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1. Introduction

1.1. Background

In the early 1960s Hao Wang introduced domino tiling problems [17]. Since then,
these problems have been extensively investigated and have appeared repeatedly in
the literature. A domino, or a tile, is a unit-sized square, fixed in orientation, with
colored edges. The type of a tile is the quadruple containing the colors associated with
its right, upper, left and lower edges, respectively. A finite set of tile types is called
a tiling system. In general, a tiling problem is a decision problem that asks, given
a tiling system T={dy, ...,d, }, whether or not it is possible to tile some portion P of
the integer grid G=% x & with dominoes (supply unlimited) taken from among the
types in 7. The rules of tiling are that each grid point of P is to be associated with
a single domino type from T, and that adjacent edges are to be monochromatic.
Constraints on the placement of certain dominoes, colors or combinations thereof
may also be added to the rules.

The problems introduced by Wang are characterized by the fact that the portion of
G to be tiled is unbounded; it may be G, the entire grid itself, a half-grid, a quadrant,
and the like. These problems are I1{-complete (i.c. when considering levels of unde-
cidability, they reside in the co-r.e. level, at the base of the arithmetic hierarchy [14]).
Other tiling problems, concerning tiling of bounded portions of the grid G, were
considered by Lewis [11] and shown by him to be decidable, and complete in various
complexity classes such as NP and PSPACE. Recurring tiling problems, characterized
by the requirement that a designated domino or color occur infinitely often in the
tiling, were introduced by Harel [7] and shown therein to be X L_complete (i.e. they
reside at the base of the highly undecidable analytic hierarchy [14]).
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Undecidability proofs for the unbounded cases are usually based on reductions
from the halting problem for Turing machines. Hardness proofs of the bounded cases
are also based on such reductions, where the machines are nondeterministic and are
bounded in time or space. The reductions are established by setting up a correspond-
ence between the machine’s computation and the tiled portion P of the plane. Each
tiled row of P corresponds to a legal configuration of the machine, and adjacent rows
correspond to legal transitions of the machine. Exceptions are the unbounded con-
straint-free versions of tiling problems (e.g. “can T tile G?”) which require a more
complicated correspondence [1,13]. Undecidability of the recurring versions is sim-
ilarly proved using reductions from Turing machines. Here the machines are non-
deterministic and the problem considered is the existence of an infinite computation
that reenters a “signaling situation” infinitely often [7].

Since tiling systems are strong enough to encode the computations of a Turing
machine in a relatively straightforward way, and since the geometric and combina-
torial structure of a tile is very simple, reductions from an instance of a domino tiling
problem to instances of other problems are relatively easy to construct and compre-
hend. Thus, tiling problems have turned out to be quite powerful for proving
undecidability and lower bounds on the complexity of various logical systems (see [6]
for a survey). Domino tiling problems have also been used as alternative basic
problems for reductions in the theory of NP-completeness [15, 16].

Less known is the family of tile connectability problems, or domino snake problems.
In general, such a problem asks, given a tiling system T and two points p,qe & x &,
whether the points can be connected within some portion P of the plane by a “domino
snake” built of the types in 7. A domino snake is a sequence of tiles on the plane
in which successive tiles are adjacent along an edge and touching edges are
monochromatic.

Connectability problems were investigated by Myers [12] and by Ebbinghaus
[2,3]. In 1979, Myers announced that the unlimited connectability problem (i.e.
whether two given points can be connected by a domino snake within the whole
plane) is decidable [12]. In contrast, Ebbinghaus [2] proved in 1982 that the problem
becomes undecidable if instead of the whole plane, a half-plane or a quadrant is
considered.! This difference in the solvability of the unbounded cases according to the
portion of the plane has no analogue in the classical tiling problems, where one has
undecidability in all cases.

A resemblance between snake problems and tiling problems was found by
Ebbinghaus in the context of bounded snake problems, in which the allowed portion of
the plane is bounded [3]. In analogy to the bounded tiling problems, which are
complete for NP and PSPACE (for a square and a rectangle, respectively), Ebbing-
haus showed that the corresponding bounded snake problems are also complete

! Ebbinghaus’s result was actually obtained as a consequence of his undecidability proof of the strict
connectability problem, where the snake must begin with a certain domino type placed at point p.
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for these classes. An extension to infinite snakes also appears in Ebbinghaus’s later
paper [3].

Other applications of snake problems have recently appeared in connection with
domino games [5] and the uncertainty principle for physical systems [10].

1.2. Overview of the paper

The two main goals of this paper are (i) to provide a full proof of the decidability
result, and (ii) to investigate additional analogies and differences between domino
snake problems and classical tiling problems. We survey existing results and address
a sequence of additional variants of snake problems. Our results are divided into those
for finite snakes (Section 2), and infinite snakes (Section 3).

Sections 2.1-2.3 deal with the decidable cases of finite snake problems. In Section
2.2, we present the bounded versions of snake problems, adding to the cases of
a square and a rectangle, which are NP- and PSPACE-complete, respectively,
a fixed-width rectangle version, which admits a polynomial-time algorithm. In Section
2.3, we prove the surprising result, to the effect that the general snake problem in the
whole plane is decidable. This result was announced in 1979 [12], but a proof has not
yet been published. Indeed proving it turns out to be quite a delicate task, and our
proof in Section 2.3 contains some rather technically involved combinatorial/geomet-
rical arguments. The decidability of another case, where the portion of the plane is
limited to an infinite strip, is also proved at the same time.

Sectionis 2.4 and 2.5 deal with undecidable cases of finite snake problems. We
consider versions of the strict connectability problem and a sequence of snake
problems in various portions of the plane, showing them all to be undecidable.

The decidability of the unlimited connectability problem and the fact that the
problem becomes undecidable for a half-grid or a quadrant, raise the question of the
precise borderline between decidable and undecidable unbounded snake problems.
Since all the reasonable variants we consider in the paper turn out to be undecidable,
including the case in which only a single point of the grid is removed, we have come to
believe that decidability in the whole plane is essentially a remarkable exception.

Section 3 deals with infinite snakes. In Section 3.2, we consider the problem of the
existence of an infinite snake within a strip of fixed width. We prove this problem to be
decidable by extending the proof techniques of Section 2 for finite snake problems.
Sections 3.3 and 3.4 deal with strict versions and recurring versions of infinite snake
problems in various portions of the plane. In analogy to the classical tiling problems,
recurring versions of infinite snake problems are shown to be highly undecidable.

Figures 13 and 14 in Section 4 summarize the results.

1.3. Preliminaries

We regard a point geZ x 2 as a unit square in the plane with center g. Given
a tiling system T and a portion of the plane, P< % x &, a T-tiling of P is a function,



On the solvability of domino snake problems 247

7: P— T, assigning to each grid point ge P a tile type t(q)e T, such that adjacent edges
are monochromatic. If 7 is clear from the context, we sometimes speak simply of
a tiling instead of a T-tiling.

We are interested in special portions of the plane, called snake skeletons. A snake
skeleton is an ordered sequence (go, - .-, §n)€(Z X Z)", such that foreach 0<i<n—1,¢;
and g; ., are adjacent. Given a tiling system T, a T-snake is a snake skeleton S together
with a function, o:S— T, assigning to each skeleton point g;€S a tile type a(q;)eT,
such that for each 0<i<n-1 the adjacent edges of a(g;) and o(g;+) are monochro-
matic. Note that if ¢;=g; for g;, q;€S, then o(q;)=0(q;). A T-snake connecting p and q,
where p, ge Z x &, is a T-snake with the additional requirement that go=p and g,=4.
Given a T-snake g, we use S, to denote its skeleton. Here again, if T is clear from the
context, we speak of snakes instead of T-snakes.

Remark 1.1. The definition of a T-snake is liberal when it comes to distant parts of the
snake that happen to “touch”: when two tiles that are not consecutive in the skeleton
sequence have adjacent edges in the plane, a T-snake does not require these edges to
be monochromatic. Hence, a T-snake is not quite a tiling of the skeleton in the usual
sense of tiling portions of the plane. The more constrained version in which every two
adjacent tile-edges have to be monochromatic is called a strong snake in [4]. These
were the snakes considered in [12]. It turns out that there are simple reductions
between the two kinds of snakes, which the reader is invited to devise. Thus, it is
possible to show that all the results of the paper hold for strong snakes too.

Problem 1.2 [The general snake (connectability) problem]. Given a tiling system
T and two points p and g in some portion P of the plane, is there a T-snake
o connecting p and g whose skeleton S, lies entirely within P (ie. S,< P)?

Note: We shall often say informally that ¢ lies within P, instead of saying that its
skeleton S, does.

2. Finite snakes

2.1. Directed snakes

We start with definitions of directed and fully directed tiling systems over T. Given
T, define the directed version T to be a new tiling system of size 4 x | T'|. For each teT,
T contains four tile types ¢, t.,4,t;, which are copies of ¢ with the corresponding
arrow in their centers (see Fig. 1(a)). The fully directed version T is defined to be a new
tiling system of size 12 x| T'|. Here, for each teT, T; contains 12 tile types, which are
copies of t with 12 kinds of arrows in their centers. The arrows are directed according
to the 12 possible combinations of an ordered pair of different tile edges (see Fig. 1(b)).
(Obviously, these versions can be obtained from the usual ones by using extra colors.)
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Fig. 1. Directed and fully directed tiling systems over T.

A directed snake over T, or simply a T-snake, is an ordinary T-snake ¢ when the
arrows are disregarded, and, in addition, for every pair of consecutive points ¢; and
g+ in the skeleton S,, the arrow in o(g;) is directed towards the edge adjacent to q; 4+,
(see Fig. 2(a)) The direction of the arrow in o(g,) is arbitrary. A fully directed snake
over T, or a Ti-snake, is a T-snake ¢ when the arrows are disregarded, and, in addition,
for every three consecutive points g;_;, ¢; and ¢;+, in the skeleton S,, the arrow in
o(g;) is directed from the edge adjacent to g;-, towards the edge adjacent to ;. (see
Fig. 2(b)). For g, the source of the arrow in a(qgo) is arbitrary, and for g, the target of
the arrow in o(g,) is arbitrary. Notice that the skeleton S of a (fully) directed snake

cannot include loops (i.e. for all g, g;€S, g:=g; iff i=j).
The following claim is immediate.

Claim 2.1. Given a tiling system T and two points p,q in some portion P of the plane,
there is a T-snake connecting p and q and lying entirely within P iff there is a T-snake
directed from p to q and lying entirely within P iff there is a Ti-snake fully directed from
p to q and lying entirely within P.

Hence, when considering specific snake problems, we can assume that tiling systems
and snakes are (fully) directed.

2.2. Bounded connectability problems
For any pair of natural numbers (n, m), let P,,, denote the rectangle

{(x,y)|0<x<n, 0<y<m).
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(a) (b)

Fig. 2. Directed and fully directed snakes over T.

Problem 2.2 (Connectability in a square). Given a tiling system T'and ne./" (in unary),
is there a T-snake connecting the points (0,0) and (n,0) and lying entirely within the
square P,,?

Problem 2.3 (Connectability in a rectangle). Given a tiling system T and ne A" (in
unary), is there some me.4" and a T-snake connecting the points (0,0) and (n,0) and
lying entirely within the rectangle P,,?

Problem 2.4 (Connectability in a fixed-width rectangle). Let k be a fixed natural
number that is not part of the input. Given a tiling system 7 and ne.#" (in unary), is
there a T-snake connecting the points (0,0) and (k,0) and lying entirely within the
fixed-width rectangle P;,?

These problems are the “snake versions” of classical bounded tiling problems, ie.
the square tiling problem, the rectangle tiling problem and the fixed-width tiling
problem (see e.g. [8, 11]). The complexity of Problems 2.2 and 2.3 was investigated in
[3]. In analogy with the square tiling problem and the rectangle tiling problem which
are NP- and PSPACE-complete, respectively, we have the following theorem.

Theorem 2.5 (Ebbinghaus [3]). Problem 2.2 is NP-complete; Problem 2.3 is
PSPACE-complete.

As in the tiling analogues, simulations of Turing machine computations are used in
all the proofs; the coding methods, however, vary. While combinations of colors were
used for coding in the classical tiling problems, geometric shapes are used here.

To complete the picture, we have considered the connectability problem in a fixed-
width rectangle (Problem 2.4). This problem admits a polynomial-time algorithm that
is based on a reduction to a polynomial-time procedure for checking the existence of
a tiling of a fixed-width rectangle. Hence, we first include a polynomial-time algorithm
(whose existence was mentioned in [8]) for the latter case.
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Problem 2.6 (Tiling a fixed-width rectangle). Let k be a fixed natural number that is
not part of the input. Given a tiling system T and ne # (in unary), is there a T-tiling of
the fixed-width rectangle Py,?

Theorem 2.7. Problem 2.6 admits a polynomial-time algorithm.

Proof. Consider a “slice” of P,,, i.e. a segment of width k and height 1. There are at
most | T|* possible ways to legally tile such a slice. Now, construct a directed graph
G =(V, E), whose set of vertices V corresponds to the set of all legally tiled slices. There
is an edge from v to u, iff the tiled slice of u can be legally attached above the tiled slice
of v. Note that the question of the existence of a legal tiling of P,, is exactly the
question of the existence of a directed path of length n in G. This question can be
solved using the following polynomial-time algorithm: First, we check if the graph
contains a cycle (applying, for example, a DFS procedure). If there is a cycle, then
G contains a directed path of any length, in particular a path of length n. Otherwise,
G is a directed acyclic graph, and the existence of a path of length n can be easily
checked (applying, for example, a BFS-like procedure to each vertex ve V). [

Theorem 2.8. Problem 2.4 admits a polynomial-time algorithm.

Proof. We reduce the problem to a certain kind of tiling problem for a fixed-width
rectangle.

First, assume that snakes are fully directed and let us work with the fully directed
version T over the given tiling system 7. Now, consider a tiling of the rectangle using
the types of T; and an additional blank type (i.e. the type of a white tile containing no
arrows). Rules of tiling are that two edges may be adjacent if and only if one of the
following holds:

(1) One of the edges includes the head of an arrow, the other includes the tail of an
arrow, and they are monochromatic.

(2) Neither of the edges includes the head or tail of an arrow (and there is no
restriction on the coloring).

Adding boundary conditions that force the bottom-left and bottom-right edges of
the rectangle to include, respectively, a starting arrow and a terminating arrow of
a directed snake (and other boundary edges are arrow-less), ensures that a legal tiling
of the rectangle Py, exists if and only if there is a T-snake connecting (0,0) and (k, 0)
within P,,. O

2.3. The unlimited case

Problem 2.9 (Unlimited connectability). Given a tiling system T and two points
p,qe% x %, can p and g be connected by a T’ -snake?

For ease of exposition, we first address a simpler case of the problem, where the
portion of the plane is limited to an infinite strip of fixed width. This case can also be
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treated as a separate result, since it is not implied by, nor does it directly imply,
decidability of the general unlimited case.

2.3.1. Connectability in a strip
Let S, denote a strip of width k on the grid & x Z. Without loss of generality,
assume S,={(x,y)| 1 <x<k}.

Problem 2.10. Given two points p,qeS, and a tiling system T, is there a T-snake
connecting p and g and lying entirely within S,?

Theorem 2.11. Problem 2.10 is decidable.

Proof. First, note that if such a snake exists, there is one of minimal length, call it o,,.
The basic idea of the proof is to use the properties of the minimal snake to bound its
length by a recursive function of the size of the input. One can then run through all
possible snakes up to that length to decide if any snake exists.

Throughout this proof, we work with the directed version T of the given tiling
system and assume that the minimal-length snake o, is directed from p to q.

Consider the “slices” of S,, i.c. all segments of width k and height 1. We identify
a slice by its y coordinate, hence, for a fixed y,, the slice {(x,yo)| 1 <x<k} is referred
to as yo. A slice is termed relevant if its intersection with the skeleton S,_, is not empty.
Note that the number of possible ways that a relevant slice can contain tiles from the
minimal snake ¢, is bounded by (1 +| 7))

Claim 2.12. Let p=(x,,y,) and q=(x,,y,). All the relevant slices of Sy are contained in
the rectangle

(%, Y)ES, | min(y, ) — (1 +1 T <y <max(yp, y) + 1+ T}

Proof. Assume S, is tiled with the minimal snake o,,, and assume the claim is false.
There must be two relevant slices that are identically tiled and are both placed either
above or below p and g. Without loss of generality, we can take y, >y, >max(y,, y,)
as two identical slices. We use the arrows inside the tiles to simulate “travelling” along
the skeleton of the snake, starting at p. However, whenever we have to enter a point
above y;, we continue from the corresponding point above y., and whenever we have
to enter a point in y, from above, we continue from the corresponding point in y;.
Since the original “tour” was a legal snake leading from p to ¢ within S;, the new,
truncated, one is also legal. Hence, “shifting” the slice y, and everything above it down
to y;, and eliminating the portion between y, and y,, yields a shorter snake that
connects p and g (see Fig. 3). This contradicts the minimality of the original snake, and
completes the proof of the claim. [
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Fig. 3. “Shifting” the slice y, and everything above it to y,, eliminating the portion between y, and

y, altogether, yields a shorter snake that connects p and g. Note that there can be cases that are more

complicated than the one illustrated here. For example, the cutting and pasting can introduce isolated
“loops”. However, the result will always include a shorter snake that connects p and q.

Proof of Theorem 2.11 (conclusion). Theorem 2.11 now follows, since the length of the
minimal snake connecting p and g is bounded by a simple recursive function of the size
of the input (i.e. the distance between p and g, the cardinality of 7 and the width k of
the strip). O

Corollary 2.13. Problem 2.10 is PSPACE-complete.

Proof. The proof of Theorem 2.11 actually implies that there exists a snake connect-
ing p and g within S, if and only if there is such a snake within a finite part of the strip
whose height is exponential in the size of the input. Using the same trick used in the
proof of Theorem 2.8 to reduce the question of the existence of a snake to the question
of the existence of a tiling (where the rules of tiling are changed accordingly), one can
solve the problem using a simple recursive PSPACE procedure. Hardness is achieved
using the reduction from a space bounded Turing machine presented by [3] in the
proof that the connectability problem in a rectangle is PSPACE-hard. [

Theorem 2.11 can be strengthened by considering strips having curved borderlines.
Call such a strip a corridor. Formally, a corridor of width k, denoted Cy,is a portion of
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the plane, where for any fixed yo, there is some integer x' and a single slice
(%, y0)|X' +1<x<x' +k} S Cy.

Problem 2.14. Given two points p,geZ x &, a tiling system T and an integer k (in
unary), is there a T-snake connecting p and g such that its skeleton lies within some
corridor of width k?

Theorem 2.15. Problem 2.14 is PSPACE-complete.

Proof. The proof is essentially the same as that of the strip case in Theorem 2.11 and
Corollary 2.13. O

Theorem 2.15 holds even for corridors with a slanted base line (as opposed to the
horizontal base line used implicitly in the previous definition of Ci). A corridor of
width k with respect to the base line ! is a portion of the plane which contains for each
line I parallel to [, a single slice induced by a segment of length k. Generally, a slice is
the set of all unit squares whose interior intersects some given line or line segment.
Note that the “shifting mechanism” used in the proofs of Theorems 2.11 and 2.15 for
horizontal slices can also be used for “slanted slices” having the same shape and size.

2.3.2. The main theorem
Theorem 2.16. Problem 2.9 is PSPACE-complete.

Proof. At the heart of the proof is the same principle as in the proof of Theorem 2.11.
Again, we use the properties of the minimal-length snake connecting p and g to bound
its length.

Throughout the proof we denote by S the skeleton of a minimal snake from p to g.
Let S® be a duplicate of S in which the initial point is g. Denote its terminal point by
g:. Inductively, let S® be a duplicate of S&- ; with initial point g; - ;, and terminal point
g;. Similarly, define S¥ to be a duplicate of S with terminal point p, and denote by p; its
initial point. Again, inductively, S* is a duplicate of S}_; with terminal point »;_,, and
initial point p;. See Fig. 4.

Lemma 2.17. S has no self-intersections.

Proof. This is trivial. Simply delete the “loop” at an intersection point to obtain
a shorter snake, thus contradicting minimality. [

Lemma 2.18. S has no intersections® with S or St.

2 Here, and in the sequel, snake intersections are assumed not to include the endpoints.
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Fig. 4. Duplicates of S from its right and left.

Proof. We prove the lemma for S§. Suppose ¢’ is an intersection point of S and S¥.
Since S® is a duplicate of S, there is a point p’ on S at the same relative position as
g on S} Formally, if p=(x,y,), 4=(x;¥,) and q'=(x,+Ax, y,+Ay), then
p'=(x,+Ax,y,+Ay). Since p’,q'eS, we can shift the entire segment of the snake
between p’ and ¢’ by —Ax in the x-coordinate and —Ay in the y-coordinate,
obtaining a shorter snake connecting p and g (see Fig. 5). Again, the minimality of § is
contradicted. O

Lemma 2.19. Let Q be the set of snakes consisting of S and all the St and SR. Then no
two members of Q2 intersect.

Proof, It suffices to show, by induction on n, that for any n>0, no sequence of
n successive members of Q contains an intersection point. For n=1 and n=2, the
result follows from Lemmas 2.17 and 2.18, respectively. Suppose that no sequence of
n>2 successive members of Q has an intersection point. Consider a sequence of n+1
successive members of Q. By the inductive hypothesis, the only possible intersection is
between the first and last duplicates of S in the sequence. Denote them by S; and S, ;.
Choose an arbitrary duplicate between them, say S;, 1 <j <n+ 1. Consider the infinite
line I through p and q. Regard the half-plane on one side of | as being positive and the
other half as being negative. Now, let a and b be extremal points on §; as far as
distance to [ is concerned, where a is of maximal distance relative to the positive
half-plane, and b is of maximal distance relative to the negative half-plane. (Clearly,
a and b might be located on [ itself.) See Fig. 6 for example. Denote by S* the segment
of S; that connects a and b. By the inductive hypothesis, S;"S*=0 and S, NS* =0.
Also, neither S; nor S, can ‘take a detour around’ $* because they are all duplicates
of the same snake, so that their extremal points are at the same distance from [ as are
a and b. Hence, S* is a borderline that separates S; from S,4;, which, therefore,
cannot intersect. [
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Fig. 5. We can shift the entire segment of the snake between p’ and ¢’ to obtain a shorter snake connecting
pand q.

Sn+1

Fig. 6. As far as distance to ! is concerned, a and b are the extremal points on S;. $* is the segment of S; that
connects a and b and creates a borderline that separates S; and S, ;.

Proof of Theorem 2.16 (continued). Let us be given a line segment L in the infinite
plane. The set of integer grid points of 2" xZ with the property that L strictly
intersects their unit squares (touching edges is not enough) is called a slice of the grid.
The size of a finite slice is the number of grid-points it contains. The distance between
two points p and g in the grid is taken to be the size of the maximal slice from among
the set of all slices that are induced by line segments connecting the unit square of
p with the unit square of g. Use d(p, q) to denote such a distance. In the following, we
will talk about infinite slices of the grid that are induced by infinite lines parallel to the
line I that passes through p and g. We call these [-slices.
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Lemma 2.20. Let V be an l-slice and let P=VS. P inherits an ordering from the order
of points on S from p to q. Let A and B be two successive points in P, then the size of Vs
segment between A and B is bounded by d(p, q).

Proof. Denote by A’ and B’ the translates of 4 and B on S¥. It is easy to verify that A’
and B’ are also contained in the slice ¥ (see Fig. 7(a)). Whereas S is the first duplicate of
S, the distance between any point on S and its translate on ST is equal to the distance
between p, the starting point of S, and g, the starting point of S}, which is p’s translate
on S}. So we have d(4, A')=d(B, B')=d(p, q). Hence, if the size of V’s segment between
A and B were more than d(p, ), A’ would have been located between 4 and B, and B’
would be beyond B. Now, since A and B are successive points in P, ¥ contains no
additional points of S between 4 and B. Hence, the segment of S connecting A to B lies
entirely on one side of ¥, and the segment of ST connecting 4’ and B’ must lie entirely on
that same side too. But if the order of the points in V' is 4, A’, B and B’, then the two
segments must intersect (see Fig. 7(b)). This contradicts Lemma 2.18. [

Lemma 2.21. Let V be an l-slice. Then |VnS|<d(p,q).

Proof. Let bye VnS. We may consider all the translates of b, in the sets SF. Denote
them by by, b,,.... Similarly, denote the translates of b, in the Stbyb_,b_s,....

®)

Fig. 7. (a) The translates of 4 and B on S}. (b) Since the segment of S} connecting A’ and B’ must be
located at the same side of the slice as the correspondent segment of S, they must intersect.
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Clearly, all the b; are in V. Partition the slice V' into equal sized blocks by the b;, with
block i being the portion of ¥ between b; and b; .., . Now if S crosses the same relative
position in blocks i and j (i <j), then it must intersect S¥_; (see Fig. 8), contradicting
Lemma 2.19. Thus, S cannot cross V at similarly positioned points within any two
blocks. Since the size of a block is at the most d(p, g), the claim follows. [

Proof of Theorem 2.16 (conclusion). From Lemmas 2.20 and 2.21 we conclude that the
snake S is actually confined to a corridor of polynomial width. Hence, Theorem 2.15
implies immediately that Problem 2.9 is decidable, and is actually in PSPACE. That
Problem 2.9 is PSPACE-hard is achieved by applying simple changes to the reduction
from a space bounded Turing machine that Ebbinghaus [3] presented in his proof of
the PSPACE-hardness of the connectability problem in a rectangle. [

2.4. The strict case

The basic version of the strict connectability problem (Problem 2.22) was for-
mulated by Ebbinghaus [2] and proved by him to be undecidable.

Problem 2.22 (Strict connectability). Given a tiling system T, a tile type 1€ 7, and two
points p,qe Z x &, is there a T-snake o connecting p and g, such that g(p)=10?

Theorem 2.23 (Ebbinghaus [2]). Problem 2.22 is complete for r.e.

The proof involves a reduction from the halting problem for two-register machines.
An alternative proof, based on a reduction from the Post correspondence problem,
appears in [4].

The following two strict versions of the general snake problem were also found to
be complete for r.e., as an immediate result of Ebbinghaus’ construction.

Fig. 8. S crosses the same relative position in blocks i=0 and j=1. Hence, it must intersect S, =S¥.
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Problem 2.24. Given a tiling system T, a tile type toe T and two points p,qe Z x Z, is
there a T-snake ¢ connecting p and g, such that for some leS,,o(l)=1,?

Problem 2.25. Given a tiling system T, a tile type to€ T"and three points p, q,le & x Z,
is there a T-snake o connecting p and g, such that leS, and o([)=1,?

2.5. Connectability in portions of the plane

We now limit the portion of the plane in various ways. We have already considered
the bounded cases of a square and a rectangle, and the semi-bounded case of a strip. In
these cases, the snake problem was proved to be decidable. The completely unlimited
case is also decidable. The problems presented now deal with limited, but unbounded,
portions of the plane. That is, they are not totally bounded in either of their
dimensions. As we shall show, all these “intermediate” cases give rise to undecidable
connectability problems.

Problem 2.26. Given a tiling system T and two points p and g , is there a T-snake
o connecting p and g and lying entirely within the upper half-plane, Z x A4"?

Problem 2.27. Given a tiling system T and two points p and g, is there a T-snake
o connecting p and q and lying entirely within the positive quadrant, 4" x A7

Problems 2.26 and 2.27 were proved to be complete for r.e. in [2]. The proofs rely
on the construction for the strict case. A circular version of the general snake problem
and a 3-dimensional version were also proved in [2] to be complete for r.¢., relying on
the same construction. Applying simple changes to this construction, we have been
able to prove that the following additional problems are hard for r.e.

Problem 2.28. Given a tiling system T, two points p and ¢, and some increasing linear
function f(x) =ax +b, a>0, is there a T-snake ¢ connecting p and g and lying entirely
within {(x,y)|(—b/a)<x, 0<y< f(x)}?

Problem 2.29. Given a tiling system T, two points p and ¢, and some closed portion
P of the plane, is there a T-snake ¢ connecting p and g and lying entirely within
(¥ xZ%)-P?

Problem 2.30. Given a tiling system T, two points p and g, and a set of k additional
points ¢y, ..., c, is there a T-snake ¢ connecting p and g such that cy, ...,c;€S,?

To prove that Problem 2.28, for example, is hard for r.e.,, we use the fact that the
snake in the original construction of [2] is already located under some specific linear
function. Thus, the tiling system can be modified to allow the tiled snake to be
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“stretched” along the x-coordinate, yielding a new snake having the same properties
as the original one, but located under the required linear function.

Applying simple changes to the construction of the alternative proof of Theorem
2.23 (details appear in [4]), we are also able to show that the following problem is
complete for r.e.

Problem 2.31. Given a tiling system T, two points p and g, and some point le Z x Z, is
there a T-snake ¢ connecting p and ¢ and lying entirely within 2 x 2 —{I}?

This result is to be contrasted with Theorem 2.16. Removing a single point from the
plane results in undecidability!

3. Infinite snakes

In this section we consider infinite snake problems. Formally, an infinite snake
skeleton is an infinite ordered sequence {q,€Z x &} ,. » such that for each je Z, q;and
q;+, are adjacent. A one-way infinite snake skeleton is an infinite snake skeleton in
which the n’s come from 4 instead of &. Given a tiling system 7, an infinite T-snake is
an infinite snake skeleton S together with a function o:S—T, assigning to each
skeleton point g;e$ a tile type o(g;)e T, such that for each ieZ the adjacent edges of
o(g;) and o(g;+ ) are monochromatic. If g;=g; for g;,q;€S, then a(q;)=0(q;). A one-
way infinite T-snake is defined similarly, except that the skeleton S is one-way infinite.
Given an infinite (one-way infinite) 7T-snake o, we denote its skeleton by S,.

In general, an infinite snake problem asks, given a tiling system 7' and some portion
P of the plane, whether there is an infinite (one-way infinite) T-snake whose skeleton
lies entirely within P.

3.1. Directed snakes

Recall the directed and fully directed tiling system over T (T and Ty, respectively),
that were used in Section 2.1 to define directed and fully directed versions of finite
snakes. Similarly, we define directed and fully directed versions of infinite and
one-way infinite snakes.

A directed infinite snake over T, or an infinite T-snake, is an infinite T-snake ¢ when
the arrows are disregarded, and, in addition, for every pair of consecutive points g; and
gi+, in the skeleton S,, the arrow in o(g;) is directed towards the edge adjacent to
i+ 1. A fully directed infinite snake over T, or an infinite T;-snake, is an infinite T-snake
& when the arrows are disregarded, and, in addition, for every three consecutive points
gi-1, ¢; and g;+, in the skeleton S,, the arrow in a(g;) is directed from the edge
adjacent to g, towards the edge adjacent to g; ;. Note that the infinite skeleton S of
a (fully) directed snake cannot include loops (ie. for all g;,q;€8, q;=gq; iff i=j). The
formal definitions of a one-way infinite T-snake and a one-way infinite T;-snake are
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similar. (The arrow in a(go) for the first point go in the one-way infinite skeleton of
a one-way infinite T;-snake o is directed from an arbitrary edge towards the edge
adjacent to ¢q;.)

The following two claims are immediate.

Claim 3.1. Given a tiling system T and some portion P of the plane, there is an infinite
T-snake lying entirely within P iff there is an infinite T-snake lying entirely within P iff
there is an infinite T¢-snake lying entirely within P.

Claim 3.2. Given a tiling system T and some portion P of the plane, there is a one-way
infinite T-snake lying entirely within P iff there is a one-way infinite T-snake lying
entirely within P iff there is a one-way infinite T¢-snake lying entirely within P.

Hence, when considering specific infinite snake problems, we can assume that tiling
systems and snakes are (fully) directed.

3.2. Infinite snakes in a strip

Let S, denote a strip of width k in the grid & x 2. Without loss of generality,
assume S, ={(x,y)| 1 <x<k}. Now, consider the following decision problem.

Problem 3.3. Given a tiling system T and a natural number k, is there an infinite
T-snake whose skeleton lies entirely within S,?

Theorem 3.4. Problem 3.3 is decidable.

Proof. At the heart of the proof, we show that the existence of an infinite T-snake
within the strip S; necessarily implies the existence of a periodic infinite 7 -snake
within S, (i.e. a snake built of repetitions of a certain shape and pattern). We provide
a constructive method for finding such a periodic snake, if it exists. The proof relies on
a combination of the techniques used in the proofs of Theorems 2.8 and 2.11 (i.e. the
existence of a PTIME algorithm for the connectability problem in a fixed-width
rectangle and the existence of a PSPACE algorithm for the connectability problem in
a strip).

Throughout the proof, we consider full tilings (not snakes) of the strip S, using the
types of T; and an additional blank type (i.e. a white tile containing no arrows). Rules
of tiling are changed so that two edges may be adjacent if and only if one of the
following holds:

(1) One of the edges includes the head of an arrow, the other includes the tail of an
arrow, and they are monochromatic.

(2) Neither of the edges includes the head or tail of an arrow (and there is no
restriction on the coloring).
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Boundary conditions are added, so that the edges adjacent to the boundaries of the
strip include neither the head nor the tail of an arrow. Note that under these new rules
the only possible tilings of S, are those that are totally blank or those whose nonblank
tiles create patterns of legal (closed or infinite) fully directed snakes. See Fig. 9.

In the sequel, we use S, , to denote a segment of the strip with width k and height n.
Without loss of generality, assume that S, , is the segment {(x,y)|1<x<k,
1<y<n}<S,. We also use the following terminology: types of T; whose bottom edge
includes the tail of an arrow are termed entries and types of T; whose bottom edge
includes the head of an arrow are termed exits. See Fig. 10(a). A tiled “slice” of S; (i.c.
a segment of width k and height 1) is said to have a periodic pattern if the absolute
value of the difference between the number of entries in the slice and the number of
exits in the slice equals 1. An example is presented in Fig. 10(b).

Lemma 3.5. An infinite T;-snake within S, exists iff there is a legal tiling of Sy, n for
some 2<n<(1 +| T;|)* + 1, such that the bottom slice, y=1, and the top slice, y=n, are
identically tiled with a periodic pattern.

Proof. (<) This direction is proved using constructive arguments, based on the
pigeonhole principle, as follows.

Regard the tiled segment S , as a “tiled block”. Concatenate a sequence of 2k
copies of this block, such that each pair of consecutive blocks overlap in their

@ (b) ©

Fig. 9. Under the new rules, the only possible tilings of S, that are not totally blank may be (a) ones whose
nonblank tiles create legal closed snakes, (b) ones whose nonblank tiles create legal infinite snakes, (c) ones
whose nonblank tiles create both closed and infinite snakes.
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Fig. 10. (a) Exits and entries; (b) a tiled slice with a periodic pattern.

identically tiled edge-slices. In this way, we obtain a tiling of Sy 24— 1y+1), Which is
a legal tiling, since the original block was legally tiled. See Fig. 11.

By the construction, all the slices {y=i(n— 1)+ 1}o<;< 2« are identically tiled with
a periodic pattern. Start from the leftmost tile that contains an entry or an exit in the
middle slice y=k(n—1)+ 1. Use the arrows inside the tiles to simulate “traveling”
within the tiled part of the strip. This “tour” terminates when we reach an untiled
point or a point that has already been visited. Since only a finite part of the strip is
tiled, the process of traveling must eventually terminate. Moreover, notice that the
rules of tiling allow such a tour to proceed only along a legal fully directed snake.
Thus, one of the two following possibilities must hold:

(1) The most recently visited point is tiled with a type having an arrow directed to
the starting point (i.e. we have traveled along a legal closed snake).

(2) The most recently visited point is tiled with a type having an arrow directed to
a point outside the tiled part of the strip (i.e. we have traveled along a legal snake
ending in one of the edge-slices).

In the former case, mark all the points in the middle slice that were already visited
during the tour, and begin a new tour from the leftmost unmarked point that is tiled
with a type containing an entry or an exit. We claim that there must be at least one
such unmarked point in the middle slice. The reason is that a closed traveling path
crosses an equal number of entries and exits in each slice, but the middle slice is
periodically tiled, and so has at least one additional entry or exit.

Since there is only a finite number of points in a slice, the latter case, where the tour
terminates by reaching an untiled point, must eventually occur. In this case, the most
recently traveled path must have crossed at least k+1 slices from among the set
{y=i(n—1)+1}y<;<2:- Each such slice contains at most k entries and exits, so there
must be a pair of two different slices that were visited at the same specific entry or exit.
(Recall that all slices in the set { y=i(n— 1)+ 1} o<, <2 are identically tiled, thus having
exactly the same entries and exits in their pattern.) Without loss of generality, assume
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Fig. 11. Concatenation of 2k copies of the tiled block Sy ., such that each pair of consecutive blocks
overlaps in their identically tiled edge-slices, yields a legal tiling of S¢ 2xn-1)+1)-

the existence of a pair of two different such slices that were visited at the same specific
entry. Refer to this entry as the snake entry. The existence of an infinite fully directed
snake is now derived from the fact that in a tiling of the infinite strip S, that is built of
concatenations of infinitely many tiled blocks, one can simply use the directions of the
arrows to travel, indefinitely, from each snake entry to the next one along a legal fully
directed snake. (One can also travel indefinitely backwards, moving along from each
snake entry to the previous one.)

(=) The existence of an infinite T;-snake in the strip S, immediately implies the
existence of a one-way infinite T;-snake ¢ in the strip. Without loss of generality, assume
that the first point of ¢’s skeleton, g, is lower than all the other points in S,. Consider
a tiling of the “semi-infinite” part of the strip S, above g, in which each point peS;nS,
is tiled with the type o(p) and all other points in S, —S, are tiled with the blank type.
Clearly, this is a legal tiling, It is also easy to check that all the slices of the tiled part of
S, have a periodic pattern. To complete the proof of this direction, notice that there are
only (1+]| T;|)* ways of tiling a slice of S, with different patterns, so there must be two
identically tiled slices within a segment of height (1+| Tef+1. O

Proof of Theorem 3.4 (conclusion). To complete the proof of the theorem, one can
check all possible tilings of S, » for 2<n<(1+| Tfl)"+ 1, to decide if any infinite
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T:-snake within S exists. By Claim 3.1, this is also a decision procedure for the
existence of an infinite T-snake in S;,. O

An immediate corollary from the proof of Theorem 3.4 is that Problem 3.3 is in
PSPACE if k is given in unary. In order to decide whether there exists an infinite snake
in the given strip, we carry out a reduction to the rectangle tiling problem, which is
PSPACE-complete [11]. Although we have not managed to prove a matching lower
bound, we do conjecture that Problem 3.3 (with k in unary) is indeed PSPACE-
complete. This conjecture gains some support from the corresponding result for the
finite case (Corollary 2.13).

3.3. The strict case

The following two problems are straightforward extensions of the strict connect-
ability problem (Problem 2.22) to infinite snakes.

Problem 3.6. Given a tiling system T and a specific tile type 7o€ T, is there a one-way
infinite T-snake o, such that a(go)=1o, Where g, is the first point of ¢’s skeleton?

Problem 3.7. Given a tiling system T and a specific tile type 7€ 7T, is there an infinite
T-snake o, that contains 7,?

Problem 3.6 has already been considered in [3]. The following is a direct result of
the methods used in the proofs for the bounded cases of snake problems [3] and for
the strict connectability problem [2].

Theorem 3.8 (Ebbinghaus [3]). Problem 3.6 is complete for co-r.e.

Using methods introduced in [4] for a PCP-based undecidability proof for the
strict connectability problem, we have also managed to provide a similar result for
Problem 3.7.

Theorem 3.9. Problem 3.7 is complete for co-r.e.
A recurring theme in the present paper is concerned with comparing classical tiling
problems and snake problems. It is, therefore, natural to consider snake versions of

the recurring tiling problems of [7].

Problem 3.10. Given a tiling system T and a specific tile type 7o€ 7, is there a one-way
infinite T-snake o, in which t, occurs infinitely often?

Problem 3.11. Given a tiling system 7 and a specific tile type 7,€ 7, is there an infinite
T-snake o, in which 1, occurs infinitely often?
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In analogy to recurring tiling problems, which are X}-complete [7], we have the
following theorem.

Theorem 3.12. Problems 3.10 and 3.11 are X {-complete.

Theorem 3.12 is proved using tile construction ideas from [2], but the general line
of proof is analogous to the proof that recurring tiling is £{-complete [7]. We omit the
details.

We note that [3] also considers infinite snake problems with restrictions on the
structure of the snake. Tt is shown therein that the following two problems are
T l-complete.

Problem 3.13. Given a tiling system T, is there a one-way infinite T-snake o, whose
skeleton S, does not ultimately become a straight line?

Problem 3.14. Given a tiling system T, is there a one-way infinite T-snake o, whose
skeleton S, is nonrecursive?

It is possible to show that problems 3.6, 3.10, 3.13 and 3.14 remain in their
undecidability level even when a half-plane or a quadrant are considered, rather than
the entire plane. Moreover, the undecidability level does not change even when the
portion of the plane is limited to {(x, y)|(—b/a)<x, 0<y< f(x)}, where f(x)=ax +b,
a>0. The proofs are obtained by very simple changes to the basic proofs.

4. Discussion

Figures 12 and 13 summarize the results proved or stated in the paper. These
results, taken together, point to a clear analogy between snake problems and classical
tiling problems. The complexity results for the corresponding fixed-width, bounded,
unbounded and recurring cases of snake and tiling problems are essentially the same.
Furthermore, the proof methods used for the lower bounds on snake problems are
conceptually the same as those used for tiling problems; all are based on simulations
of computations of Turing machines or register machines. Tiling problems have been
very helpful in establishing lower bounds on the difficulty of other problems e.g. in
logics of programs [6]. Thus, a potential direction of future work on snake problems
would be to find similar applications. It should be noted that tiling problems are
combinatorial in nature, while snake problems have unique geometric properties that
might turn out to be useful for other applications. This direction is corroborated by
recent applications of snake problems to domino games [5] and the uncertainty
principle for physical systems [10].

The general snake problem in the whole plane appears to be unique among
snake problems, since all other reasonable unbounded versions we have considered
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Finite snake (connectability) problems

Bounded Problem 2.4 PTIME
(connectability in a fixed-width rectangle)
Problem 2.2 NP [3]
(connectability in a square)
Problem 2.3 PSPACE [3]
(connectability in a rectangle)

Semi-bounded Problem 2.10 PSPACE
(connectability in a strip)
Problem 2.14 PSPACE

(connectability in a corridor)

Unbounded Problem 2.9 PSPACE
(unlimited connectability)

Strict Problem 2.22 re. (2]
(strict connectability)

Problem 2.24 r.e.
(strict connectability — version I)

Problem 2.25 re.
(strict connectability — version II)

Portions Problem 2.26 re. [2]
of the plane (connectability in a half-plane)
Problem 2.27 re. [2]

(connectability in a quadrant)

Problem 2.28 re.
(connectability under a linear function)

Problem 2.29 re.
(connectability in the plane outside
a forbidden area)

Problem 2.31 r.e.
(connectability in the plane except
for a forbidden point)

Problem 2.30 re.
(connectability through a given
set of points)

Fig. 12. Summary of results concerning finite snake problems.

(including strict cases and those with limited portions of the plane) were found to be
undecidable. The decidability of the general snake problem in the whole plane should
also be contrasted with the undecidability of its tiling counterpart. It should be noted,
though, that the general tiling problem in the whole plane is also unique among tiling
problems, since its undecidability is much harder to prove [1, 13].
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Infinite snake problems

Semi-bounded Problem 3.3 in PSPACE
(infinite snake in a strip) (hardness conjectured)
Unbounded Problem 4.1 open

(unlimited infinite snake)
Strict Problem 3.6 co-r.e. [3]
(strict, one-way infinite snake)

Problem 3.7 Co-r.e.
(strict, infinite snake)

Recurring Problem 3.10 z!
(recurring, one-way infinite snake)
Problem 3.11 T}
(recurring, infinite snake)

Miscellaneous Problem 3.13 i3]

(infinite skeleton is not ultimately
a straight line)

Problem 3.14 Zi [3]
(infinite skeleton is not recursive)

Portions of the plane Problems 3.6, 3.10, 3.13, 3.14 in a half-plane, a quadrant or under a linear
function, remain in the same complexity classes.

Fig. 13. Summary of results concerning infinite snake problems.

A partial explanation for the decidability of the unlimited connectability problem
may be obtained by analyzing the central argument of the proof, stated in Lemma 2.18.
This lemma states that the minimal-length snake connecting two points in the plane
cannot intersect with its right and left duplicates; hence, the right and left translates of
each of the other points in the minimal snake’s skeleton cannot “participate” in the
skeleton either. This is a rather strong statement, which leads to decidability for the
unlimited case. However, it fails even if only elementary constraints on the portion of
the plane, the structure of the snake, or the existence of certain types, are added.

One question left open here is that of determining the exact complexity of the strip
case of infinite snake problems. As mentioned earlier, we conjecture that it is
PSPACE-complete . Another question is whether or not the unlimited case of infinite
snake problems is decidable.

Problem 4.1. Given a tiling system T, is there an infinite T-snake within the infinite
grid G=Z x Z?

We conjecture that Problem 4.1 is undecidable, but it seems that this would be
difficult to prove. We have not been able to find a way to adjust the proof techniques
of the other undecidability results for this purpose.



268 Y. Etzion-Petruschka et al.

—
i
S

~
Il
o [eoXes

Fig. 14.

Finally, consider the connection, for a given tiling system 7, between the existence
of a T-tiling of the infinite grid G, and the T-connectability of every two points in G.
Obviously, the former implies the latter. The converse, however, is false.

Proposition 4.2. The existence of a T-tiling of G does not necessarily follow from the fact
that there is a T-snake connecting any two points in G.

Proof. Consider the tiling system given in Fig. 14. Clearly, a T-tiling of G does not
exist (in fact, even a 2 x 2 square cannot be tiled by T'). Yet, for any pair of points
p,q€G, where p=(x,,y,), 4=(x,, y,) and y,<y,, type « can be repeatedly used to tile
a horizontal T-snake connecting the point p with the point (x,, y,) and type § can then
be repeatedly used to continue with a vertical T-snake connecting (x,,y,) to g. [

Additional observations of this kind appear in [4].
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