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We define infinite, recursive versions of NP optimization problems.
For example, Max CLioue becomes the question of whether a recursive
graph contains an infinite clique. The present paper was motivated
by trying to understand what makes some NP problems highly
undecidable in the infinite case, while others remain on low levels of
the arithmetical hierarchy. We prove two results; one enables using
knowledge about the infinite case to yield implications to the finite
case, and the other enables implications in the other direction.
Moreover, taken together, the two results provide a method for proving
(finitary) problems to be outside the syntactic class Max NP, and,
hence, outside Max SNP too, by showing that their infinite versions are
X -complete. We illustrate the technique with many examples, resulting
in a large number of new 2 1-complete problems.  © 1996 Academic

Press, Inc.

1. INTRODUCTION

An infinite recursive graph can be thought of simply as a
recursive binary relation over some recursive countable
set—the natural numbers, for instance. Since recursive
graphs can be represented by the Turing machines that
recognize their edge sets, one can investigate the complexity
of problems concerning them. Indeed, a significant amount
of work has been carried out in recent years regarding such
problems. Beigel and Gasarch [ BG1, BG2] have shown
that many problems on recursive graphs reside on low levels
of the arithmetical hierarchy. For example, determining
whether a recursive graph is 3-colorable is I77-complete. On
the other hand, in [H2] it was shown that determining
whether a recursive graph has a Hamiltonian path is outside
the arithmetical hierarchy, and is, in fact, X }-complete.1
The present work was motivated by trying to understand
what makes some NP-complete problems on graphs highly
undecidable in the infinite case, while others remain on low
levels of the arithmetical hierarchy.

* E-mail: {tirza, harel} @wisdom.weizmann.ac.IL.
'A similar result for perfect matching in recursive graphs can be
established using a proof technique appearing in [AMS].
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We first set up a general way of obtaining infinite versions
of NP maximization and minimization problems. If P is the
problem that asks for a maximum by

m?xl{W: AE=¢(w, S},

where ¢(, S) is first-order and A is a finite structure (say,
a graph), we define P* as the problem that asks whether
there is an S, such that the set {W: A” |= ¢(w, S)} is infinite,
where A is an infinite recursive structure. Thus, for example,
Max CLIQUE becomes the question of whether a recursive
graph contains an infinite clique. Often, the infinitary
problem becomes trivial; the generalization of MAX SAT, for
instance, becomes the following problem: Given an infinite
set of clauses C, does there exist some assignment S that
satisfies an infinite subset of C? The answer is always in the
affirmative, when we consider only satisfiable clauses.

In this paper we prove two results. One enables using
information about the infinite case to yield implications to
the finite case, and the other enables implications in the
other direction. Moreover, taken together, the two results
provide a method for proving (finitary) problems to be out-
side the syntactic class Max NP, and, hence, outside MAX
SNP too,> while at the same time showing infinitary
problems to be Z}-hard. The classes Max NP and Max
SNP have been the subject of recent renewed interest,
following the developments that show that, whereas all
problems in Max NP are approximable in polynomial time
to within some constant, the ones that are hard for Max
SNP have no polynomial-time approximation scheme
[ALMSS, AS]. These latter sets are closed under special
approximation-preserving transformations and are, thus,
different from the syntactic sets we refer to here. In fact, our
results appear to have no direct relevance to issues of
approximability.

Our first result, proved in Section 3, is that the infinite
version of any problem in Max NP is arithmetical; specifi-
cally, if Pe Max NP then P® e I19. Moreover, if P e Max

2 These classes, which appear in [ PY, PR, KT], are defined in Section 2.
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NP then every instance of P* has either an infinite solution
or a maximal finite solution (ie., no instance of P> has a
solution of size k, for arbitrarily large k, without having an
infinite one too). We like to view this fact in its dual
formulation: The finitary version of any problem whose
infinite version is higher than /73 must be outside Max NP,
and, hence, outside Max SNP too. The same is true for
problems that have an instance containing no infinite solu-
tion, but containing a solution of size k, for arbitrarily large k.

For the second result, proved in Section 4, we define
a special kind of monotonic transformation between NP
optimization problems, which we call an M-reduction. The
idea is, essentially, that (in a maximization problem) enriching
the structure in one problem enriches it in the other, as well
as making the objective functions grow. We prove that M-
reductions between conventional finitary problems become
Zl-reductions when “lifted up” to the infinite case. This
enables one to prove X'} -hardness of infinitary problems by
examining, and sometimes modifying, reductions between
their finitary versions.

Indeed, in Section 5 we use our second result to prove the
. Zl-hardness of many additional problems. Moreover, by
our first result, the finitary versions of these must all be out-
side Max NP. Here is a partial list of the problems for which
these two properties are established: MAX CLIQUE, MaAX
IND SET, Max HaM PATH, Max SUBGRAPH, Max COMMON
SUBSEQUENCE, Max CoLOR, Max Exact COVER By PAIRS,
Max TILING.

2. BACKGROUND AND PRELIMINARIES

Our approach to optimization problems is to focus on
their descriptive complexity, via logical definability, an idea
that started with Fagin’s [F] characterization of NP in
terms of definability in second-order logic on finite struc-
tures. (The following paragraphs are adapted from [KT].)

An existential second-order formula is an expression of the
form (3S) ¢(S), where S is a sequence of second-order
variables that can contain relations (predicates), and ¢(S) is
a first-order formula over some vocabulary o. The formula
is finitary, so the number of variables in S, X, and y is some
fixed finite constant. Fagin’s theorem [F] asserts that a
collection C of finite structures over some vocabulary o is
NP-computable if and only if there is a quantifier-free
formula y(x, 7, S) over g, such that for any finite structure
A we have

AeCwAE=@AS)YX) I Y(X, 7, S).

Papadimitriou and Yannakakis [ PY] introduced the class
Max NP of maximization problems, whose optimum can be
defined by

max |{%: 4= (37) Y(%, 7. )}
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for quantifier-free 1. MAX SAT is the canonical example of a
problem in Max NP. They also considered the subclass
Max SNP of Max NP, consisting of those maximization
problems that are defined by quantifier-free formulas, ie,
the optimum of such problems can be defined by

max |{¥: 4 = Y(%, $)}|

for quantifier-free . Max 3SAT is easily seen to be in MAx
SNP. Actually, Papadimitriou and Yannakakis [PY]
meant that the classes Max NP and Max SNP contain also
their closures under L-reductions, which preserve polyno-
mial-time approximation schems. We do not. Kolaitis and
Thakur use the names Max X, and Max X, for Max SNP
and Max NP, and they too talk about the “pure” syntactic
classes. To avoid confusion, we shall follow this terminology
in the rest of the paper.

More recently, in a paper by Panconesi and Ranjan
[PR], Kozen showed that Max CLIQUE does not belong to
Max X,. Max I1, was introduced in [ PR] as the class of
maximization problems whose optimum can be defined by

m;lxl{w"/: Al=(VX) y(w, X, S)}

for quantifier-free .

Kolaitis and Thakur [KT] then took a broader view.
They examined the class of all maximization problems
whose optimum is definable using first-order formulas, i.e.,
by

max | {w: 4=y (7, S)} 1,

where (1, S) is an arbitrary first-order formula. They first
showed that this class coincides with the collection of poly-
nomially bounded NP-maximization problems on finite
structures, ie., those problems whose optimum value is
bounded by a polynomial in the input size. They then
proceeded to show that these problems form a proper
hierarchy, with exactly four levels:

Max 2, c Max X, c Max IT; c Max 1T, = | ] Max IT,.

iz2

Here, Max 17, is defined just like Max X, (i.e., Max NP),
but with a universal quantifier, and Max IT, uses a universal
followed by an existential quantifier, and corresponds to
Fagin’s general result stated above. The three containments
are strict: It is shown in [KT] that Max CONNECTED
COMPONENT is in Max [T, but not in Max I7,, while Max
CLIQUE is in MaX I1, but not in Max Z', (the latter fact was
mentioned above and appears in [ PR]), and MaX SAT is in
Max X, but not in Max X (this is from [PY]).
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DerINITION 1 [PR].
(#, Sk, Mg, opt), where

An Npo problem is a tuple F=

 $.is the space of input instances, which are finite struc-
tures over some vocabulary ¢ and is recognizable in time
that is polynomial in the number of elements of the domain.

o S(I) is the space of feasible solutions on input I € Sx.
The only requirement on Sy is that there exists a polyno-
mial ¢ and a polynomial time computable predicate p, both
depending only on F, such that VieJg, Sp(I)=
{S:1SI<q(l1D) A p1, S)}.

o mp Iy x Z* — N, the objective function, is a polyno-
mial time computable function. mg(Z, S) is defined only
when Se Sg(I).

o opte {max, min} indicates whether F is a maximiza-
tion or minimization problem.

o The following decision problem is in NP: Given I € ¢
and an integer k, is there a feasible solution S'e Sx(I), such
that m(I, S) > k when opt=max (or mz(I, §) <k, when
opt =min)?

Note. We turn some minimization problems into maxi-
mization problems by considering the complements of the
solutions. For example, MIN VERTEX CoVER will be the
problem of finding the maximal set of vertices in a graph
such that the complement is a vertex cover. This does not
contradict the fact that minimization problems can be very
different from maximization ones (see [KT]).

The above definition is broad enough to encompass most
known optimization problems arising in the theory of NP-
completeness. We now restrict attention to polynomially
bounded NP optimization problems [ BJY, LM], in which
the value of the objective function for every feasible solution
is bounded by a polynomial in the length of the corresponding
instance.

DerNITION 2 [PY, PR, KT]. MAx X, (MAx X, MAX /T,
Max IT,, respectively) is the class of NPo problems F, such
that '

optp(I) =max |{%: ¢(I, S, D)}

(optz(1) =max |{x: (37) ¢£(L S. %, P},
optp(I) =max |{%: (¥9) ¢+(1, S, %, )},
opt (1) =m§lXI{f: (V9)32) 6L, S, X, 7, D)},

respectively),

where ¢ is quantifier-free.
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ProposiTioN 1 [KTY). F is a polynomially bounded NP
maximization problem iff Fe MAX II,.

DerFINITION 3 [PR]. A problem Fe RMAX(k) if its
optimization function can be expressed as

optp(I)= mgX{ 1S|: (V7) ¢(1, S, 7},

where ¢ is a quantifier-free CNF formula with all the
occurrences of S in ¢ being negative, S is a single predicate
appearing at most k times in each clause, and |S| denotes

[{x: S(x)}.

DerNITION 4. Let  A,=(D;,R}, ., R}), A,=(D,,
R?, .., R2) be (possibly infinite) structures over the same
similarity type: { Py, .., P,.}. We say that 4, is a substructure
of A,, denoted 4, < A4,, if D, €D, and R}, 1 <i<m, is the
restriction of R? to D,. (If the elements of the domain are
ordered, then D, has to be a prefix of D,.)

We now restrict the class of Nro problems somewhat.

DEFINITION 5. NPM is the class of Npo problems
F=(%, Sg, mg, opt), for which opt = max, -contains finite
structures over a vocabulary o, and the objective function is
given by

(Ve F)(VSe SHI)) (mp(L, S)=|{Z: Yx(L S, )}|),

where Y is a IT,-formula. We require that v satisfies the
following additional condition: If for some infinite structure
I and for some Sand X, y (I, S, ¥) is true, then there exists
a finite substructure I of I® containing X, such that for each
IST <I”,yg(I', ', x)isalso true, where S’ is the restriction
of S to the domain of I'.

Note that the addition does not sacrifice generality in the
case of X,, ~,, and IT,, since such formulas satisfy the
condition anyway. :

We, now “lift up” NP maximization problems, resulting in
versions that apply to infinite recursive structures. We do this
simply by requiring an infinite solution instead of a maximal
one. Minimization problems can be similarly generalized; by
requiring that the complement of the solution should be
infinite.

DEFINITION 6. Let F=(%, Sg, my) be an NPM prob-
lem. Define F*, the infinitary version of F, as follows:
F*=(f7,8y,my), where

e S % is the space of input instances, which are infinite
recursive structures over the vocabulary o.

o SP(I) is the spate of feasible solutions on input
I“esz.
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e mP: FE xSy »Nu{ow} is the objective function
and satisfies ‘

(VI e £2)NYSeSEI™))
=|{&: e (I*, S, D)})

where - is the I1,-formula of F.

(mp(I*, S)

o The decision problem is: Given I e .# ¥, does there
exist Se S®(I*) such that mg(I°, §)=0? Put another
way,

F*(I*)=TRUE iff 3AS(|{*: Y r(I%, S, %)} = 0).

Due to the condition in Definition 5 of an NeMm, F* does
not depend on the I7,-formula representing m . Otherwise,
if some finite problem F could be defined by two different
formulas ¢, and , satisfying the condition, which yield
different infinite problems, we could construct a finite struc-
ture for which ¥, and , determine different solutions.

3. FROM THE INFINITE TO THE FINITE

PROPOSITION 2. If FeNpM then F* € X},

Proof. Let F=(5, S, my) € NPM. We have to express
F* by an existential second-order formula over some recur-
sive predicate. (The formula need not necessarily be over F’s
vocabulary.)

F* can be described as
(AS)(Vx)(IT,) (X <Xy A7, S, 55)),
where Y (I, S, X) is the first-order formula appearing in the
definition of F. The relation < is not part of the vocabulary;
rather, it is the lexicographic extension of some ordering
that can be computed from a Turing Machine that recog-
nizes the domain of 7. (There is such a Turing Machine

since I is recursive.) ||

The following lemma is needed for the proof of Theorem
1. It states that in order to decide whether an instance /> of
a problem in Max X', contains an infinite solution, it suffices
to check whether there are infinitely many x’s for which
there is an S etc., instead of checking if there exists an S for
which there are infinitely many x’s. For example, consider
Max SAT*, which is the problem of determining that
there is an assignment that satisfies infinitely many of the
clauses in an infinite recursive set of clauses. MAX
SAT*(P,N)=T1rRuUE iff (ISH{c:(Fy)(P(y,c) A S(y)) v
(N(y,¢) A 1S(p))}| =00, where S is a second-order
variable that ranges over truth assignments, and P and N
are two recursive binary predicates;, P(y, ¢)=TRUE iff
variable y appears unnegated in clause ¢, and N(y, c)=
TRUE iff variable y appears negated in clause c. The lemma
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says that it suffices to check whether there are infinitely
many clauses that are satisfiable, by possibly different
assignments. Here, of course, the answer is always true.

LEmMMA 1. Let FeMaxZX,, where optp(l)=
maxg|{x: (39) ¢(%, 7, I, S)} |, for quantifier free ¢. Then,
for each instance 17,

F*(I*)=TRUE

iff 1{%: AS)NI) $(%, 7,17, S)}| = .

Proof. Let I be a recursive infinite structure, which is
an instance of F*. According to Definition 6,

F>~(I*)=TRUE

iff (3S)(I{x: (39) #(%, 7,17, )} = o).

The “only-if” direction is clear, since we are simply pushing
the existential quantifier into the set.

For the “if” direction, we have to show that if there are
infinitely many x’s for which there is an S, etc., then there
is a single S for which there are infinitely many <’s, etc. Let
us consider the sequence consisting of the following for-
mulas in some order: @(%,, y;, [*,S) for i, j= 1, where
{X,, X5, ..} and {7, J, ..} are all the feasible values of X
and 7. We may view ¢ as a Boolean formula with “variables”
of the form S(Z), where 7 is a projection of X and y. The
formula also contains terms of the form I=(w) (with (w) a
similar projection), but these are fixed, since I* is given. By
the assumption, there are infinitely many X’s that have an S
and 7 satisfying ¢. We may thus take a sequence of ¢’s with
corresponding 7’s—one for each ¥—that have satisfying S’s.
Let us denote them by ¢, ¢5, ¢5, .., with S; satisfying ¢,.

We will use k to denote the (constant) number of
variables of the form S(Z) in ¢. We proceed by induction
on k. If k=0, then ¢ has no variables, and each ¢, is satis-
fiable by S, = . Hence, we have our infinitely many *’s.
(Actually, A2, ¢;is a tautology.)

Assume that whenever ¢ has k — 1 variables there is an §
that satisfies infinitely many ¢,’s, and let our ¢ contain k
variables. If there exists some variable S(Z) that appears in
infinitely many ¢,’s, then it appears positively (or
negatively, respectively) in the satisfying assignment of an
infinite subset of the ¢,’s. Assign S(Z) true (or false, respec-
tively) and assign truth values to the other k — 1 variables
by the inductive hypothesis. In this case we are done. If each
variable appears in only finitely many ¢,’s, we proceed as
follows. First, assign the values of S| (the satisfying assign-
ment of ¢,) to ¢,’s variables. Next, repeatedly choose a new
¢, containing only new variables, and satisfy it by using the
values of §,. Continuing this process yields an infinite set
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from among the ¢,’s, that are all satisfied by the single
assignment S obtained by collecting the values used at each
stage. |

THEOREM 1. If Fe MAX X, then

1. FrellS.
2. For each recursive structure I € # 7,

F*(I*)=TRUE iff (Yn)(AS)(mF(I*, S)=n).

Proof. Let F be a problem in Max X', such that

optl’(l)=rng'x|{"E (3.}7) ¢(X—, .)7’ 15 S)}la

for quantifier-free ¢. According to Lemma 1, for each 7,

Fe(I*)y=TrRUE iff {X:(3S)3)) (%, 5, I*, S)}| = 0.

It follows that we can express the problem F* as
(VX)(3%,)(3P) (X, <X, A §(Xa, §, I, §) is satisfiable).

Now, since there is some recursive order on the domain
(because I is recursive) and since checking satisfiability of
¢ is recursive (because ¢ is a Boolean formula with only k
variables), F* is in ITS. This completes the proof of the first
clause of the theorem. As to the second, the “only if” direc-
tion is clear. The “if” direction follows from Lemma 1, since
if (Vn)(3S) |{x: () ¢(x, y, I, S)}{=n, then there are
clearly infinitely many x’s for which there is an S, etc.
Hence, F*(I*°)=TRUE. |

We like to view the theorem in its dual formulation,
whereby information about an infinitary problem bears
upon the status of its finitary version:

COROLLARY 1. For any NpM problem F, if F* is
X' -complete then F is not in MAX Z'.

It follows that Hamiltonicity, which is X}-complete
[H2], is not in Max £, (and the same applies to perfect
matching, following [ AMS]). We shall see many more such
problems in Section 5. Obviously, the corollary is valid not
only for Z1-complete problems, but for all problems that
are outside ITS. For example, detecting the existence of an
Eulerian path in a recursive graph is I73-complete [ BG2],
hence its finite variant cannot be in Max 2.

COROLLARY 2. For any NpM problem F, if there is
a recursive structure I”e Sy for which (Vn)(3S)
(m=(I°, S)=n) but —(AS)mF(I*, §)=00) then F is not
in Max 2.

We can now easily show many problems to be outside

Max ZX,. For example, for Max CLIQUE and for Max
ConNECTED COMPONENT (MCC), consider the recursive
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graph containing isolated cliques of size n, for each n. Also,
for Hamiltonicity and for Eulerian paths, consider the
following graph:

1 2 3 4 5

By Corollary 2, these are outside MAx 2.

We note that the problems that appeared in [PY] as
examples for Max X, and Max X, such as INDEPENDENT
SET-B and Max SaT (for which the given clauses are
satisfiable), become trivial in the infinite case: There is
always an infinite solution. The reason is that in these
problems the appropriate ¢’s are always satisfiable, and,
hence, one can always find an assignment that satisfies
infinitely many ¢’s. However, there are problems in these
classes whose infinite variants are nontrivial. Here is an
example:

Max IND SET-B-2. Given a graph with degree bounded
by B and m < B, find the largest independent set of nodes
with degree <m. (This is similar to INDEPENDENT SET-B of
[PY].) To provide an economic logical definition of this
problem, we represent a graph of degree B by a (B + 1)-ary
relation A4, encoding the adjacency lists of the n nodes
(which we may assume to be {1, 2, .., n}). For each node «,
the tuple (u, v}, ..., vp) lists its neighbors v,, ..., vz, and if »
has less than B neighbors, the remaining places will contain
zeros. The problem can now be expressed as

max |{(t, vy, ., Vg) €A UES AV, .y Vp ES A,y =0},
S

In contrast to INDEPENDENT SET-B®, the problem MAX IND
SET-B-2% is nontrivial. Some bounded graphs have an
infinite independent set of vertices with degree smaller than
m, but others do not.

COROLLARY 3. LetFeMax X, (respectively, Fe Max X).
If for each I€ %, and for each %, the formula ¢(X, S, I)
(respectively, (3y) §(x, 7, S, I)) is satisfiable, then- F*
always has a positive answer.

This corollary is not necessarily valid for Max 17, and
Max I7,. Consider, for example, Max CLIQUE. Every vertex
can be contained in some clique, but there need not be an
infinite clique. Also, in MCC, each vertex of the input graph
is contained in some component, but there need not be an
infinite one. ’

4. FROM THE FINITE TO THE INFINITE

In this section, we define a special kind of monotonic
reduction between finitary NPM problems, which we call an
M-reduction. We then show that M-reductions preserve
the X!-hardness of infinitary variants. It is worth noting
that about half of the reductions needed for the results in
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Section 5 are taken from [ GJ], and are already monotonic
there. These are usually the simpler ones. Among the others,
some are monotonic modifications of reductions from
[GJ1, but others required more work on our part. We also
have a few monotonic reductions from polynomial-time
problems, for which [ GJ] is irrelevant.

DerINrTioN 7. Let o/ and # be sets of structures.
A function f: &/ — B is monotonic if VA, Be o/ (A<B=
f(A) < f(B)). (Here, < denotes the substructure relation-
ship of Definition 4.)

DEFINITION 8. Given two Npm problems: F=(JY,
Se.mp). G=(Ig. Sg. mg). An M-reduction g from Fto G
(denoted F oc ,, G) is a tuple g = (#,, 12, £3):

1. 1.1, 1, are polynomial time computable functions.

2oty I It IpxSp— S, ty: I %S¢

3
=S,

and

3. t, is monotonic, in the sense of Definition 7.
4. 1, and t, are partially monotonic; ie., VI,, I, € ¢

(I; <L) = (¥YSe Sp(ly) 61, Sy < ty(1, S)

AVSeSq(t:(1) t3(ti(1), ) < 13(11(13), 5)),
where S’ is the restriction of S to the domain of 7, (or resp.
t(I))).

5. Let{I,e g}, (S, eSp(I)} 2y, {X, = {x: ¥y,
S, %)}, such that ;<L <.+ and §;<S,< -
If X,cX,cX;-- then there exist {¥, < {X:¥q(t,(1).
12(S;), X)} } 21, such that Vj ;> ;. and Y, c Y, c Y5
(the containments, denoted by <, are strict.) The same is
required for the other direction.

Note. All the problems appearing in Section 5 satisfy

VI,,I,ed VS, €SpI;) VS, €SF
(I, <I; A S;<5))
:{Xl//(lbsl’x)}g{xlp(127S2’x_)}

Moreover, the reductions we show there satisfy

VI, €S VS, eSe(l)) 3k VI edp VS, eSp(1,)
(I, I, A 81 <85 A (me(Ly, §1) +k) <mp(ly, S3))
= (mg(ty(Iy), 12(S1)) <ms(ti(12), 1(S53))))
and similarly for the second direction. Hence, constraint 5 is
satisfied for these problems.

3 Although ¢, and ¢#; are two-place functions, we shall sometimes omit
their first argument, which will be clear from the context (as in, e.g., clause
5 below).
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For example, let us show that Max CLIQUE o ,, MAX IND
SET. The instances (i.e., the I’s) for these two problems are
graphs, the feasible solutions are all the cliques or independent
sets in the graph, and the objective function yields the size
of the solution.

Let G=(V, E) be an instance of Max CLIQUE. Define
g=(1,,1,,13) to be:

e 1(G)=G=(V,E).

o If Qe S(G), then let 1,(G, Q)= Q¢ S(G).

o If Qe S(G), then let t:(G, Q) = Q€ S(G).

e ¢, is monotonic. Let G,=(Vy, E)), G,=(V,, E,),
where V= {0y, . U}s Va={01, 0 Vs s v,}, and such
that G, < G,. According to the definition of a substructure,

the restriction of G, to {vy, .., Us} is isomorphic to G;.
Thus, if v, ue V,, we have

(0, 4) ¢ 1,(E,) <> (v, u) € E; <> (v, u) € Ey <> (v, 1) ¢ 11(Ey),

and, hence, 1,(G,) < t;(G,).
Clearly, the other requirements are satisfied too.

THEOREM 2. Let F and G be two NpM problems, with
F o 4, G. If F* is X' -hard, then G* is X'} -hard too.

Proof. Let F, GeNPM, where F* = (F7, 87, my) is
Z!-hard and let g =(1,, 1,, 13) be an M-reduction from F'to
G. In order to prove X'!-hardness of G*, we will exhibit a
recursive reduction ffrom F> to G*, such thatany I € S ¢
will have an infinite solution iff f(/*) € # & has one.

Let I® €.#%. Assume, without loss of generality, that I~
is a structure over the domain N. For each i, let I, be the
restriction of I to {1,2, .., i}. By Definition 4 we have
I, <I,< --- <I™. Since ¢, is monotonic,

) sl < .

Define f(I*) = J2 , t,(1,). (This is well defined even if there
is no order on the domain, because of the monotonicity
of t,.) f(I*) is recursive since in order to check if a tuple u
is in some relation Ref(I°) it suffices to check if  is in
the appropriate relation in #,(1,), for large enough i, that
contains the elements in u.

We now show that /® has an infinite solution iff f(7*)
has one. Assume that Se S (1), and

m;o(loo, S)—_‘l{f: ‘//F(Iooa S, JE)}|=1{)Ela~322’ }| = 0.

Due to the constraints of NpM, we can construct a
subsequence {A;};2, of {I;}2, such that for all j, 4,
contains {%;, .., %,}, and Y (4, S;, %) is true for each
fe{x,, .. X;}, where S;is the restriction of S to the domain
of 4;.

By the monotonicity of g, for each j> 1 we have

to(A;, S) <oA1, Sji0)-
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Define $ = |3 12(4;, S)). Consider now the sets:

{B,={7:¥a(t:i(4)), 12(4;, S 7)) };O=l'

Due to Condition 5 of the monotonicity of g, there are
infinitely many 7’s that are contained in infinitely many B;’s.
Since Y is a II,-formula, these j’s must satisfy
l;bG(f(Ioo)’ g’ 7). Hence, mgo(f(loo), S) = 0.

The other direction is similar, but uses #5 instead of t,. ||

We already know that there are problems in Max /T,
whose infinite versions are X'} -complete, e.g., Hamiltonicity
[H2]. We can also show that there are problems in its
subclass RMAX(2) that have the same property, e.g., MAX
CLIQUE.

COROLLARY 4. Let Fe NeM. If Fis hard for Max II, (or
even for RMAX(2)) with respect to M-reductions, then F* is
Z1-complete.

For example, Panconesi and Ranjan [PR], proved the
Max [I, completeness of MAX NSF* with respect to
approximation-preserving reductions. Since the reduction
they used is also an M-reduction, Max NSF= is X}-
complete.

5. APPLICATIONS

We start by listing several problems in NpM:

1. Max PATH IN TREES. [ is a tree T = (N, P, 0), where 0
is the root. N = {0, 00, 01, 000, 001, 010, 011, 02, ..., dy.

S(T)={p: pisapathin T}

my(T, p)=1p|

. (lplif py=0

max |{/: 1 <I<|pl, Vi, p,e N, p, =0,
7
Vi, 1<l<|ﬁ|’(ptapl+1)€P}|

Max PATH IN TREES®. I is a recursive tree T.
Q. Does T contain an infinite path?
This is the non-well-foundedness of recursive trees with
possibly infinite out-degree—the quintessential X 1-com-
- plete problem [R].

2. Max CLIQUE. I is an undirected graph, G=(V, E).
S(G)={Y:YSV,Vy,ze€ Y(y#z=(y,2)€E)}

m(G, Y)=|7].

4 Max NSF is the problem of finding the maximum number of satisfiable
formulas in a given set of CNF formulas.

HIRST AND HAREL

The maximization version is

max|{x:xeY AVy,ze Y(y#z=(y,z)eE)}|

YoV

Max CLIQUE®. I is a recursive graph G.
Q. Does G contain an infinite clique?

3. Max IND SET. [ is an undirected graph G = (V, E).

S(G)={Y:YSV,Vy,ze Y (y,2)¢E}
m(G, Y)=Y]
max [{x:xe Y A Vy,ze Y (y,2) ¢ E}|.

Yev

Max IND SET®. I® is a recursive graph G.
Q. Does G contain an infinite independent set?

4. M~ VERTEX COVER. I'is a graph G=(V, E).

S(G)={Y=V:Y(u,v)eE(ueV—Y or veV— Y)}
={Y<SV:Vu,veY (u,v)¢E}
m(G, Y)=|Y].

(This problem is identical to Max IND SET.)

MIN VERTEX COVER™. [ is a recursive graph G.

Q. Is there a vertex-cover of G whose complement is
infinite?

5. Max SET PAckING. I is a collection C of finite sets,
represented by pairs (i, j), where the set i contains j.

S(C)={Y<SC:V4,BeY (4#B=>AnB=()}

MAx SET PACKINq"". I® is a recursive collection of
infinite sets C. s
Q. Does C contains infinitely many disjoint sets?

6. MiN SET COVER. [ is a set A ={a,, ..,a,} and aset C
of subsets of 4.

S(A,C)={Y<C:Vae431Se C— Ysuchthatae S}
m((4, C), Y)=|Y].

Mi~ SET COVER®. I is a recursive set 4, and a recursive
collection C of subsets of 4.

Q. Is there a set-covering of 4 from C, whose complement
is infinite? ‘

7. MaX SUBGRAPH. [ is a pair of graphs, G=(V, E;)
and H=(V,, E,), with V, = {v,, .., v,}.
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S(G, Hy={Y: YSV; xV,,¥(1,v), (x, y) €Y (u#x
Av#Y A (1, x)€Ey (v, y) € Ey)}
m((G, H), Y) =k iffv,, .., v, appearin ¥, but v, ,

does not appearin Y.

Max SUBGRAPH®. I® is a pair of recursive graphs,
Hand G.

Q. Is H a subgraph of G?

The finite problem is defined so as to yield the desired
infinite one. Note that if we were to define m((G, H), Y)
simply to be | Y], then MAX SUBGRAPH™ would become the
problem of finding a common infinite subgraph of Hand G.

8. Max Coror. I is a graph G =(V, E) with V=
{vy, ., 0,}, and a set C={co, .. ¢} of colors.

S(G, C)={y: Vi, 1<i<|yl, y,€C
AV, FEIP (v, v) €E= i # 3)}
m((G, C), 7) =k iff ¢, appears k times in .
ly}lgagl{ki Ye=co AV, j< |7 (v, ) € E=y, # ¥} |

Max COLOR®. I is a recursive graph G, and a recursive

set of colors.
Q. Is there a coloring of G in which the first color, ¢y,
appears infinitely often?

9. LARGEST COMMON SUBSEQUENCE (LCS). I is a finite
alphabet Z and a finite set R of strings from 2 *:

S(Z, R)={x:Vwe R, xis asubsequence of w}
m((Z, R), x) = |x|.

(Note. ab is a subsequence of cacbc.)

LCS®™. I is an infinite alphabet 2’ and an infinite recur-
sive set R of infinite strings over Z“. (Instances can be
represented by triples (i, j, @), where the jth character of the
ith string is a. This case is a natural generalization of triple
representation in the finitary case.)

Q. Is there a common infinite subsequence of all the
strings in R?

10. Max Exact Cover By Pamrs (Max 2XC; this is
essentially PERFECT MATCHING). T is a set X = {xy, ., X2},
and a collection C of unordered pairs from X.

S(X,C)={Y: Y= C, Ve, deY(cnd= )}
m((X, C), Y)=kiff x,, ..., x; appear (in some pairs)in Y,

but x, , ; does not appearin Y.

Max 2XC=. I is an infinite set X, and an infinite recur-
sive collection C of pairs from X.
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Q. Is there an infinite subset C’ of C that is an exact cover
of X?

11. Max Hawm PaTH. [ is a directed graph G=(V, E),
V={0y, s Uy}

S(G)={7: Vi, 1<i<|jl, yi €V A(YiVis1)EE
ISR EINEINETES TSP
m(G, f)=k lff Ul, Uz, eaey Uk 6}7 and Uk+l ¢J7

max |{k: Vi, 1 <i<k, v, e AVLIKi<|Pl, (Vi Viet)EE
sV

AV GG T, (2= # b

Max Ham PATH®. I is a recursive graph G.

Q. Does G contain a Hamiltonian path?

Max PLANAR HaM PATH and Max UNDIRECTED PLANAR
HaM PATH are the problems of detecting the existence of a
Hamiltonian path in directed and undirected planar graphs,
respectively.

12. Max SaT2. I is a set of variables U= {¢;, 710,, 02,
=G, oy Gy T10,,} and a collection of clauses represented
by triples C={(i, j,0): 0e U appears in location j in
clause I}.

S(U, C)={7: Vi, 1<i<|7,3 (i, j, y)eC
AV, Gy # )}
m((U, C), ) =17
mygx|{l: 1<I< |9, Vi, 1<i<|pl, 3 (4, y)eC

AV j(y: # —|yj)}|'

(Note. This is not the same as Max SAT from [PY], whose
infinite version, as mentioned in Section 1, is trivial.)

MAx SAT2®. I is a recursive set of variables, and a
recursive collection C of clauses represented by triples.

Q. Is there a truth assignment that satisfies all the clauses
in C?

13. Max TiLING. ] is a grid D of size nx n, and a set of
tiles T= {ty, .., t,,}. (We assume the reader is familiar with
the rules of tiling problems. See, e.g., [H1].)

S(D, T)={Y: Yis alegal tiling of some portion of D
with tiles from 7}
m((D, T), Y) =k iff ¥ contains a tiling of a full
k x k subgrid of D.
Max TILING®. I® is a recursive set of tiles T-
grg& Can T tile the positive quadrant of the infinite integer

We now prove that the infinitary versions of these
problems are all '} -complete. From Theorem 1 it will then
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Max Path in Trees

Max Clique

Max Subgraph
Max Ind Set

Min Vertex Cover Max Set Packing  Max Color

Min Set Cover Largest Common Subsequence

Max 2XC

Max Planar Hm Tiling

l Max Undirected Planar Ham Path ~ Max Sat2

Max Ham Path

FIG. 1. Scheme of the M-reductions.

follow that the finitary versions must be outside Max X', . By
Proposition 2 it suffices to show Z'|-hardness, for which we
shall exhibit appropriate M-reductions between finitary ver-
sions, and employ Theorem 2.

First note that Max PaTH IN TREES® is 2'} -complete. This
is simply Kleene’s result (see [R, p. 396]). We now prove all
the others X1 -hard by exhibiting M-reductions. See Fig. 1.

PROPOSITION 3. Max PaTH IN TREES o 5, MAX CLIQUE.

Proof. Let T=(N, P, O) be an instance of MAX PATH IN
TREES, with m, as the objective function.

Define a monotonic reduction g =(,, t,, t3), as follows:
t,(T) = G=(N, E), where E contains all the edges of T (but
undirected), and edges between node and all its ancestors:

For each p= (P, .. Pxy €S(T), let t(p) ={pi, - Pi}
€ S(t,(T)). For each Qe S(t,(T)), let t:(Q)={q:q¢€ @}
that are ordered according to their distance from the
root. |

PrROPOSITION 4. Max CLIQUE o 5, MAX IND SET.

Proof. Appears in Section 4. ||

PROPOSITION 5. MAX IND SET oc ,; MIN VERTEX COVER.

Proof. These are actually the same problem, so that the
trivial reduction is fine. |

(a)

PROPOSITION 6. Max IND SET oc, Max SET

PackinG [K].

(b) MIN VERTEX COVER o< 5, MIN SET COVER.

Proof. Let G=(V,E), where V={v,,.,v,}, be an
instance of Max IND SET (or MIN VERTEX COVER). Define a
monotonic reduction g = (¢,, t,, t3), as

1,(G)=C={S, .. S,},
where S,={(i, j): (v;, v,) €E}.

This is for MaX SET PACKING. For MIN SET COVER let ¢,(G)
be Cand 4={(i, j): (v;,v,)€E}. ~
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For each YeS(G), let t,(Y)={S,:v,€ Y} e S(2,(G)).
For each Z e S(1,(G)), let t5(Z) = {v;: S; € Z} € S(G). 1

PROPOSITION 7. MaX CLIQUE oC 5, MAX SUBGRAPH.

Proof. Let G=(V, E) with |V|=n be an instance of
Max CLIQUE. Define g=(t,, f,, ;) as follows: 4H(G) =
(G, Q), where Q is a clique with n vertices {ty, oy Uy}

For each Y=/{y, .., i} €S(G), let 1,(Y)= {y:, u;):
1<i<k}. For each Ze S(t,(G)), let 15(Z) = {y,: for each
1<j<i,(yj"”j)ez}- l

PrOPOSITION 8. Max IND SET oc ,, MAX COLOR.

Proof. Let G=(V,E), with V={v,..,v,}, be an
instance of MAx IND SET. Define g =(1,, 5, t5) as follows:
£t,(G) = (G, C), where C={cg, ..., €}

For each Ye S(G), let t,(Y) = y, where

Yi= ¢,

For each y e S(1,(G)), let t5(7) = {v;: 1<i<n, y,=co}. 1

PRrOPOSITION 9 (Based on [M]). MIN VERTEX COVER oC 4
LCS.

Proof. Let G=(V, E), where V={v,, .., v,} and E=
{e), ., e,}, be an instance of MIN VERTEX CoVER. Define
g=(t, t>, t;) as follows: #,(G) = R, a set of r + 1 sequences
over V. R consists of the sequence {v,v, ---v,», and for
each e, = (v}, v,,) € E, where j <m, the sequences

if v,eY
if v, ¢Y.

§5; =00y U Uy U Ug U2 o Uy 1O g U

For each Ye S(G), let to(Y) = 7, where j is a sequence of the
vertices in Y, in ascending order. Now, y€ S(¢,(G)) is a
common sequence, because for each e, = (v}, v,,) € E(j<m)
i;t is not the case that v, and v, are in ¥, which is the only
case for which an ascending sequence is not a subsequence
of s;: )

For each je S(1,(G)), let t3(7) ={v:vey} =Y.

(V—7Y) is a vertex-cover, because for each e,=
(v, v,,) € E, at least v; or v,, is not in y, and thus in (V' —Y).
Otherwise, y could not be a subsequence of s;.

If R is represented by triples of the form (i, j, k), meaning
that v, € Z, is the jth character in sequence i, then the reduction
is monotonic. |

PROPOSITION 10. MaxX PATH IN TREES o ,, MAX 2XC.

Proof. Let T=(N, P,0), where N={0,d,, d,, .., d,},
be an instance of Max PATH IN TREES, with m, as the
objective function.

Define a monotonic reduction g =(#,, £, 13), as t(T)=

G=(X,C), where X={0,d,,d,,d,,d,,...d,,d,}, and
C={(u,0): (u,v)eP} L {(u,d): u#0}.
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For each p={py, ..., piy €S(T), let

tz(ﬁ)z{ﬁ if p, #0,

where

B= {(pl’ﬁz)a (Pz, ﬁ3)’ seey (pkfla ﬁk)}
U{(u, ) u¢p nu<max{p; 1<i<|pl}}.

For eacAh Be§(t,(T)), Alet t:(B)=<0,d,, d,, ... dp),
where {0,d,,d,, d,, d, .., d;;} are covered by B, but d is
not covered by B. |

In [H2] there is a direct proof of the X'|-hardness of
detecting Hamiltonicity even in (directed or undirected)
highly recursive graphs® of degree 3. However, the proof in
[H2] does not work if the graphs are to be planar. Here
we prove the result for planar recursive graphs, by exhibit-
ing a monotonic reduction from Max 2XC.

ProposiTION 11. Max2XC oc ;,, Max PLANAR HAM PATH.

Proof. The reduction is based on modifying the non-
monotonic reduction that appears in [GJS], to be
monotonic. We do not repeat the entire description appear-
ing in [ GJS] and assume that the reader is familiar with it.
In order to follow our modification, it helps to have Figs. 7
and 8 of [ GJS] available.

Let there be given a set X = {4, .., 4,}, and a collection
S={S,, S,, ... S,} of pairs from X. In [GJS], a planar
directed graph G was constructed, which has a Hamiltonian
path iff § contains an exact cover for X. A node f; and a
sequence of 5 x ¢ nodes is associated therein with each set S;
(see Fig. 7 of [GJS, p. 256]). Any Hamiltonian path P must
begin from the first line in the figure. Thereafter, for each
k, 1 <k <n, Preaches f;, and “turns” right or left according
to whether or not S, is in the cover. It then proceeds along
line k and updates the line, finally arriving at fj , ;. Passing
along line k from the right is possible only if the elements in
S, were not previously chosen, and passing the last line is
possible only if all the elements in X were already chosen.

We incorporate the following changes in order to make
the reduction monotonic:

« Instead of one node f; for each set S;, we order the sets
in S with repetitions as follows:

Sl’ Sl’SZ’Sl’SZ’ S19S25SSsS19SZ,S35S1aS29S35"--

We then associate a node f; with each element in this
sequence. The size of the sequence is O(n?). In this manner
one can choose the sets in such a way that the elements
{a;, a,, .., a,} will be covered in order. We also change the
internal structure of the nodes (Fig. 8 of [GJS, p. 257]) so
as to allow a set f; to be chosen only if all the elements that
are smaller than those in f; were already covered.

5 A graph is highly recursive if it is recursive, its degree at each node is
finite, and the function listing a node’s neighbors is recursive too.
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« Instead of the nodes matching a/l the elements in X, we
insert in the first line only nodes matching elements in ;.
Each line i will contain nodes matching all the elements that
are represented in line i — I, and those that are represented
by f.

« Every line will appear twice, so that we return to f, , ,
from the same side we entered.

« We add two nodes to each edge that connects f; to its
line on the right, in order to force more turns to the right.
(Recall that right turns correspond to choosing elements in
the cover.)

This reduction is monotonic, since the addition of sets to
S will increase the graph only outwards. There will be more
#,’s and more lines, but there will be no need to eliminate
nodes or edges.

For each Ye S(X, S) which is a partial cover of X=
{a,, .., a,} such that m(Y) =k, t,(¥) will be the path that
starts from the first line and turns right from the f;’s matching
the sets in Y, such that {a,, ..., a,} will be covered in order.

For each partial Hamiltonian path H e S(#,(X, §)), that
starts from the first node, the associated cover will contain
exactly the sets matching those f;’s from which the path
turns right. ||

PrOPOSITION 12. MAX PLANAR Ham PATH oc, MAX
HawM PAaTH.

Proof. The trivial reduction #,(G) = G works. |

Max 2XC oc ., Max  UNDIRECTED

PRrOPOSITION 13.
PLANAR HAM PATH.

Proof. Let X={a,,.,a,} and S={S,,..,S,}, with
each S, € X x X. We construct an undirected planar graph,
which is similar to the graph G described in the proof of
Proposition 11. Again, it helps to have Figs. 7 and 8 of
[ GIS] available:

« The nodes f; and the two nodes to the right remain the
same. The edges between them are now undirected.

« The following structure, taken from [ GJT], replaces
each node in the lines of G:

.. a b

This structure forces the path that enters at node a (respec-
tively, b, c, d), to exit from node b (respectively, a, d, ¢).

« Each f;is connected to node a of the leftmost structure
in its appropriate line and to node d of the rightmost struc-
ture in the same line, in order to force the path from left to
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e S

f2 4

£

FIGURE 2

right to be along the top portions, and the path from right « The “copy structure” (appearing in Fig. 8A of [GJ S,
to left to be along the bottom portions. p. 257]) is replaced by the following structure:
o The “update structure” (appearing in Fig. 8B of [ GJS,

« The second line of each f; is connected to the preyious
p. 257]) is replaced by the following structure: :

line and to f;, , such that the path glong this line will be
along the top portions in both directions. (Recall that the
second line corresponding to each f; is used in order to direct

the path to exit from the same side it entered the first line.)
3

If the path passes from left to right (through the top
portions) then this structure is just a “copy structure.”
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Otherwise (the path passes through the bottom portions)
the structure updates, i.e., it requires that the upper “node”
(which is now a structure) was visited already (it means that
the appropriate element was not chosen already), and it
leaves the bottom node-structure nonvisited, in order to
indicate that this element is chosen.

» As before, we allow a set f; to be chosen only if all the
elements that are smaller than those in f; were already
covered. For the appropriate smaller elements we use the
following structure:

A part of such a graph thus looks like Fig. 2.

ProposITION 14, MAX 2XC oc ;, MaX SAT2.

Proof. LetX={d,,d,, .., d,} beaset,and B be a set of
unordered pairs from X. Define g = (¢, », t3) as

t(X, B)=U={(x, y), "(x, y), where (x, y) € B}.

We view U as a set of variables, and by the unorderedness
we take (x, y) and (y, x) to be equal. The sequence of
clauses C is obtained by juxtaposing, in the order listed, the
clauses in the following set:

C= {Cl, Cll, C2, Cz/, veey Cn’ Cnr},
where, for each 1 <i<n,
Ci= V
(di,x)e B
Cy={"(d, x) v ™(d;, y) | x#yand (d, x), (d;, y) € C}}
u{(d;, x) v 1y, x) | y#d,and (d;, x) € C;
and (y, x) e U}.

(di’ x)

The clause C, forces a choice of some pair containing d;, and
the set of clauses C;., forbids double choices of an element.

Now, for each YeS(X,B) which is a cover for
{d,, .., d,}, welet t,(Y)= y, where y contains the variables
satisfying the clauses in {C,, Cy, ..., C;, C\.}. For each
7€ S(t,(X, B)), we let ¢;( ) contain those pairs (d,, d;) that
denote the variables satisfying clauses {C,, C,, .., C¢}. |

191

ProrosITION 15. Max 2XC oc , MaX TILING.

Proof. Let X={1,..,n}, and let Cbe a set of unordered
pairs from X. We construct, monotonically, a tiling problem
on the nxn grid, such that there is an exact cover for
{1,2, .., k} in Ciff the initial & x k subgrid can be tiled.

Define g=(t,, t,, t3) as follows: ¢,(X, C)=T, where T
contains tiles with indexes (encoding colors) of the form:

%S

This forces each of them to be inserted only in a unique
square (i, j). In addition to these indexes, the tiles will con-

tain more symbols as
N

for 1 <i, j<n,i#1 (ie., all the squares, except for the first
column). Thus, they will actually appear as:

j+1
+ i i+l +
J

We also add symbols of the form

_><_

for 1 <i<j<n(ie, the squares above the diagonal).

S

for 1 <b, i, j<n, j#b,i#1 (ie, all squares except the bth
row and the first column).

_>:<_

forl<b<gsn 1<i<j<n, j#b.
Now, for each (a, b) € C (where we assume w.l.o.g. that
a < b) we add the symbols,

_>l’<+

for i =j = a (this will be a candidate for square (a, a)).

_b><+

for i=a, j=b (a candidate for square (a, b)).
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For each Y < C which is an exact cover for {1, .., k},
t,(Y) is the following tiling: for each (g, ) € C, where a < b,

tile the square (a, a) with
b
%
%
b

Now, the remaining squares in the k x k grid can only be
tiled in a single unique manner.

Conversely, for each S which is a tiling of the k x k grid,
t5(S) contains all pairs (a, b) such that the tile

b
x
appears in square (a, a).

It follows that £4(S) is an exact cover for {I, .., k},
because of the fact that, in each line, there must be exactly
one tile whose — and + parts of the colors are

and the square (a, b) with

The reduction is monotonic, since an addition of sets to C
will cause only the addition of tiles to 7. |}

ExampLe. C=1{(1,3),(2,4),(1,4)},D={1,2,3,4}.
The tiling is:
1 2 3 4
s s 5 5
4 k)
-LX 2 -}-2 34+ 3 X4+ 4 5+
4 4 4 4 :
4
4
4 ‘ s 4
3 -1 2 #|+ 2 3 4] 43 4 4] +4 5 4+
3 3 3 3
3 4
3 4
3 3 3 3
2 S X2 -2 X3 ]+ 3 X4 44 X5 4
2 2 2 2
3
3
2 2 2 2
t S X242 X3 e 3 X a4+ X5 s
1 1 1 )

Note. Two additional graph problems of interest, that
have not been dealt with in [ BG2], are planarity and graph
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isomorphism. Here is a brief summary of our findings for
them:

« The problem of detecting whether a recursive graph is
planar is co-r.e.

» Determining whether two recursive graphs are iso-
morphic is arithmetical for graphs that have finite degree
and contain only finitely many connected components.
More precisely, this problem is in I79 for highly recursive
trees; in 779 for recursive trees with finite degrees; in 2 9 for
connected highly recursive graphs; and in 29§ for recursive
graphs with finite degrees that have finitely many connected
components. As to the isomorphism problem for general
recursive graphs, in the conference version of this paper,® we
left open the question of whether the problem is arithmetical
or not. Morozov [Mo] has recently proved that the
problem is indeed X'} -complete.
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