o~2  w, 

p:1Io ~ 2 w×W 

Informally, the mapping z assigns to each atomic formula P the set 
v(P) _ W of states in which it is t rue and p assigns to each atomic program 
a a binary relation with the intended meaning (s, t) c p(a) iff execution of a 
can lead from state s to state t. Such an M is called a structure over q~o and 
/70- The mappings ~ and p are extended to supply meanings for the full sets 
q' a n d / 7  as follows: 

z( true ) = W; rO<alse ) = ~ ,  

~ ( T p )  = w -  ~(p), 

r (p  v q) = z(p) w r(q), 

v ( ( a ) p )  = {s~ W[ 3t~ W((s, t) 6p(~)  A t ~ r ( p ) ) } ,  

p(p?) = { (s, s) l s ~ r(p) }, 

p(n, i,j,  6 ) =  {(s, t) i 3k((~(i o ..... ik), io= i, ik=j ,  Vl il6 t~) 

/, (~(So ..... s~), So=S, s~= t, Vls++ W)  

s.t. (s~, s~+~)ep(6(iz, iz+ ~)) V/, 0 d  l < k ) } .  

Actually what the last definition says is that p(n, i,j, 6) is the set of trans- 
itions in the model corresponding to transitions from state i to s ta te j  in the 
automaton. 
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We shall write ~4, s ~ p  and say that p is true in s or that s satisfies p if 
s ~ ~(p), and omit ~4 when it is clear from the context. We say that p is 
valid if sd, s ~ p  for every structure d and state s and write ~ p, and that p 
is satisfiable if there exist sd and s such that s¢, s~p.  Clearly p is valid iff 
~ p  is not satisfiable. 

DEFINITION. The sizes of a formula p, and a program c¢, denoted I P] and 
1:~t respectively, are defined as follows: 

[ a l = b P [ = l  forP~q~o,a~Ho 

] ~ q l = i q ] + l  

[q v r[ = [ql + [rL + 1 

I (~ )  ql--  Ic~l + Iql + 1 

Iq?] =lql  + 1 

I(n, i,j, 6)= n + X(k,~ vl6(k, l)l 

where V= {(k, l) ] k, l e ~  and 6(k, l)is defined}. 

It is easy to show that APDL with its special kind of automata is only 
(in the worst case) quadratically less succinct than a version employing 
standard nondeterministic automata, by the remark following the definition 
of automata above. Thus, for our purposes no generality is lost in consider- 
ing APDL. Also, while we impose a "pre-processing" of sorts, transforming 
a general automaton into a union of those of the type we use, this transfor- 
mation can be added, if so desired, to the axiom system of Section 3. Our 
automata are more elementary, and hence the axiom system of Section 3 is 
not burdened with automata-theoretic details. 

3. DECIDABILITY AND COMPLETENESS 

The completeness of a simple axiom system for APDL is established, and 
from the proof it is concluded that the validity of formulas of APDL is 
decidable deterministically in time which is on the order of an exponential 
in the size of the input formula. Specifically, validity of p can be tested in 
deterministic time 2 c Ipi for some c > 0. 

The following definition captures a certain notion of the subformulas of a 
formula, and is analogous to the Fischer/Ladner closure of (Fischer and 
Ladner, 1979; Kozen and Parikh, 1981). 

DEFINITION. Let p be a formula of APDL; i.e., p ~ cb. The closure of p, 
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denoted CL(p), is the smallest 
the following closure rules for 

~ q e S ~ q e  

q v r e S ~ q e  

( a > q e S ~ q e  

( q ? )  r e S ~ q e  

(n, i,j, 6)  q e  S=~ for 

set S of formulas containing p and satisfying 
all aeHo,  (n, i,j, 6 )e l l ,  and q, r e ~ .  

S 

S, r e S  

S 

S, r E S  

every k e ~ such that 6(i, k) is defined, 

(6(i, k) ) (n, k,j,  6 ) q e S, 

and in addition if i =j  then q e S. 

It is easy to see that ICL(p)I (i.e., the number of formulas in CL(p))  is 
linear in the length of p; i.e., ]CL(p)I = O(Ipl). 

Let ~ CL(p) be defined as { -7 q I q e CL(p) }. Denote CL(p) w -7 CL(p) 
by Z. We now define certain sets of formulas from Z called atoms, which 
are free of "immediate" inconsistencies. Later we eliminate those which are 
inconsistent with all others. 

Note. In the rest of the section we identify a formula of the form ~ ~ q 
with q. 

DEFINITION. An atom for p (or just atom when p is assumed) is a subset 
A of Z satisfying the following, for every (n, i, fi 6) e / / ,  q, r e  qs: 

if q e Z  then q e A c c . ~ q ¢ A  

i fq  v f e Z  then q v r e A c z . q e A  or t e A  

if ( q ? )  f e z  then (q?> r e A < ~ q e A  and t e A  

if (n, i,j, 6)  q e Z  then (n, i,j, 6> q e A c ~ e i t h e r  i= j  and q e A  or 
(6(i, k) >(n, k,j, 6> q e A  for some ke~ .  

Denote the set of atoms for p by At(p); clearly IAt(p)l <~ 2 °~lpl). 

Let there be given a fixed formula p e ¢P. Since we will' be interested only 
in formulas connected directly with some such given p, we assume, without 
loss of generality, that ¢o and H o consist solely of the atomic formulas and 
programs appearing in p. A particular finite structure d = ( W, ~, p) is con- 
structed in steps as follows: 

d o  = ( Wo, Zo, Po) is defined by 

Wo= At(p), 
~o: qSo --* 2 W°where, for each P e ,bo, A e %(P)iffP e A, 

Po: Ho --* 2 w°× Wo where, for each a e Ho, (A, B) e po(a) 

ifffor every [a]  q e A we have q e B. 
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We extend P0 to H in the usual way. In the following we use a special 
extension of Po to /7o  w Z? w {(n, i,j, ~)} (where (n, i,j, 6) is an automaton 
over H o u Z ? ) .  This extension, denoted p; ,  is defined in the usual way 
except for the definition for test programs: 

p ' o ( q ? ) = { ( A , A ) [ A E W o ,  q ~ A }  for q ~ Z  

(rather than {(A, A)] A E W o, d o ,  A ~ q }  ) 

For i~>0 let sCi+l = (Wi+l,  Zi+l, Pi+l) be given by 

W~+~ = {A [ A t  Wi and for every ( ~ )  q ~ A ,  where c~ ~ H, 

q ~ ~, there is B e W~ such that (A, B) e p'i(cQ and 

q e B }  

~i+ I(P) = zi(P) c~ Wi+ 1 for P e 4 o 

pi+m(a)=pi(a)~(Wi+ l x Wi+l) for a ~ Ho, 

and PI+I denotes the special extension of Pi+ 1 defined similarly to p;. 
Clearly, from the finiteness of At(p)  there is some i0 where the construc- 

tion closes up; i.e., for every j > i o, d ;  = d~0. Accordingly we set 

W = (IV, ~, p ) =  (We0, rio, P~0)= di0. 

The transition from W/ to Wi+l is meant to bring the model one step 
closer to a final one by deleting states which do not keep "(c~)-promises" 
for any c~. Clearly, the deletion of some states in one such stage can cause 
new "promises" to be violated, necessitating additioned stages. (The p'i vs. 
p~ part is a technicality needed for dealing with tests that involve 
programs.) 

Remark. Since I Wo[ ~<2 °(Ip4), and the computation of d i+~  is clearly 
polynomial in the size of IV,., it follows that the structure d can be com- 
puted in time exponential in the length of p. 

The following lemma connects the two roles played by an atom in W: 
that of a set of subformulas of p and that of a state in d .  

LEMMA 1. For every A ~ W and q ~ CL(p), 

q ~ A  iff d , A ~ q .  

Proof The claim is proved by induction on the structure of q: 

q = Q ~ o :  Q ~ A ' c ~ A ~ z o ( Q ) o A ~ z o ( Q )  ~ W ~ A ~ z ( Q ) , c ~ A ~ Q .  

q = -1 r : ~  r~A,~rdiA~=~(ind, hyp.) A I~ r , e ~ A ~  r. 
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q = r v  s : r v  s E A ~ r e A  v seA.~,,(ind, hyp.) A ~ r v  A ~ s c ~ , A ~  
r v s .  

q = ( ~ ) r .  

To prove this we prove the following claim: 
For every A e  W and ( f l ) s e C L ( p ) ,  ( f l ) s e A  iff there is Be  W such 

that (A, B) e p(fl) and s e B. 
Suppose ( f l )  s eA ,  then by the construction of d ,  ~Be W, (A, B)ep'(fl) 

and s e B. We show that 3B e W, (A, B)e  p(fl), and s e B, for the possible 
forms of fl: 

fl = b e f/o: by the definition of p, (A, B) e p'(b) ~ (A, B) e p(b). 

f l=u?eZ?:  by the definition of atoms ( u ? ) s e A ~ u e A A s e  
A ~( ind .  hyp.) A ~ u  and s e A  ~ (A, A)ep(u?) and seA .  

f l = ( n , i , j , f ) : ( A , B ) e p ' ( n , i , ~ 8 )  and s e B ~ c r e L ( n , i ,  LS),  
a = ( ~ r 0 " ' a k _ l ) ,  ~ r l e / / o u Z ?  for O<.I<k and 3(Ao ..... Ak), Ao=A,  
Ak=B,  (At, At+l)ep'(crt) for O<~l<k. By the first two cases for fl, 
(Al, At+l)ep'(at) implies (Ai, Al+l)ep(at) for O<~l<k hence 
(A, B) e p(fl) and s e B. 

For the "if '  part we proceed as follows: 

f l=be l lo :  Assume ( b ) s C A .  By the definition of an atom 
( b )  s e A, i.e., I-b] --7 s e A. Now if (A, B) e p(b) then by the definition of 

p we certainly have (A, B) e po(b), from which, by the definition of P0 and 
the fact that [b] - l s e A  we obtain -TseB, or s~.B. 

fl = u?:3B((A,B) ep(u?) /x s ~ B )  ~ ((A,A) ep(u?)  /x s ~ A )  
( A ~ u A s e A ) ~ ( m a i n  ind. hyp.) ( u e A A s e A ) ~ ( u ? ) s e A  by the 
definition of atoms. 

f l = ( n , i , j ,  8 ) :3B( (A ,B)~p(n , i , j ,  8 ) / x s ~ B ) ~ 3 ( i o  ..... ik), io=i, 
ik =~L 3(Ao,..., Ak), Ao= A, Ak = B, s.t. (A t, At+ l)e p(8(it, it+l) ) for every l, 
O<<.l<k. We prove that (n, i,j, 8 ) s e A  by induction on k. 

For k = 0 : i = j ,  A = B, then by the definition of atoms sEA implies 
(n, i , i ,  8 ) s E A .  

Suppose the claim is true for k. Then for k +  1: (n, io, ik+l, 8)  se  CL(p) 
implies that (8(io, i l ) ) (n,  i~, ik+ 1 ,8)  s e CL(p) and hence 
(n, il, ik+l, 8 )  seCL(p) .  Since (A1, Ak+l)ep(n,  il, ik+l, 8), it follows 
from the induction hypothesis on k that (n, il, i~+~, 6 ) s e A 1 .  Now by 
8(io, i~)~HoW¢'A? and the first two cases for fl we obtain 
(8(io, il ) ) ( n, il, ik + ~ , 8)  s ~ Ao and this implies by the definition of atoms 
that (n, io, ik+l, 8 ) s  e A. This completes the proof of the claim. 

Back to the main proof: clearly a straightforward argument shows that 
since ( ~ ) r e C L ( p )  also rECL(p) ,  and so the induction hypothesis for r 
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can be used, ( ~ )  r~A,c~(by the claim) 3B~W((A,B)~p(c 0/x rEB),~, 
(ind. hyp.) 3Be W((A, B)~p(~) /x B~r)cc, A ~ ( ~ )  r. | 

We now introduce an axiomatic system for APDL. 

Notation. for k, I~t~ we write "6(k, l)$," for "6(k,'l) is defined". For 
k~t~ we denote by O(k) the set {l[ left, 6(k, l) $}. 

Our axioms (A4) and (A5) (Table I) are very similar to axioms (G1) and 
(G2), respectively, of Wolper (1983, p. 82). Axiom (A4) states that the 
possibility of starting at state i and reaching state j with p true is equivalent 
to that of starting at i and reaching some immediate successor k of i and 
then from k reaching j with p true. The induction axiom (A5) says that if 
one has chosen a set {p~} of assertions, and has shown that (i) Pi is true at 
state i, and (ii) the truth ofpk at some state k (reachable from i) implies the 
truth of Pl at any successor l of k, then he has in fact established that pj is 
true when j is reached from i. Thus, axiom (A5) formalizes Floyd's induc- 
tive assertions method for proving partial correctness; the pz are the induc- 
tive assertions. 

It is easy to establish the following two derived rules: 

Invariance (I): 

pi ~ In, i,j, 6] pj 

(apply (G) with [n, i, k, 6], then (MP) with (A5)). 

TABLE I 

Axiom schemes: 

(A1) All instances of tautologies of the propositional calculus. 
(A2) (c~)(p v q)--- (c~)p v (c~) q 
(A3) (p?)  q=-p/x q 
(A4) (n, i,j, 6)  p=-- Vk~,,,,~l~,k~ (6(i, k))(n,  k,j,  6)  p, for i ~ j  
(A4') (n, i, i, 6 ) p =-p v Vk~n,s(i,k)~ (6(i, k)) (n, k, i, 6 ) p 
(A5) (Induction axiom) 

(/~kJ~.Slk.Ol In, i, k, 6](pk = [O(k,/)] pt))= (pi= [n, i,j, 6] pj) 

(A6) [~] (p=q)=([a]p=[a]q)  

Inference rules: 

(R1) Modus ponens (MP) 
(R2) Generalization (G) 

(P,P~q)/q 
p/([c~]p) 
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Distribution (D): 

p ~ q  

(apply (G) with [~], then (MP) with (A6)). 

Provability of a formula p in the system is denoted ~--p. 

THEOREM 2. The axiom system is sound', i.e., for every p ~ ~, F--p => ~ p. 

Proof It is immediate from the definition of the semantics of APDL 
that all instances of axioms of the above system are valid and all rules of 
inference preserve validity. I 

DEFINITION. For a finite set A c qs, let A denote/~q~aq. 

The following lemma shows that non-atoms are provably inconsistent. 

LEMMA 3. Let A c Z, such that for q ~ Z either q e A or -7 q ~ A. I f  
A 6 At(p) then ~---~ A. 

Proof If A does not satisfy the first property of an atom, namely 
qeA~:~ - 7 q 6 A  then there will be some qEA with - 7 q e A .  One then 
proves -73 by (A1, MP). Assume, therefore, that qEA,~.-7 q6A  for every 
q eZ.  For each of the three remaining properties of an atom it is 
straightforward to show how a violation causes a provable contradiction. 
We illustrate this with the (n, i,j, 6 ) q  property for i¢ j :  Assume (n, i,- 
j~ 3 )  q e A  but (6(i, k ) ) ( n ,  k,.L ~) q¢A  for every k s.t. 6(i, k)~,. Hence by 
our assumption 7 (6(i, k ) ) ( n ,  k,£ 3 ) q E A  for every k s.t. 3(i, k)$, hence 
we have by (A1)~---.4 ~ ( / ~ k ~  (3(i, k ) ) ( n ,  k,j, 3 ) q); hence also ~--A ~-7  

A 
(Vk~n(b( i ,k ) ) (n ,k , j ,  6)q),  and with (A4), ~-- -A~7(n , i , j , f )q .  But 
( n , i , j , f ) q e A ;  so ~---A~(n,i,j, 6)q .  Hence ~----7 j .  I 

C O R O L L A R Y  4.  

Proof Let 

For every qcZ ,  E~_At(p), 

A e A t ( p )  
q E A  

A E E  - -  " 7  " 
B ~ A t ( p  ) --  E 

V= {A [ A ~ Z ,  V q E Z ( q e A  v T q e A ) } .  

(1) 

(2) 
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Then clearly 

b---- q= V 4). 
A e V  
q ~.4 

But by Lemma 3, if A e V -  At(p) then ~ -7 A. Thus 

q ~ A  

Also ~ VA~ v 4 and for similar reasons actually, ~--~/AeAt(p)A. Now if A, 
B e V, A 4 = B, then clearly ~ ~ (4 A/~), from which we have 

B~ At (p ) - -  E B~  At (p) - -  E 

From this it is immediate that 

B e A t ( p )  E 

The following is the main technical lemma needed in the proof, which 
says that for every formula (e>  q e C L ( p )  and atom A eAt(p), 4 implies 
that after every c~ execution/~ is true for some B such that (A, B) e p;(c~). It 
follows that if for every B, (A, B)ep'o(a) implies that q~B then ~---4~ 
[~] 7 q .  Hence for A with (c~> qeA  we conclude that ~ 4  is provable, 
which justifies the rejection of A from the set of states of the constructed 
model. 

LEMMA 5. Let AeAt(p)  and (c~) qeCL(p) then 

~ 4 ~  [~] ((A,B)V ~(~) B )" 

Proof We prove the claim for the three possible forms of ~: 

= a e H o. Clearly by Corollary 4 (2) it suffices to show 

(A B)~  po(a) 

or, using axiom (A2) and the finiteness of At(p), that w--4~ [a] -7/~ for 
every B such that (A, B) ~ p'o(a). For such a B, by the definition of p;, it 
must be the case that there is some [a] r eA with ~ r e B .  Hence 
~---4~[a-lr and ~ - - / ~ r  or ~--r~-7/~. Using (D) we obtain 
~-- 4 ~ [a] -7/~. 
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~ = r ? ~ Z ? .  Tautologically, ~ - - A = - l ( r  A ~ A ) ,  thus by axiom (A3) 
~ A = ~ < r ? > ~ A ,  or ~ 3 = [ r ? ] J .  Since ( r?>q~CL(p)  we have 
r 6 CL(p). If r ~ A then by the definition of p'o(A, A) E p~(r?) and hence A is 
a special case of the required disjunction. If r q~ A then ~---A = ~ r and hence 

Thus the claim follows for both cases. 

= (n, i,j, `5). For each k s ~  denote by Pk the formula: 

(A,B) ~ pb(n,i,k,6) 

We show first that for each k s  ~ and l~ O(k) 

~---p~ ~ [`5(k,/)] Pl. 

If (n, i,j, `5) q s C L ( p )  and k e ~  is accessible from i then by induction on 
the length of the run from i to k, it is easy to prove that <n, k,j, 6>qe 
CL(p) and hence for every l s  O(k), (`5(k, l ) ) (n ,  l,• 6 ) q ~ C L ( p ) .  Hence 
for every atom B, by the first two cases of this lemma for `5(k, l) ~ Ho u Z? 
we obtain 

~-- ~ ~ [ ̀ 5(k, l) ] ((B,c)~Y6(~ik,,) C ) .  (3) 

If (A, B) ~ p'o(n, i, k, ,5) and (B, C) s p'o(`5(k, l)) then (A, C) ~ p'o(n, i, l, fi) 
which together with (3) implies 

~ 9 =  [`5(k, l)] p,. (4) 

Hence, since (4) holds for every /~ in the disjunct defining Pk, we obtain 
that for every k s~  and Is  O(k): 

~ - p ~  [`5(k, l)]p,. 

By the invariance rule (I) this implies 

~----pi~ [n, i,j, `5]py. (5) 

As (A, A )e  p'o(n, i, i, 6), .~ is a special case of the disjunct defining Pi, thus 

~-2=pi .  (6) 
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By (5) and (6) we conclude 

~--.dD[n,i,j, 6 ] (  V B)" ' 
(A B) c po(n td6) 

C O R O L L A R Y  6. Let A eAt(p) and (~) qECL(p)  then 

w - - ~  [c~] (-n q v V /~). 
q • B  

(A,B) e p6(c() 

Proof We can rewrite the claim in Lemma 5 as 

~ q e C ,  q ~ B  
(A,C) ~ p6(~) (A,B) ~ p6(~) 

For every C in the left disjunct we have ~- - (~-7  q, hence the claim 
follows. | 

We now show that not only non-atoms but even atoms are provably 
inconsistent, if they are rejected from being states in ~'. 

LEMMA 7. For every A eAt(p), if A ~ W then ~---~ A. 

Proof The lemma is proved by induction on the order in which atoms 
are rejected from W. The proof uses the claims in Lemma 5 and 
Corollary 6 for p'i, i ~> 0. Thus we prove the following for every i ~> 0: 

(1) ifAq~W i t h e n ~ - - ~ 3  

(2) i f A e  Wg and <~) q e C L ( p )  then 

For i = 0  clause (1) holds since Wo= At(p), and (2) holds by Lemma 5. 
Suppose clauses (1) and (2) hold for i. Let A ¢ Wi+l, then there must be 
some ( ~ ) q ~ A  such that for every Be W i, (A, B)ep~(e) so that q(EB. By 
the induction hypothesis, exactly as in Corollary 6, we have 

q c B ,  B c  Wi 
(A,B) • p~(cQ 

But by the assumption the right disjunct is empty. We are left with 
F - - ~ ] ~ [ ~ ] - l q  or ~ - - ~ ] ~ < ~ ) q .  However, since <~)q~A, we have 
~--~]~ <~) q from which at once we obtain ~---~ ~]. 
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To prove clause (2) for i + 1, assume first that e ~ H o w Z?, then by the 
induction hypothesis we can rewrite clause (2) as 

(A ,B)ep~+l(a)  C¢: W~+I 
( A,C) ~ yi(oQ 

By clause (1) we have for each C in the right disjunct ~---7 d, hence clause 
(2) holds for ~eHouZ? .  For c~= (n, i,j, 6) the claim now follows exactly 
as in the proof of Lemma 5. | 

COROLLARY 8. p is satisfiable iff p e A for some A ~ W. 

Proof One direction is obvious by Lemma 1. Let it now be the case 
that for every A such that p • A, A ¢ IV. Then by Lemma 7 ~-- mp ~ A ~ A, 
or ~---7 Vp ~ A A, which by Corollary 4 (1) yields ~-- 7 p. Hence p cannot be 
satisfiable without violating Theorem 2, the soundness of the axiom 
system. | 

THEOREM 9. The axiom system is complete; i.e., for every pc  qs, 
P p = ~ p .  

Proof I f  ~ p then -7 p is not satisfiable, hence for each A e W, ~ p ¢ A. 
This means, together with Corollary 4 (1), that w-- 7 p = V ~p ~ A,A ¢ w A. 
But by Lemma 7, ~--7  VA ~ w A. Hence ~---p. | 

THEOREM 10. Validity in A P D L  & decidable in determin&tic exponential 
time. 

Proof By Corollary 8 p is valid if -7 p ¢ A for each A e W. As discussed 
above, the construction of W can be carried out deterministically in time 
2°~lPll. I 

4. EXTENSIONS OF A P D L  

Some extensions of A P D L  can be shown to be exponentially decidable 
and complete by modification of the proofs in Section 3. 

(1) Deterministic APDL, D A P D L  for short, is syntactically identical 
to A P D L  but the structures d = (W, z, p) are restricted so that for every 
a~Ho if (s, t)ep(a) and (s, t ')ep(a) then t =  t'. To prove that D A P D L  is 
exponentially decidable we change the definition of Po for ~o to be: 
(A, B)epo(a) iff for every ( a )  qeZ ,  ( a )  q e A  iff qeB. 

The proof  of Lemma 1 follows now as for APDL, except that we then 
have to show that the final structure s¢ = (W, ~, p) can be "unwound" into 
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a tree like deterministic structure as in the decidability proof for D P D L  in 
Ben-Ari, Halpern, and Pnueli (1982). 

For a complete axiomatic system the following axiom is added to those 
of Section 3: (A7) ( a>  p ~  [a]  p. 

The proof of Lemma 5 for the case e • H o is now as follows: for every B 
such that q • B, (A, B) (! po(a) it must be that either there is some [a ]  r • A 
with -Tr~B and hence ~--~]= [a]  7/~,  as in the proof of Lemma 5, or 
there is some ( a )  r • A with ~ r • B and hence ~--A ~ ( a )  r and ~--r ~ ~/~. 
By axiom (A7) it follows that ~---A= I-a] r and using (D) w - j ~  [a ]  -7/~. 

(2) APDL with converse (or reverse), CAPDL for short. This ver- 
sion of APDL allows converse programs c~ which have the meaning 
p(c~ ) = {(s, t) ] (t, s) • p(e)}. Formulas of the form ((n, i,j, 6 ) -  > q can be 
translated to (n,j, i, 3') q, where 6'(k, l )=  (6(l, k ) ) -  for every l, k • ~  such 
that 6(l, k) is defined. Hence we can translate CAPDL formulas into for- 
mulas such that the only programs that appear with converse are atomic 
programs (note that p? =p?).  The definition of the structure su¢ is exten- 
ded as follows: H;  now consists of the atomic programs and reverse atomic 
programs that appear in p, and the definition of p;  is extended for b e H;  
by: (A, B) • p'o(a) iff 

(a) for every [a]  q • A  we have q • B  

(b) for every [a ] q E B w e h a v e q • A .  

In addition, (A, B) ~ p'o(a- ) iff 

(a)' for every [a ] q • A  we h a v e q • B  

(b)' for every [a]  q • B  we have q•A .  

For the final structure sJ, p is defined by: For  a • Ho, p(a)= p'(a)u 
{(s, t) l ( t , s ) • p ' ( a ) } .  The proof of Lemma 1 follows now as for APDL. 
To obtain a complete axiom system for CAPDL we add the axioms (A7) 
p = [ a ] ( a  ) p a n d  ( A 8 ) p = [ a - ] ( a ) p .  

The proof of the first part of Lemma 5 is changed as follows: Let 
(a )  q~A. For B with q•B ,  and (A, B)q~po(a ), either there exists some 
[a]  r • A with -7 r • B, which implies ~-A = [a]  -7/~, or there exists some 
[a ] r • B  with -nr •A ,  which implies F---/~=[a ] r ,  and hence 
~--(a ) - 7 r ~ - 7 / ~ .  By (D) it follows that ~ - - [ a ] ( a _ ) T r ~ [ a ] - 7 B .  
Now by ~---,4= ~ r and axiom (A7) it follows that ~---A= [a ]  7/~.  This 
yields the first part of Lemma 5. Axiom (A8) is used similarly for the case 
( a - ) q • A .  

(3) APDL with loop, LAPDL, is a version of APDL which allows 
assertions of the form: "there exists an infinite computation of c~ from a 
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state s." Formally: for a structure s~ = (W, z, p) formulas of the form loop 
(n, i,j, 6) have the meaning: 

z ( loop(n ,  i , j ,  6 ) )  = {s  ] 3(io,  il, . . .),  io = i, Vk  >~ 0 ik E ~ A 

3(So, s l  ,...), So = s, Vk  >>. 0 s~ e W A 

(Sk, Sk + 1) e p(c~(ik, ik+ 1)), Vk i> 0}. 

The corresponding version of PDL, LPDL or PDL ÷, is discussed in 
(Harel and Pratt, 1978; Streett, 1982). The best known decision procedure 
for LPDL is of triple-exponential complexity (Streett, 1982). No com- 
pleteness result has been obtained for LPDL. By using the representation 
of programs as automata and extending the ideas used in this paper, the 
second author together with Pnueli have provided LAPDL with an 
exponential time decision procedure for validity and a simple complete 
axiomatic system. Clearly these results, which will appear separately, imply 
corresponding results for LPDL. 
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