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Abstract Live Sequence Charts (LSC) extend Message
Sequence Charts (MSC), mainly by distinguishing possi-
ble from necessary behavior. They thus enable the spec-
ification of rich multi-modal scenario-based properties,
such as mandatory, possible and forbidden scenarios. The
sequence diagrams of UML 2.0 enrich those of previ-
ous versions of UML by two new operators, assert and
negate, for specifying required and forbidden behaviors,
which appear to have been inspired by LSC. The UML
2.0 semantics of sequence diagrams, however, being based
on pairs of valid and invalid sets of traces, is inadequate,
and prevents the new operators from being used effec-
tively.

We propose an extension of, and a different seman-
tics for this UML language — Modal Sequence Diagrams
(MSD) — based on the universal/existential modal se-
mantics of LSC. In particular, in MSD assert and negate
are really modalities, not operators. We define MSD as
a UML 2.0 profile, thus paving the way to apply for-
mal verification, synthesis, and scenario-based execution
techniques from LSC to the mainstream UML standard.
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1 Introduction

While the language of Message Sequence Charts (MSC),
defined by ITU [18] is a popular means for specifying in-
teractions between objects or processes, it is expressively
weak, being based on a modest semantic notion of a par-
tial ordering of events. This is true also for most proposed
extensions of MSC, where despite enhancements with
regular expression constructs, the underlying semantics
of a partial order remains intact. Live Sequence Charts
(LSC), introduced in [7], extend MSC by allowing a dis-
tinction between possible and necessary behavior, with,
for example, a hot/cold modality for elements within
the charts. It thus enables specification of rich multi-
modal scenario-based properties, such as liveness and
safety, using mandatory, possible and forbidden scenar-
ios. Since its introduction in 1998, the LSC language with
its formal (operational) semantics has triggered much re-
search both on the requirements/specification level and
as an executable programming language for reactive sys-
tems. Thus, formal methods and tools can take advan-
tage of scenario-based specifications throughout the de-
velopment cycle of systems, from requirements capture
and analysis, to design and specification, implementa-
tion, testing, formal verification, and system execution
(see, e.g., [8,16,22,25,27,31]). Initial projects that use
LSC have been carried out recently in the automotive,
telecommunication, and hardware domains (see, e.g., [3,
6]).

The Unified Modeling Language (UML) includes a
section on sequence diagrams, which early versions of the
standard adopted directly from MSC. In its most recent
version [34] 1, the UML 2.0 Sequence Diagrams specifi-
cation is based on a revised metamodel and has adopted
additional important and useful features from MSC and
high-level MSC (HMSC) [18]. These include, for exam-

1 Throughout this paper, we refer to the latest available
UML 2.0 superstructure specification document version of
August 2005. Changes we have seen so far in the draft
adopted specification for UML 2.1 superstructure of April
2006 are insignificant to the issues presented in the paper.
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ple, the concept of InteractionUse (originally called MSC
reference), which allows referring to another interaction
from within a diagram (sharing portions of an interaction
between several other interactions), the notion of Inter-
actionFragment, and its operators for choice, sequential,
parallel, and iterative composition.

However, the most interesting addition to sequence
diagrams in the UML 2.0 standard are two new and cru-
cial operators, assert and negate, which were probably
intended to bring the multi-modal hot/cold essence of
LSC into the new standard, and to allow the specifi-
cation of required and forbidden behaviors, respectively.
These two new operators constitute the main mechanism
adopted by the UML 2.0 authors for increasing the ac-
tual expressive power of the language. Unfortunately, in
section 2.3 we show that the semantics suggested in the
UML 2.0 specification document, which is based on pairs
of valid and invalid sets of traces, is inadequate, and does
not lead to a well defined semantics of these new features
of the language. The semantic confusion around the use
of assert and negate prevents these features from being
used effectively, since the ability to specify liveness and
safety properties, e.g., via required and forbidden behav-
iors, is a fundamental prerequisite for the use of sequence
diagrams in specification, testing and verification, and
also, of course, when executing the language and using
it for actual programming, as discussed in [16].

We believe that the root of the problem is that in-
creasing the expressive power of sequence diagrams to
allow liveness and safety specifications requires a univer-
sal semantic interpretation, similar to the one developed
for LSC, which is not present in the standard’s suggested
semantics.

Thus, in this paper we propose Modal Sequence Di-
agrams (MSD)2, which is an extension of UML 2.0 Se-
quence Diagrams based on the universal/existential dis-
tinction that is at the heart of live sequence charts. MSD
allows denoting parts of an interaction, such as messages
and constraints, or a complete interaction, as universal,
i.e., mandatory, thus specifying that messages have to be
sent, conditions must become true, etc. Technically, we
do this by defining modal interaction fragments. These
extend the InteractionFragment class of the UML 2.0
metamodel with an attribute interactionMode, which can
be either hot (universal) or cold (existential). We ar-
gue that this yields a most natural and useful way to
define the assert and negate operators of UML 2.0 Se-
quence Diagrams, exploiting the multi-modal spirit of
LSCs and adapting it to the UML standard. Thus, assert
and negate, we claim, are not to be viewed as operators
but as modalities.

The similar, but not identical, formalizations to the
semantics of UML 2.0 Interactions in, e.g., [5,17,33] and
the standard document itself [34] (which unfortunately
contains additional problems, some of which we hint to at

2 In the preliminary version of the present paper [15], we
used the term Modal UML Sequence Diagrams (MUSD).

the beginning of Section 6), make it difficult to refer to it
as a baseline for the proposed extension. Still, we believe
our version, MSD, is very close to UML 2.0 Sequence Dia-
grams as they are described in the standard documents,
yet has stronger expressive power and far more robust
semantics. The fact that MSD is defined as a UML pro-
file makes it possible to carry over to mainstream UML
most of the recent results and applications worked out
for LSC, in formal verification, testing, synthesis, and
scenario-based execution. As we shall see, this requires
only minor modifications (e.g., ignoring LSC precharts).

The paper is organized as follows. In Section 2 we
present preliminary background on LSC, on UML 2.0
Sequence Diagrams, and on the problematic definition
of assert and negate in the semantics suggested in the
standard, which is the primary motivation of our work.
Section 3 presents the basics of Modal Sequence Dia-
grams. Section 4 discusses and demonstrates additional
useful constructs in the language. Following Section 5,
which discusses related work, Section 6 contains a dis-
cussion and directions for future work.

Technical details related to the MSD profile are given
in Appendix A. An outline of the formal semantics for
MSD is given in Appendix B.

2 Preliminaries

In this section we give short background on Live Se-
quence Charts and on UML 2.0 Sequence Diagrams. His-
torically, both languages are descendants of Message Se-
quence Charts (MSC) [18]. We assume the reader is fa-
miliar with the basic syntax and partial order semantics
of MSCs and concentrate on the differences between the
two languages that are relevant to this paper.

2.1 Live Sequence Charts

A sequence chart consists of lifelines and events, such
as sending a message, receiving a message, or evaluating
a condition. Events are ordered along lifelines from top
to bottom. The LSC language [7] defines two types of
charts: universal (annotated by a solid borderline) and
existential (annotated by a dashed borderline). Univer-
sal charts are used to specify restrictions over all possi-
ble system runs. A universal chart typically contains a
prechart that specifies the scenario which, if successfully
executed, forces the system to satisfy the scenario given
in the actual chart body. Existential charts specify sam-
ple interactions between the system and its environment,
and must be satisfied by at least one system run. They
do not force the application to behave in a certain way
in all cases, but rather state that there is at least one set
of circumstances under which a certain behavior occurs.
Existential charts can be used to specify system tests,
or simply to illustrate longer (non-restricting) scenarios
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User ATM

WithdrawalReqeust

enterService ()

withdrawal ()

getAmount ()

Fig. 1 A universal LSC: WithdrawalRequest.

that provide a broad picture of the behavioral possibili-
ties to which the system gives rise.

To illustrate the main concepts and constructs of the
LSC language we use a simple example, an ATM (Au-
tomatic Teller Machine) that offers money withdrawals
(the example is intentionally similar to other examples,
given, e.g., in [17], in order to allow easy comparison be-
tween the different approaches). The chart appearing in
Fig. 1 specifies that whenever the ATM asks the user
to enter a service and the user chooses withdrawal, the
ATM must send the user a message asking for the with-
drawal amount. This message is depicted using a solid
red arrow, to denote that it is mandatory, hot in LSC
terminology; when reached, the message must be sent
and must be received.

The chart SuccessfulWithdrawal appearing in Fig.
2 is an existential chart, as denoted by its dashed bor-
derline. It describes a scenario in which a user asks to
withdraw an amount v from her account. Since the chart
is existential, it specifies a possible scenario, i.e., a sce-
nario that should be satisfied by at least one system run.

The examples show only the most basic LSC fea-
tures. The LSC language has been extended to support
many additional features, such as symbolic lifelines, tim-
ing constructs, and forbidden elements. For a detailed
description of these the reader is referred to [16].

2.2 UML 2.0 Sequence Diagrams

We briefly summarize the abstract syntax and semantics
of UML 2.0 interactions as they are given in the standard
[34]. A more thorough description can be found in the
standard superstructure document itself and in, e.g., [5,
33].

UML 2.0 Interactions can be displayed in several dif-
ferent types of diagrams but the differences between the
types are not relevant to our discussion, so that we use
Sequence Diagrams and Interactions interchangeably. A

User ATM Bank

SuccessfulWithdrawal

enterService ()

withdrawal ()

getAmount ()

amount (v)

reduce (v, user)

reduced ()

confirmed ()

giveMoney (v)

Fig. 2 An existential LSC: WithdrawalSuccess.

UML 2.0 Sequence Diagram has sets of Lifelines, Mes-
sages, and InteractionFragments. A lifeline represents Oc-
currenceSpecifications at one of the entities involved in
the interaction. A message typically associates two Oc-
currenceSpecifications, corresponding to sending and re-
ceiving events. Since Interaction is a subclass of Interac-
tionFragment, interactions may contain any number and
kind of interactions. An important kind of interaction
is CombinedFragment, consisting of an operator and a
number of operands, which may be either plain interac-
tions or, again, combined fragments.

The semantic domain for UML 2.0 Interactions con-
sists of OccurrenceSpecifications, which represent mo-
ments in time (with no duration) associated with actions,
such as the sending or receiving of a message. A trace is
a sequence of occurrence specifications.

According to the standard, the semantics of an inter-
action is given as a pair of sets of traces, representing,
respectively, the valid and invalid traces. These two sets
need not be exhaustive, as the traces that are not in-
cluded in the union of the two sets are not described
and we cannot know whether they are valid or invalid;
unspecified traces are thus contingent. According to the
standard, invalid traces arise only out of the operators
negate and assert. Ignoring these, the semantics of com-
bined fragments of the diagrams with operators such as
seq, par, loop, and alt is quite intuitive. For example, the
set of traces defined by applying the alt operator (with
guards) to a set of interaction fragments is the union
of the guarded traces of the operands, and the set de-
fined by the loop operator with an integer constraint n
is the result of iteratively applying n concatenations to
the traces of the loop operand (body).

In addition to these high-level structural operators,
the standard defines a macro-like mechanism for modu-
larity, using the ref operator. If we forbid the use of re-
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cursive references (which, by the way, the standard does
not refer to at all, so there is no way of knowing whether
they are allowed or not. . . ), the semantics of a fragment
that includes ref is simply the semantics of the fragment
after syntactically substituting the references with copies
of the referenced interactions.

2.3 The problem with assert and negate

We now briefly illustrate the inadequacy and vagueness
of assert and negate as they are defined in the standard
specification document [34]. As to assert, the standard
explains that “the sequences of the operand of the as-
sertion are the only valid continuations. All other con-
tinuations result in an invalid trace” [34, p. 456]. This
suggests that the invalid set of traces for an asserted frag-
ment is its complement, i.e., the set of all other possible
traces. Later however, the standard declares that “the
invalid set of traces are associated only with the use of
a Negative CombinedFragment” [34, p. 468]. This seems
contradictory. Also, it is not clear what is the scope of
“the only valid continuations” [34, p. 456] (i.e., in LSC
lingo, what is the prechart).

As to negate, according to the standard, it “desig-
nates that the combined fragment represents traces that
are defined to be invalid” [34, p. 455], so neg seems a
reasonable and a natural way to specify counterexam-
ples. However, “all interaction fragments that are differ-
ent from Negative are considered positive meaning that
they describe traces that are valid and should be possi-
ble” [34, p. 455, emphasis added]. This leads to the basic
problem: what does a ‘valid’ trace mean? Is it sometimes
possible, initially possible, or always possible?

These semantic confusions are significant, in that they
prevent these important features from being used effec-
tively. Indeed, assert is defined in the standard specs but
is not mentioned in recent works such as [11], which dis-
cuss liveness in sequence diagrams, nor does it appear in
the popular UML user guide [2]. In fact, no tool seems
to exist which adequately supports a reasonable inter-
pretation of assert and negate as they are defined in the
standard, nor have we seen any paper with a satisfac-
tory proposal for such an interpretation. We believe that
the root of the problem is that increasing the expressive
power of sequence diagrams to allow liveness and safety
specifications requires a carefully worked out distinction
between existential and universal interpretations, similar
to that made in LSCs [7,16]. In a nutshell, the way we
do this, to be described next, calls for viewing assert and
negate as modalities rather than as operators.

3 Modal Sequence Diagrams

We use the term Modal Sequence Diagrams (MSD) for
our proposed modal extension of UML Sequence Dia-
grams. As a basis for the extension, we start off with

<<enumeration>>

InteractionMode

hot
cold

<<stereotype>>

modal

interactionMode :InteractionMode

Fig. 3 The stereotype modal.

<<modal>> 
InteractionFragment

interactionMode : InteractionMode = cold

Interaction

OccurrenceSpecification

StateInvariant

Constraint

Fig. 4 Extending InteractionFragment with the modal
stereotype.

the so called existential or positive fragment of UML
2.0 Interactions, i.e., without assert and negate. To al-
low the specification of modalities over interactions, we
define a stereotype modal with a single attribute in-
teractionMode, which, in the spirit of LSC, can be ei-
ther hot (universal) or cold (existential) (see Fig. 3).
The new stereotype is introduced as an extension of the
abstract class InteractionFragment , and hence also of
its subclasses: Interaction, OccurrenceSpecification, and
StateInvariant (see Fig. 4).

We now explain the semantics of an MSD specifica-
tion. We consider a system-model as consisting of ob-
jects, or instances, each of which has a set of associated
actions and variables. In general, we consider infinite
runs.

An MSD specification is a set of modal sequence di-
agrams. Roughly, the semantics of an MSD specification
is just like that of LSCs [7,16]. It is given by identifying
the trace-language of each diagram and then using it to
define when a system-model satisfies the specification: A
system-model satisfies an MSD specification if (1) every
one of its possible runs satisfies each universal diagram
in the specification, and (2) every existential diagram is
satisfied by at least one possible system run.

3.1 The basics

The semantics of an MSD interaction fragment depends
both on the partial order induced by its occurrence speci-
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fications and on its mode. In order to support sequential
composition of MSDs, we leave out the prechart con-
struct from LSCs. Instead, we take a more general ap-
proach, where cold fragments inside universal interac-
tions serve prechart-like purposes: a cold fragment does
not have to be satisfied in all runs but if and when it is
satisfied it necessitates the satisfaction of its subsequent
hot fragment; and this is true in all runs.

As to notation, we can propose a number of alterna-
tive ways of distinguishing universal from existential ele-
ments. One is to adopt the notation from LSC: universal
MSDs are annotated by a solid borderline and existen-
tial MSDs by a dashed borderline. The same method can
be used to distinguish universal elements (messages, con-
straints, etc.) from existential ones. One can also use the
LSC color coding: hot elements in red and cold elements
in blue. In addition, we suggest to change the keyword
on the top left corner of universal diagrams from sd to
usd.

Consider the example Withdrawal MSD of Fig. 5.
This MSD is universal, as can be seen by its solid bor-
der and the keyword usd. It specifies that whenever the
ATM asks the user to enter a service and the user asks for
a withdrawal, the ATM must ask the user for the with-
drawal amount. Then, if the user has entered an amount
v, the ATM must ask the bank to reduce the amount
from the user’s account. If and when the bank sends the
reduced message to the ATM, the ATM must send the
user a confirmation message and give her the money.

To conform to the standard’s notation, we allow the
use of assert in MSD, but we interpret it as syntactic
sugar for assigning a hot mode to all the Occurrence-
Specifications inside the interaction fragment operand.
Fig. 6 is thus equivalent to Fig. 5.

We define the trace-language of a universal MSD us-
ing an alternating weak word automaton (AWW) [23,29]
(Similar constructions for LSC were given by Bontemps
et al. in [1] and by Klose et al. in [20]). For a universal di-
agram U , the AWW consists of a state for each legal cut
and a transition for each legal occurrence specification,
representing the partial order induced by the diagram.
All states have self transitions labeled Σ \M , where Σ is
the set of all occurrences in the system-model and M is
the set of occurrence specifications mentioned in U . All
the states that have no hot outgoing transitions repre-
sent cold cuts and are accepting. These states also have
an outgoing transition to an accepting sink state, labeled
M \mc, where mc is the set of cold enabled events in the
state. All non-accepting states, i.e., states with outgoing
hot transitions, have an additional outgoing transition
to a rejecting sink state labeled M \ mh, where mh is
the set of enabled events in the state3. Finally, the ini-

3 Specifically, this means that when there are hot and cold
enabled messages in the same (hot) cut, an occurrence of any
one of the enabled messages, either hot or cold, is not consid-
ered a violation, so the trace remains in the trace-language
of the diagram.

:User :ATM :Bank

usd Withdrawal

enterService()

withdrawal()

getAmount()

amount(v)

reduce (v, user)

reduced()

confirmed()

giveMoney(v)

Fig. 5 A universal MSD for Withdrawal.

tial state, representing the minimal legal cut, has a self
transition labeled Σ, quantified universally with all the
minimal occurrence specifications. The partition of the
state space is induced naturally from the partial order of
legal cuts. We give an outline of this construction more
formally in Appendix B.

Fig. 7 shows part of the AWW corresponding to the
Withdrawal MSD (we simplify the example by unifying
a message sent and received into a single occurrence). A
system-model satisfies the universal MSD Withdrawal if
all its runs are in the trace-language of the diagram, i.e.,
if all its runs are accepted by the AWW of Fig. 7.

For an existential MSD the construction is similar.
States represent cuts and transitions represent legal oc-
currences. The main differences are that the only accept-
ing state is the one representing the maximal cut, and
that the initial state’s self transition labeled Σ is quanti-
fied existentially (as a non-deterministic choice) with all
the minimal occurrence specifications, because the au-
tomaton has to guess when a satisfying run starts (see
Appendix B). A system-model satisfies an existential di-
agram if it has at least one run that is accepted by the
diagram’s automaton. Figs. 8 and 9 show an example
existential MSD of a successful withdrawal scenario and
its automaton, respectively.



6 David Harel, Shahar Maoz

assert

assert

assert

:User :ATM :Bank

usd Withdrawal

enterService()

withdrawal()

getAmount()

amount(v)

reduce (v, user)

reduced()

confirmed()

giveMoney(v)

Fig. 6 Assert as syntactic sugar for assigning a hot mode to
all the OccurrenceSpecifications inside the interaction frag-
ment operand.

3.2 Universal and existential constraints

A UML 2.0 StateInvariant specifies a runtime constraint
on the participants of the interaction, and corresponds
to the condition construct of MSC and LSC. Constraints
are Boolean expressions over attributes associated with
the participants in the enclosing interaction. In order to
allow expressions that involve attributes from more than
one participant, we propose to extend the abstract syn-
tax definition given in the standard [34, p. 487] so that
StateInvariant may cover more than one lifeline from the
interaction 4. This modification may look minor but is
rather important; it is necessary in order to synchronize
the moment of evaluation of the constraint, specifically
when it includes attributes from two or more instances,
or when the moment of evaluation should depend on oc-
currences from two or more instances; see [16].

As can be seen in the abstract syntax of MSD (Fig.
4), a hot/cold modality is attached not only to mes-
sages (through their send and receive message occurrence

4 This was defined for LSC in [16], was suggested for UML
2.0 in the preliminary version of the present paper [15], and
was recently also proposed by Knapp and Wuttke in [21].

enterService ()

withdrawal ()

getAmount ()

amount (v)

M \ withdrawal ()

M \ amount (v)

M \ getAmount()

M \ reduce (v, user)

reduce (v, user)

ΣΣΣ

∧∧∧∧

Fig. 7 Part of the automaton for Withdrawal of Fig. 6. Self
transitions labeled Σ \M omitted.

:User :ATM :Bank

withdrawal()

amount(v)

reduced()

giveMoney(v)

sd SuccessfulWithdrawal

Fig. 8 An existential MSD describing successful withdrawal.

specification) but also to StateInvariants. Semantically,
a trace where the constraint of the StateInvariant is eval-
uated to FALSE is not in the trace-language of the en-
closing interaction (because it cannot be completed into
an accepted run). The constraint of a universal (hot)
StateInvariant must evaluate to TRUE, because all sys-
tem runs that reach it have to be in the trace-language
of the interaction.
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withdrawal()

amount( v)

reduced ()

Σ

giveMoney (v)

Σ

Fig. 9 The automaton for the existential interaction
SuccessfulWithdrawal of Fig. 8. Self transitions labeled
Σ \M omitted.

:ATM :Bank :Account

usd Balance

reduced()

reduce (v, user)

Account.balance > v

Account.balance     0≥

Fig. 10 A universal MSD with hot and cold conditions.

Fig. 10 shows a universal MSD with two constraints.
The first is existential; it does not have to be true in
all runs. If it is true, and the run continues with the
reduced message sent from the Bank to the ATM, the
universal constraint that specifies that the balance has
to be positive when the end of this interaction is reached.
Fig. 11 shows the alternating automaton for the MSD of
Fig. 10.

This example also shows the importance of includ-
ing in the domain of event occurrences, and hence in
the trace-language of an interaction, not only messages
sent and received but also all the values of attributes of
participating instances.

reduce (v, user)

balance > v

reduced ()

not (balance > v) 

M \ reduced ()

ΣΣΣ

not (balance >= 0)

balance >= 0

∧∧∧∧

Fig. 11 The automaton for Balance of Fig. 10. Self transi-
tions labeled Σ \M omitted.

3.3 Specifying forbidden scenarios

Forbidden scenarios are system runs we do not want our
system-model to exhibit. Using the universal modality,
our definition of MSD has already allowed defining for-
bidden scenarios implicitly. For example, the universal
MSD of Fig. 5 specifies that a trace where the ATM
received the reduced message from the bank but never
gave the money to the user is illegal; a system-model
that can possibly exhibit it does not satisfy the MSD
specification. Still, the ability to explicitly specify for-
bidden scenarios is very important in practice, since in
many cases, specifically in formal verification, it is more
natural and shorter to specify what should never happen
(a safety property; a counterexample) than to specify all
legal possibilities.

In MSD, specifying forbidden scenarios can be done
using a universal constant FALSE constraint, just like in
LSCs. Fig. 12 shows an example of a universal MSD with
a constant FALSE constraint; it specifies that a trace
in which the bank answered the request for reduction
with the message account blocked, but the ATM has
delivered money to the user, should never happen.

To use the standard’s notation, we allow the use of
the negate operator. As in the case of assert, we interpret
it as syntactic sugar for adding a hot constant FALSE
constraint immediately after the last OccurrenceSpecifi-
cation (actually, all the last ones) in the Interaction-
Fragment operand; i.e., as a maximal element in the
fragment. Fig. 13 is thus equivalent to Fig. 12.

Placing the universal FALSE constraint as a max-
imal element following an interaction fragment means
that the fragment specifies a forbidden scenario, i.e., one
that the system-model is not allowed to satisfy under
any set of circumstances. If the system-model satisfies
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:User :ATM :Bank

usd Failed Blocking

giveMoney (v)

reduce (v, user)

FALSE

accountBlocked ()

Fig. 12 Using a hot FALSE condition to specify a forbidden
scenario.

:User :ATM :Bank

usd Failed Blocking

giveMoney (v)

reduce (v, user)

accountBlocked ()

negate

Fig. 13 Negate as syntactic sugar for a hot FALSE condi-
tion.

the preceding fragment it must satisfy the hot FALSE
constraint that follows it, which is impossible and leads
to a contradiction.

3.4 Handling multiple MSDs

As with LSCs, an MSD specification typically includes
many overlapping interactions, i.e., ones that have non-
disjoint sets of occurrence specifications (more precisely,
different occurrence specifications which reference the
same events). The UML 2.0 specification document, how-
ever, does not clearly define the relationship between
different sequence diagrams in creating a single speci-
fication. A näıve union of trace-languages may suffice if
all the diagrams are existential, i.e., when no mandatory
specifications are given, but it definitely does not suffice
in the case of a general MSD specification, which may
consist of overlapping existential and universal diagrams.

The trace-language of a set of universal diagrams is
the intersection of the given trace-languages. This relates
to the notion of specification consistency and system-
model synthesis, i.e., to the issue of whether, given an
MSD specification, there is a system-model that satis-

fies it and if there is one how can we construct it. These
questions are easy to handle when all specifications are
existential, but become a lot more complex (and inter-
esting) for general universal MSDs. They were answered
in detail for LSC specifications in [13,14], some of the
results of which may be adapted to MSD too.

3.5 Using existential sequence diagrams

Existential MSDs that include no hot fragments have
weak expressive power but are, of course, useful. First,
given a set of system runs and an existential diagram, one
can test whether any of the runs is in the trace-language
of the diagram. Thus, existential diagrams with no hot
fragments may be used for non-restrictive tests. Note
that a single system run may suffice to ensure the satis-
fiability of an existential diagram with no hot fragments.

Second, the existential mode may be viewed as a
form of under-specification of requirements, suitable for
the early phases of the system’s life cycle. As more in-
formation is gathered about the system, the existential
specification can be refined by adding universal diagrams
and hot fragments. Moving from existential to universal
specifications is thus a form of refinement, orthogonal to
other forms of interaction specifications refinement such
as partial vs. complete order and incomplete vs. complete
information protocols.

Finally, a specification with only existential diagrams
is rather weak, as it defines only a set of example runs.
On the other hand, a system-model that has no runs
at all may satisfy any specification consisting of only
universal diagrams (assuming no diagram contains hot
minimal elements). Thus, like in LSC, the full expressive
power of MSD comes from the combination of existential
and universal diagrams in a single specification.

4 Advanced constructs

MSD is easily and naturally applied to interactions that
include combined fragments with operators such as loop
and alt. Consider for example the universal diagram shown
in Fig. 14. It specifies that whenever the ATM calls the
bank with a login request, the bank must try to log the
user into the database. If the database is busy, it must
inform the bank that it is busy, and the bank must retry
to login. If the database is not busy, a cold violation oc-
curs, and the scenario is exited (since the condition is
cold, this is a legal trace; i.e., this trace is in the trace-
language of the diagram; perhaps the other case, where
the database is not busy, is handled in another diagram).
If and when the loop is completed three times, the bank
must inform the ATM to try again later. Note that to
specify that a loop must be completed, one needs to as-
sign a hot mode to all the interaction fragments inside
the loop’s operand. After the bank informs the ATM to
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displayOfflineMessage()

alt

loop 3

:ATM :Bank :Database

usd LoginBusy

tryAgainLater()

login (user)

login (user)

busy()

busy = true

login (user)

offline()

Fig. 14 Using the loop and alt operators.

try again later, the ATM may try to login again or call
the bank with an offline request (the alt operator in this
fragment does not have guards, so we do not know how
the choice is made). In the latter case, the ATM must
eventually also call its own method to display the offline
message.

In the remainder of this section we briefly define and
demonstrate how the modal extension, MSD, relates to
and extends several additional language constructs from
UML 2.0 sequence diagrams.

4.1 The break operator and nested fragments

The interaction operator break, defined in the standard
[34, p. 454], designates that the trace of its (possibly
guarded) interaction operand should be considered, in-
stead of the remainder of the enclosing interaction frag-
ment: A break operator with a guard is chosen when
the guard is true and the rest of the enclosing interac-
tion fragment is ignored. When the guard of the break
operand is false, the operand is ignored and the rest of
the enclosing interaction fragment is chosen.

In MSD, following the definition of LSC subcharts in
Chapter 10 of [16], a similar specification can be defined
using cold violations in nested fragments. When a cold
violation occurs, either because of a violation of the par-
tial order when the cut state is cold, or as a result of a
false evaluation of an enabled cold condition, the (local)
trace is accepted, the rest of the fragment is ignored, and
the trace continues in the enclosing interaction fragment.

In UML, however, combined interaction fragments
may be used with different operators and for different
purposes. Hence, syntactic nesting of one fragment within
another, e.g., in order to specify a number of guarded

nested

logging = enabled

:ATM :Bank :Database

usd Logging

ready()

log (action)

log (action)

done()

log (action)

Fig. 15 Using a nested fragment.

alternatives, does not necessarily mean that the inner
fragment’s trace-language is semantically nested; i.e., the
scope of events occurrences considered as violating in
the inner fragment may include the enclosing fragment.
Therefore, we propose to explicitly designate nested frag-
ments with a new operator nested. The trace-language
of a nested fragment is independent of its enclosing frag-
ment; i.e., the set of messages to consider is limited to
the nested fragment and does not include messages from
its enclosing fragment. Thus, as suggested above, when
a cold violation occurs within a nested fragment, the (lo-
cal) trace is accepted, the rest of the fragment is ignored,
and the trace continues in the enclosing interaction frag-
ment. If a hot violation occurs, however, the local trace
is rejected, hence, the trace cannot be completed into a
trace in the language of the enclosing fragment.

Fig. 15 shows a simple example of the use of a nested
fragment. Since the nested fragment does not begin with
a hot element, it is essentially optional (because techni-
cally, the empty trace is in its trace-language). If the log
message between the bank and the database does occur,
and logging is enabled, the action must be logged and the
database must send the message done to the bank. If the
log message between the bank and the database occurs,
but logging is not enabled, the nested fragment is exited,
and the trace continues in the enclosing interaction.

4.2 The consider and ignore operators

By default, when interpreting an interaction, we consider
exactly those occurrence specifications that are given in
it explicitly. An interaction specification constrains the
partial order only between occurrences that it contains,
because, intuitively, a message or a constraint that does
not appear explicitly in the specification is irrelevant to
its trace-language and its satisfaction relation. In some
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cases, however, it is useful to be able to consider messages
that do not appear in an interaction. An occurrence of
such a message in a system-model run affects the trace-
language of the interaction, because it is considered a
violation of the partial order induced by the specified
interaction.

The operator consider (and, respectively, its dual ig-
nore), allows one to explicitly specify messages that should
be considered (resp., ignored) although they do not ap-
pear (resp., do appear) in the interaction operand. The
two operators are defined in the UML 2.0 standard spec-
ification [34, p. 458], where they require the designer to
explicitly list all the messages that need to be considered
(resp., ignored) within the interaction fragment operand.
Adding more occurrences to the considered set results
in more restrictive specifications: to be included in the
trace-language of the diagram, a run not only needs to
exhibit the occurrence specified in a matching order but
also needs to not exhibit any of the additional occur-
rences in between. The dual holds for ignore: adding oc-
currences to the ignore set results in more permissive
specifications.

The idea of adding a designated set of messages that
are not allowed to occur anywhere except if specified
explicitly in the chart, even if they do not appear in the
chart, was considered for LSC in [13, p. 17]. It was later
generalized in the notion of LSC forbidden elements, in
Chapter 17 of [16].

In MSD, we generalize the use of the consider and
ignore operators, taking advantage of its modal seman-
tics, ideas from LSC forbidden elements [16], and the use
of interaction fragments in the standard.

MSD extends the abstract syntax of consider and
ignore given in the standard in two ways. First, we allow
the use of the wild-card ‘∗’. Thus, consider ∗ specifies
that all system-model messages between the participants
of this interaction fragment should be considered, i.e.,
that the traces explicitly specified in the fragment are
complete.

Second, and more interestingly, instead of specifying
a set of messages to be considered or ignored, we allow
one to specify a set of modal interaction fragments. A
successful completion of a considered fragment from this
set, affects the trace-language of the enclosing combined
fragment: completion of a hot considered fragment pre-
vents the resulting trace from being included in the trace-
language of the enclosing combined fragment; completion
of a cold considered fragment does not prevent the re-
sulting trace from being included in the trace-language
of the enclosing combined fragment; instead, it results in
a cold violation and the trace is allowed to continue in
the enclosing combined fragment.

As to notation, one can use the notation suggested
in the standard, optionally replacing the message names
in the list with interaction names (as in InteractionUse).
Alternatively, the considered fragments can appear ex-

cardStatus != “inside”

:User :ATM :Bank

usd Withdrawal2

enterService()

withdrawal()

getAmount()

amount(v)

reduce (v, user)

reduced()

giveMoney(v)

consider

cancel()

startBackup()

backupStarted()

Fig. 16 Using the modal consider operator.

plicitly as additional interaction operands after the first
(main) operand of the combined fragment.

Note that our extension does not require a change
in the abstract syntax of the standard, as consider and
ignore are already operators of a combined fragment,
which has a set of fragments as operands. We do, how-
ever, restrict each of the considered fragments to be ei-
ther hot or cold; i.e., we do not allow alternation of
modes.

Fig. 16 demonstrates the use of the extended consider
operator of MSD. It specifies that an occurrence of the
message cancel between the user and the ATM during
the execution of the first (main) operand, i.e., between
the call to the message amount(v) and the receipt of
the message reduced, is a cold violation; that the card
status must equal ‘inside’ throughout the execution of
the main operand; and that the bank is allowed to send
the message startBackup to the ATM during the execu-
tion of the main operand, but then the ATM should not
reply with the message backupStarted. The reason for
the latter is that (parallel, interleaving) successful com-
pletion of this trace will constitute a hot violation and
will prevent the resulting trace from being included in
the trace-language of the interaction.
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Note that in this example the considered combined
fragment is not explicitly nested. Therefore, if a cold vi-
olation occurs inside it, the resulting trace is accepted
by the enclosing interaction and the rest of it is ignored.
Note also that we still allow the use of the original con-
sider and ignore operators; messages listed under con-
sider (resp. ignore) are removed from (resp. added to)
the self transition labeled Σ \M on the cut-states within
the consider (resp. ignore) main operand.

Thus, using the MSD extended consider operator
with StateInvariants (conditions), one can specify invari-
ants that may/must hold during the entire execution of a
fragment. The use of interaction fragments as operands
for the consider CombinedFragment, together with the
general modal semantics we provide for MSD, signif-
icantly increases the expressive power of the language
and allows one more compact and intuitive specification
of complex behavior.

5 Related work

In [32,33], Störrle presents the semantic problems around
assert and negate as they are defined in the standard
specifications. He discusses alternative interpretations for
assert and negate, and shows the difficulty of finding one
that is consistent both with the explanations given in the
standard and with the intuitive intended meaning of re-
quired and forbidden behaviors.

Cavarra and Filipe [4] compare LSC and UML 2.0
Sequence Diagrams and nicely identify the limitations
of the latter in adequately distinguishing possible from
mandatory behavior. They suggest a solution in the form
of an after-eventuality OCL template which can be ap-
plied at the local level of a message or at the more global
level of an interaction. The after-eventuality template
can be viewed essentially as a textual representation of a
universal LSC. This solution, however, keeps the impor-
tant liveness requirements within textual logical formu-
las outside the visual syntax of the modeling language.
If the extensive use of textual logical formulas outside
the diagrams is necessary, then one could use other ap-
propriately expressive formalisms (e.g., temporal logic)
to specify a system’s behavior. The challenge we try to
meet in our own work is to formally define a scenario-
based specification language that is sufficiently expres-
sive yet intuitive and visually appealing.

In [11], it is shown how to derive liveness and safety
automata from UML 2.0 Sequence Diagrams, but that
paper employs a different interpretation of the standard
semantics, with no reference to the assert operator. Va-
lidity is interpreted as “liveness”, as in “each finite ex-
ecution should be extendible to an execution where the
positive trace eventually happens” [11, p. 5]. This in-
terpretation ignores the standard’s assert operator, and
does not allow one to specify possible traces, but only
ones that must always be possible. This would appear

to be a rather restrictive interpretation of the UML 2.0
standard.

STAIRS [17,30] is a requirements specification method-
ology based on UML 2.0, where the semantics of inter-
actions is given using interaction obligations, which are
pairs of sets of traces categorized as positive and nega-
tive. Traces not defined as positive or negative are called
inconclusive. STAIRS deals with mandatory behavior us-
ing an external mandatory choice operator xalt, which
does not appear in the UML 2.0 standard. Roughly, xalt
means “for each operand one of the alternatives must be
possible”. Although xalt deals with mandatory behavior,
it should not be confused with the universal modality
adapted in MSD from LSC. The xalt operator specifies
alternative traces that must be present in an implemen-
tation, i.e., must be possible, while assigning a universal
modality to a trace specifies that it must eventually oc-
cur. In addition, and more relevant to the present paper,
in STAIRS, the assert construct makes all inconclusive
traces negative. This, too, is different from the universal
modality of MSD. First, as defined in [30], STAIRS’ as-
sert makes all inconclusive traces negative, i.e., including
all well-formed traces. In contrast, in MSD, the scope
of assert is deliberately limited to the set of messages
that appear in the diagram; i.e., a diagram does not re-
strict the order between messages not appearing in it (to
change this, one can use the consider and ignore oper-
ators). Second, and more importantly, STAIRS’ notion
of correct implementation of a specification is different
from the MSD definition of when a system-model sat-
isfies a specification. In STAIRS, a correct implementa-
tion “may only produce traces belonging to the positive
and inconclusive trace sets of the obligation, i.e. no neg-
ative trace must be produced by the implementation” [30,
p. 31]. Thus, STAIRS rules out behavior that is actu-
ally forbidden, but does not require the implementation
of the positive traces. Third, the universal modality of
MSD applies not only to all system-model traces, but
also globally along each trace; i.e., whenever a cold pre-
fix is successfully completed the following hot fragment
must be successfully completed. As a very basic example,
the requirement that “every ‘request issuance’ message
is eventually followed by a ‘grant’ message” is very easily
and naturally specified in MSD; it seems, however, that
it is either impossible, or at least not easy, to specify this
in STAIRS.

Finally, STAIRS includes an incremental development
methodology for interactions, based on three types of
specification refinement: supplementing, narrowing, and
detailing. In Subsection 3.5 we briefly mentioned a possi-
ble incremental development process, which suggests to
start with existential interactions and gradually add uni-
versal diagrams and hot fragments. This process can be
viewed as a form of narrowing as it is defined in STAIRS.

In [17], it is suggested that the language of LSC could
become in the future a profile of UML 2.0, and our defi-
nition of MSD indeed goes in that direction.
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6 Discussion

Many authors have pointed to ambiguities and other se-
mantic issues in the UML standard, not only in its previ-
ous versions but also in its most recent version UML 2.0
[34]. Many of these occur in the semantics of state ma-
chines; see, e.g., [9]. In Subsection 2.3, we discussed what
we consider to be the most significant problem with the
standard’s section on sequence diagrams, i.e., the defi-
nitions of assert and negate and the semantics of valid
traces. We designed MSD to address this. We have also
encountered several additional problems in the standards
section on sequence diagrams, but they are outside the
main topic of the present paper. We plan to describe
these in detail in a follow-up paper or technical report.
We note, however, that the problems we have found in-
clude, among others, missing constraints on the way the
partial order is defined, and a problematic definition of
what constitutes a basic element of a trace (are StateIn-
variants or InteractionConstraints part of a trace or not,
and when should they be evaluated?). We acknowledge
that the UML standard is in general not intended to be
a formal specification in the full sense of the term. How-
ever, we consider this fact to add to the responsibility of
people working on implementing the standard to bring
such issues to the surface, to resolve them and to help
make the standard precise, as we have tried to do in the
present paper.

We have presented MSD, a modal extension to UML
2.0 Sequence Diagrams, based on the language of Live
Sequence Charts. Roughly, MSD and the standard se-
mantics for UML 2.0 agree on the trace-language of the
existential (so called ‘positive’) fragment, without assert
and negate. The difference stems from the addition of
universal diagrams and hot interaction fragments, and
how these change the semantics of the interaction when
relating it to a system-model. Thus, we claim that in-
creasing the expressive power of sequence diagrams to
allow liveness and safety specifications requires a uni-
versal interpretation: assert and negate are thus to be
considered as modalities, not as operators.

Historically, the LSC language and UML 2.0 Sequence
Diagrams are both descendants of MSC [18]. MSDs ex-
tend UML Sequence Diagrams roughly in the same way
that LSCs extended MSCs in [7]. We have designed MSD
to bring the essence of LSC into the UML, but we have
not included in this paper’s presentation of MSD several
important additions to the LSC language, most notably
symbolic messages and instances [16,27]. A treatment of
symbolic messages and instances in the context of ob-
ject oriented inheritance and interface implementation
has been done for MSD during the work on the S2A com-
piler [12,26] (see below) and will be formally reported in
a future paper.

In this paper we mainly considered synchronous mes-
sages and strict sequencing, and did not explicitly ad-

dress the semantics and use of MSD in asynchronous
settings. This may also be a topic for future work.

Another topic not included here is the operational se-
mantics of LSCs; i.e., the play-out execution mechanism
of [16] and its implementation in the Play-Engine tool.
Applying the play-out execution mechanism to MSD is
an important topic we are currently pursuing; among
other issues, it requires the definition of an additional
pair of modalities: monitoring vs. executing. Indeed, re-
cently, in [12,26], we presented a compilation scheme
from MSD, extended with the monitoring and executing
modalities, into AspectJ, whereby the resulting code im-
plements the play-out execution mechanism. There, most
of the ideas and techniques developed in [16] for LSCs are
adapted and used in a relatively obvious way for MSDs.
The same can be applied to the play-in method.

Our definition of MSD in the present paper precludes
nesting of hot fragments inside existential diagrams. In-
deed, following the stated justification given in [7], we
judge that such nested quantification is too complex for
real world usage of sequence diagrams (in particular, if
hot fragments inside existential diagrams are allowed, a
single system run may no longer suffice to ensure the
satisfiability of an existential diagram). Still, one could
extend MSD to allow such nesting, change the semantics
accordingly, and thus obtain a more expressive formal-
ism.

We suggest that the MSD profile be used effectively,
together with the standard UML Testing Profile [35], in
specifying behaviors for test cases. We believe there is
much benefit and no real difficulty in such integration.
Formalizing and implementing this is a topic for future
work.

Based on the modal semantics of MSDs, we feel that
assert and negate can be used effectively, not only in a
strict formal design context, but also in early require-
ments specifications, as powerful yet convenient and in-
tuitive features of UML 2.0 Sequence Diagrams. In ad-
dition, given the fact that MSD is defined as a UML
profile, our work paves the way to apply recent work on
LSC in formal verification [8,19,31,36] to the UML. As
a first step, one can formalize and implement a trans-
lation from MSD to Temporal Logic, similar to the one
suggested for LSC in [22].

Finally, we claim that the problem with UML 2.0 Se-
quence Diagrams with regard to the semantics of sets of
valid and invalid traces and the use of assert and negate,
as it is currently defined in the standard, is indeed sig-
nificant, and renders the use of this UML language in
formal contexts highly problematic. Thus, we propose
that MSD and its semantics (or some similar variant
that solves these problems) may be adopted and inte-
grated into the standard itself in a future version. We
encourage systems designers to download the MSD pro-
file (see Appendix A), apply it to their models, and take
advantage of its expressiveness and robustness.
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A The MSD profile

We give technical details regarding the MSD profile. An XMI
file for the MSD profile, compliant with UML 2.1 and most
tools, and some related resources, can be downloaded from
the second listed author’s website5.

In its most basic form, the MSD profile contains a single
enumeration InteractionMode with two enumeration literals:
hot and cold, and a single stereotype modal, with an attribute
interactionMode of type InteractionMode (see Fig. 3). The
modal stereotype is introduced as an extension of the abstract
class InteractionFragment, and thus, of its subclasses Interac-
tion, OccurrenceSpecification, CombinedFragment, and StateIn-
variant (see Fig. 4). Hot and cold Interactions are called Uni-
versal and Existential respectively.

Technically, the modal stereotype is applied to messages
too. The interactionMode of a message is derived from the
modes of the message’s send and receive MessageOccurrence-
Specifications. In general, a message is hot if at least one of
its ends is hot, and is cold otherwise.

We add a constraint to forbid nesting of hot elements
inside existential interactions (see Section 6). Also, depend-
ing on the application, one may consider additional syntactic
constraints. For example, consider a constraint that requires
both the send and receive MessageEnds of any message to
have the same mode. Such constraints decrease the expres-
sive power of the language but may be appropriate for certain
applications.

Finally, the profile’s notation is adopted from LSC. Uni-
versal interactions are annotated by a solid borderline and ex-
istential interactions by a dashed borderline (the same method
can be used to distinguish hot elements (messages, constraints,
etc.) from cold ones). Hot elements are colored in red and cold
elements in blue. In addition, we suggest to change the key-
word on the top left corner of universal diagrams from sd to
usd.

B Outline of MSD formal semantics

In the following we give a technical outline of MSD formal
semantics: constructing the automata for existential and uni-
versal MSDs and relating an MSD specification to a system-
model. For simplicity, we consider here only Messages and
StateInvariants (we also treat here message send and receive
as a single event). Adding InteractionFragments with Inter-
actionOperators such as alt and loop, does not change the
essence of the construction. We consider strict sequencing
only.

The trace-language of an MSD D is the word language
L(D) accepted by its automaton. We let Σ be the alphabet of

5 http://www.wisdom.weizmann.ac.il/∼maozs.

the system-model messages. Given an MSD D, the construc-
tion of its automaton is based on an unwinding structure (see,
e.g., [20]) that includes a set of event occurrences E = Em∪Ec

where Em are message events and Ec are condition events,
a set of cut-states S, a partial function R : S × E −→ S,
minimal and maximal cut-states smin and smax, a labeling
function l : Em −→ M , where M ⊆ Σ is the set of messages
appearing in D, and a labeling function c : Ec −→ C, where
C is the set of conditions appearing in D. The set of enabled
message events in a cut s is defined by EME(s) = {e ∈
Em|∃s′ ∈ S : R(s, e) = s′}. The set of enabled messages in a
cut s is defined by EM(s) = {m ∈ M |∃e ∈ EME(s) : l(e) =
m}. The set of violating messages in a cut s is defined by
V M(s) = {m|m ∈ M \EM(s)}. The set of enabled condition
events in a cut s is defined by ECE(s) = {e ∈ Ec|∃s′ ∈ S :
R(s, e) = s′}. The set of enabled conditions in a cut s is de-
fined by EC(s) = {cond ∈ C|∃e ∈ ECE(s) : c(e) = cond}. In
addition, the mapping mode : E −→ {cold, hot} is extended
to cut-states: mode : S −→ {cold, hot} where mode(s) = hot
if ∃e : e ∈ EME(s) ∪ ECE(s) ∧ mode(e) = hot; otherwise
mode(s) = cold. The automata are defined over the alphabet
Σ∪ε. We use ε to denote the no-op message. When annotated
with a guard from {cond|cond ∈ C}∪ {not(cond)|cond ∈ C},
it represents conditions appearing in the traces.

B.1 Existential MSD

For an existential MSD, we construct a non-deterministic
Büchi automaton A = 〈Σ ∪ ε, Q, qin, δ, α〉, where Q = S ∪
{qrej} is a finite set of states, qin = smin is the initial state,
the accepting condition is α = qmax(= smax), and the tran-
sition function δ : Q×Σ ∪ ε −→ 2Q is defined as follows:

– Σ labeled self transitions on qmax and qrej :
– ∀m ∈ Σ : δ(qmax, m) = {qmax}, δ(qrej , m) = {qrej}

– Σ \M labeled self transitions on all cut-states:
– ∀q ∈ S,∀m ∈ Σ \M : δ(q, m) = {q}

– Handling enabled messages:
– ∀q ∈ S \ {qin},∀m ∈ EM(q) : δ(q, m) = {R(q, e)|e ∈

EME(q) ∧ l(e) = m}
– ∀m ∈ EM(qin) : δ(qin, m) = {R(qin, e)|e ∈ EME(qin)∧

l(e) = m} ∪ {qin}
– Handling violating messages:

– ∀q ∈ S \ {qin},∀m ∈ V M(q) : δ(q, m) = {qrej}
– ∀m ∈ V M(qin) : δ(qin, m) = {qin}

– Handling conditions:
– ∀q ∈ S \ {qin},∀cond ∈ EC(q) :

δ(q, ε[cond]) = {R(q, e)|e ∈ ECE(q) ∧ c(e) = cond},
δ(q, ε[not(cond)]) = {qrej}

– ∀cond ∈ EC(qin) : δ(qin, ε[cond]) =
{R(qin, e)|e ∈ ECE(qin) ∧ c(e) = cond} ∪ {qin},
δ(qin, ε[not(cond)]) = {qin}

B.2 Universal MSD

For a universal MSD, the same unwinding structure is used.
Recall that in an alternating automaton the transition func-
tion is defined as δ : Q × Σ −→ B+(Q) where B+(Q) is
the set of positive Boolean formulas over Q (see, e.g.,[23]).
We construct an alternating Büchi automaton A = 〈Σ ∪
ε, Q, qin, δ, α〉, where Q = S ∪ {qrej , qacc} is a finite set of
states, qin = smin is the initial state, the accepting condi-
tion is α = {s|mode(s) = cold} ∪ {qacc}, and the transition
function δ is defined as follows:

– Σ labeled self transitions on qacc and qrej :
– ∀m ∈ Σ : δ(qacc, m) = qacc, δ(qrej , m) = qrej
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– Σ \M labeled self transitions on all cut-states:
– ∀q ∈ S,∀m ∈ Σ \M : δ(q, m) = q

– Handling enabled messages:
– ∀q ∈ S \ {qin},∀m ∈ EM(q) : δ(q, m) = R(q, e),

where e ∈ EME(q) ∧ l(e) = m
– ∀m ∈ EM(qin) : δ(qin, m) = qin ∧ R(qin, e), where

e ∈ EME(qin) ∧ l(e) = m
– Handling violating messages:

– ∀q ∈ S \ {qin},∀m ∈ V M(q) : if mode(q) = cold then
δ(q, m) = qacc, if mode(q) = hot then δ(q, m) = qrej

– ∀m ∈ V M(qin) : if mode(qin) = cold then δ(qin, m) =
qacc ∧ qin, if mode(qin) = hot then δ(qin, m) = qrej

– Handling conditions:
– ∀q ∈ S\{qin},∀cond ∈ EC(q) : δ(q, ε[cond]) = R(q, e),

where e ∈ ECE(q) ∧ c(e) = cond;
if mode(q) = cold then δ(q, ε[not(cond)]) = qacc;
if mode(q) = hot then δ(q, ε[not(cond)]) = qrej

– ∀cond ∈ EC(qin) : δ(qin, ε[cond]) =
R(qin, e) ∧ qin, where e ∈ ECE(qin) ∧ c(e) = cond;
if mode(qin) = cold then δ(qin, ε[not(cond)]) = qacc ∧
qin; if mode(qin) = hot then δ(qin, ε[not(cond)]) =
qrej

B.2.1 Improving the construction

The above construction of alternating Büchi automaton suf-
fices to define the trace-language accepted by a universal
MSD. In general, the use of alternation is beneficial as it
allows easy complementation (see [28]). However, one may
easily further improve the construction so that the resulting
automaton is a weak alternating automaton. This has ad-
vantages in the context of formal model-checking (see [24]).
Below we give an outline of the weak construction.

Recall that in a weak alternating automaton, the set of
states Q is partitioned into partially ordered sets, each of
which is classified as accepting or rejecting. The transition
function is restricted so that in each transition the automaton
either stays at the same set or moves to a set smaller in the
partial order. Thus, each run eventually gets trapped in some
set in the partition. Acceptance is then determined by the
classification of the set.

Note that the partial order semantics of sequence dia-
grams suffices to ensure that when no loops are allowed the
simple construction defined above is already weak (this is
true also for the existential case). To keep the constructed
automaton weak in the presence of loops (constant and ∗),
we make the following changes:
– For each cold state qcold, a new accepting state q′

cold is
added to Q (we denote the set of new states PC):
– Q = S ∪ {qrej , qacc} ∪ PC
– α = {qacc} ∪ PC (i.e., the original cold states are no

longer accepting)
– The transition function for each new accepting state q′ ∈

PC is defined as follows:
– ∀m ∈ Σ \M : δ(q′, m) = q′

– ∀m ∈ M : δ(q′, m) = qrej

– ∀cond ∈ EC(qcold), where qcold is the original cold
cut-state corresponding to q′, δ(q′, ε[cond]) = qrej ,
δ(q′, ε[not(cond)]) = q′

– The transition function for Σ \ M on all cut-states is
redefined as follows:
– ∀q ∈ S,∀m ∈ Σ\M : if mode(q) = cold then δ(q, m) =

q ∨ q′, where q′ ∈ PC is the new accepting state cor-
responding to q; if mode(q) = hot then δ(q, m) = q

Note that the constructed alternating weak word automa-
ton is very simple. Specifically, its accepting sets are single-
tons. This may be an advantage in any application that needs
to translate the constructed alternating automaton into a
non-deterministic automaton (see, e.g., [10]).

B.3 Relating an MSD specification to a system-model

Recall that the trace-language of an MSD D is the word lan-
guage L(D) accepted by its automaton. An MSD specification
is a set Spec = Existential ∪ Universal, where Existential
and Universal are sets of existential and universal diagrams,
respectively. We denote the runs of a system-model Sys by
LSys. We assume system-model runs include values of partici-
pating objects’ attributes so that conditions can be evaluated.

Finally, a system-model Sys satisfies an MSD specifica-
tion Spec = Existential ∪ Universal iff

– ∀D ∈ Universal,∀r ∈ LSys : r ∈ L(D)
– ∀D ∈ Existential,∃r ∈ LSys : r ∈ L(D)


