
Axis-by-Axis Stress Minimization

Yehuda Koren and David Harel

Dept. of Computer Science and Applied Mathematics
The Weizmann Institute of Science, Rehovot, Israel

{yehuda,dharel}@wisdom.weizmann.ac.il

Abstract. Graph drawing algorithms based on minimizing the so-called stress
energy strive to place nodes in accordance with target distances. They were first
introduced to the graph drawing field by Kamada and Kawai [11], and they had
previously been used to visualize general kinds of data by multidimensional scal-
ing. In this paper we suggest a novel algorithm for the minimization of the Stress
energy. Unlike prior stress-minimization algorithms, our algorithm is suitable for
a one-dimensional layout, where one axis of the drawing is already given and
an additional axis needs to be computed. This 1-D drawing capability of the al-
gorithm is a consequence of replacing the traditional node-by-node optimization
with a more global axis-by-axis optimization. Moreover, our algorithm can be
used for multidimensional graph drawing, where it has time and space complex-
ity advantages compared with other stress minimization algorithms.

1 Introduction

A graph is a structure G(V ={1, . . . , n}, E) representing a binary relation E over a set
of nodes V . In [9] we addressed the problem of drawing a graph in one dimension.
The major application is when one of the drawing coordinates is already given, and we
want to compute an additional coordinate for each node. Traditional force-directed al-
gorithms turned out to be unsuitable in this 1-D case, because of their local optimization
methods, which become stuck in bad local minima. In this paper, we show how the fa-
miliar method of Kamada and Kawai [11], which minimizes an energy function known
as the stress energy,1 can be used for 1-D graph drawing. We introduce a novel method
for axis-by-axis optimization of the stress energy, which is very suitable for 1-D graph
drawing as it utilizes the special nature of this problem. Interestingly, using our tech-
nique it seems that minimizing the stress in only one dimension is definitely the easier
case for stress minimization. Moreover, we harness the benefits of the new 1-D-based
algorithm for computing a multidimensional drawing of the graph, by calculating each
axis of the drawing separately. In this multidimensional case, our algorithm also has an
advantage over the classical stress minimization suggested by Kamada and Kawai.

2 One-Dimensional Stress Optimization

Stress energy is a traditional measure of drawing quality, based on the heuristic that a
nice drawing relates to good isometry. Accordingly, it calls for placing the nodes so
that the resulting pairwise Euclidean distances will approach the corresponding target

1 Indeed, the stress energy was originally used for multidimensional scaling, where its name
originated; see, e.g., [3, 12].

(graph-theoretical) distances. Given a k-D layout x = (x1, . . . , xn), where the place of
node i is xi ∈ R

k, the concrete form of the energy is:

E(x) def=
∑
i<j

kij (|xi − xj | − dij)
2

. (1)

Here, the target distance dij is typically the graph-theoretical distance between nodes
i and j. The normalization constant kij equals d−α

ij , where 0 � α � 2. Kamada and
Kawai [11] picked α = 2, whereas Cohen [3] also considered α = 0 and α = 1.
Moreover, Cohen suggested setting dij to the linear-network distance.

For the rest of this paper, we explore axis-by-axis stress minimization. Hence, we
assume x to be an 1-D layout, i.e., x = (x1, . . . , xn) ∈ R

n. Given two 1-D layouts,
x, x̃ ∈ R

n, we define the following family of auxiliary functions:

δx̃
ij(x) =

{
xi − xj x̃i � x̃j

xj − xi x̃i < x̃j
1 � i < j � n. (2)

Next, we define the following energy function of the layout x:

Ex̃(x) def=
∑
i<j

kij

(
δx̃
ij(x)− dij

)2
. (3)

It is important to understand the relations between Ex̃(x) and the stress energy, E(x).

Lemma 1. For every x, x̃ ∈ R
n, E(x) � Ex̃(x).

Proof. Let us pick some pair i < j, and analyze the corresponding terms of E(x)
and Ex̃(x). Observe that |δx̃

ij(x)| = |xi − xj |. In addition, it is always the case that
kij , dij � 0. Therefore, kij(δx̃

ij(x)−dij)2 � kij(|xi−xj |−dij)2. The lemma follows.
��

Lemma 2. For every x ∈ R
n, E(x) = Ex(x).

Proof. Simply observe that δx
ij(x) = |xi − xj |. ��

By the last two Lemmas we conclude:

Corollary 1. For every x, x̃ ∈ R
n, Ex(x) � Ex̃(x).

The usefulness of the energy Ex̃(x) stems from the fact that it can be minimized
optimally. To realize this we need some additional notations. First, we define a related
n× n Laplacian matrix L, where

Lij =
{−kij i �= j∑

j �=i kij i = j i, j = 1, . . . , n.

Note that the Laplacian depends only on the graph, regardless of its layout x̃. We also
use the vector bx̃ ∈ R

n, where:

bx̃
i =

∑
j �=i: x̃j�x̃i

kijdij −
∑

j �=i: x̃j>x̃i

kijdij i = 1, . . . , n.

Now, using some elementary algebra, it can be shown that:

Ex̃(x) = xTLx− 2xT bx̃ + C ,

where C is a constant that is independent of x. Since the Laplacian is known to be
positive semi-definite, we conclude by differentiation:

Lemma 3. The minimizer of Ex̃(x) is the solution of the system of equations:

Lx = bx̃ .

All these observations suggest the following process for minimizing the stress energy:

Function 1-D stress minimization (G(V,E), x ∈ R
n)

Compute the Laplacian L
do

x̃← x
Compute bx̃

Compute x for which Lx = bx̃

while (x �= x̃)

Our main result is that each iteration of this process (except for the last one) must
decrease the stress energy: E(x) < E(x̃). This stems from the above lemmas: By
Lemma 2, E(x̃) = Ex̃(x̃), and by Lemma 3, Ex̃(x) < Ex̃(x̃) (since x̃ �= x, the energy
must decrease). Now, by Corollary 1, Ex(x) � Ex̃(x). Taken together, we obtain:

E(x) = Ex(x) � Ex̃(x) < Ex̃(x̃) = E(x̃) .

Of course the energy is bounded below by zero, so the process must converge. Unlike
node-by-node local optimization methods, the new optimization process does not suffer
from working in a single dimension. Later, we introduce some encouraging experimen-
tal results. However, note that like other optimization methods, we can only guarantee
convergence to a local minimum.

2.1 Working with a sparse Laplacian
A significant drawback of stress optimization is that its space complexity is Θ(n2),
since we have to store all pairwise distances. This, of course, slows down running time,
and even more importantly, prevents us from dealing with large graphs containing more
than around 10,000 nodes. However, it appears that most graphs that can be drawn
nicely possess much redundancy in the pairwise distances. We utilize this redundancy
by neglecting most pairwise distances. Specifically, we define the set S of the “interest-
ing” node pairs, so the stress energy is defined as:∑

{i,j}∈S
kij (|xi − xj | − dij)

2
.

Accordingly, we can use a sparse Laplacian, whose nonzero entries correspond to the
pairs in S:

Lij =



−kij {i, j} ∈ S∑

j:{i,j}∈S kij i = j

0 otherwise
i, j = 1, . . . , n.

Similarly, the vector bx̃ is defined as:

bx̃
i =

∑
j:

{i,j}∈S,x̃j�x̃i

kijdij −
∑
j:

{i,j}∈S,x̃j>x̃i

kijdij i = 1, . . . , n.

How can we choose the pairs in S? In fact, such sparsification of the pairwise distances
was already used in the multiscale stress-minimization methods of [4–6], where in each
scale only the relations between nodes and their close neighborhood are considered.
Here, we would like to offer another, very efficient sparsification scheme, which is
especially appropriate for the new optimization method. An important feature of our
sparsification is that it guarantees linear space requirements for bounded degree graphs.
Moreover, using more sophisticated techniques that will be described in a forthcoming
paper [10], we can maintain the linear space requirements for any kind of graph.

We construct the pairs-set, S, to consist of two kinds of node-pairs: (1) “pivot-
based” pairs and (2) pairs of close nodes. This construction is accomplished in the fol-
lowing way. First, we construct a set P that contains m pivot nodes uniformly scattered
over the graph. Such pivots can be chosen randomly. A better choice that we use in prac-
tice is described in [7]. We then initialize S with all the pairs {{i, j} | i ∈ P, j ∈ V, i �= j}.
The distances between these pairs preserve the overall structure of the graph. In [10] we
describe a more advanced technique where these pivot-based pairs are enough. How-
ever, here, we should add to S all pairs that are close in the graph: {{i, j} | dij � B}.
Typical values for B are 3 to 6. This way we account for the local aesthetics of the
drawing, which are not captured well by the pivots.

Computation of the distances from the pivots is performed in time O(m · |E|), and
the storage requirements are O(m · |V |). We cannot state here a satisfactory recipe for
finding an adequate value of m, and of course increasing m never degrades the quality
of the drawing. However, in our experiments, working with 30 � m � 100 seems to
provide good results. Consequently, our optimization process becomes efficient in terms
of time and space, without affecting its drawing quality very much. Interestingly, such a
sparsification approach completely fails with the node-by-node local stress optimization
suggested by Kamada and Kawai, for reasons presently unknown. Anyway, this is an
advantage of our new optimization method over the more traditional one.

Smoothing the pivots. One minor problem may arise when working with pivots.
Since the pivots are related to many more pairwise distances than the rest of the nodes,
for some graphs they appear to “break out” of the drawing. For example, consider the
2-D layout of the 64 × 16 torus shown in Fig. 1(a). (Details about the computation of
2-D layouts are given in the following sections.) Here, we have set B = 5 and used 50
pivots, which are designated in the layout as large red squares. As the reader can see,
the pivots are not very well-placed.

There is an easy solution to this problem. At a postprocessing stage, we fix the
places of all the non-pivots, and then apply our algorithm only to the pivots, taking into
account just the short distances (smaller than B). Consequently, in each iteration we
have to solve a system of only m equations. Furthermore, typically the pivots are not
placed close together, so we can solve independently one equation for each of them,
i.e., for each pivot node, i, we iteratively perform:

xi ←
∑

j �=i: xj�xi,dij�B kij(xj + dij) +
∑

j: xj>xi,dij�B kij(xj − dij)∑
j �=i: dij�B kij

until xi no longer changes.
All this local smoothing takes negligible time. Figure 1(b) shows again the layout

of the 64× 16 torus, but now after using the pivot-smoothing.

(a) (b)

Fig. 1. Drawing a 64 × 16 torus; pivots are the red squares. (a) Pivots seem to slightly break out
of the drawing. (b) Pivot-smoothing is performed, so that pivots are better placed.

3 Working in the Presence of Predefined Coordinates
The main application of 1-D graph drawing is where one axis of the drawing is given in
advance. Therefore, we should account for the already computed coordinates. Note that
a careless computation that ignores the precomputed coordinates can be very problem-
atic. Such a computation might yield new coordinates that are very similar to the given
ones, resulting in a drawing whose intrinsic dimensionality would really be 1, meaning
that one axis would be wasted.

Fortunately, we have found a very effective way of taking care of the predefined
axis, which we term in this section axis z. The stress minimization strategy strives
to achieve the target distances in the drawing. Some fraction of the target distances
is already achieved in the predefined axis, z. Hence, when computing a new axis we
would like the achieve the residual target distances instead of the original ones. The
new residual target distances are defined as:

dz
ij =

{√
d2

ij − (zi − zj)2 dij > |zi − zj |
0 otherwise

i, j = 1, . . . , n . (4)

Note that there is no reason to alter the normalization weights kij .
However, there is still one problem remaining: The target distances set the scale of

the layout. Therefore, it is possible that the predefined axis, z, has an entirely different
scale (e.g., it may be very small), so our computation of residual target distances makes
no sense. To overcome this problem, we re-scale z in order to bring it to the scale
of the target distances (alternatively, we could re-scale the target distances in order to
bring them to the scale of z). More specifically, we want to compute a constant c > 0
that minimizes the stress energy of the scaled c · z. To find the exact value of c, we
differentiate:

∂

∂c
E(c · z) = 0

The solution is:

c =

∑
{i,j}∈S kijdij |zi − zj |∑
{i,j}∈S kij(zi − zj)2

. (5)

To summarize, when an axis z is given in advance, we replace it with c · z to bring
it into the scale of the target distances. The constant c is computed by (5). Then, we
take into account the distances already captured by z, by computing the residual target
distances, dz

ij , as in (4). The additional axis x is computed in order to minimize the

stress function
∑

{i,j}∈S kij

(|xi − xj | − dz
ij

)2
.

4 Experimental Results

4.1 Application for drawing digraphs

The digraph drawing algorithm in [1] computes the y-axis by minimizing the hierarchy
energy in order to convey the overall directionality of the graph. The x-axis was com-
puted by Eigen-projection or by minimum linear arrangement, and shows additional
properties of the graph. The new 1-D stress minimization algorithm can serve in com-
puting the x-axis. Our experiments show that in most cases using stress minimization
improves the quality of the layouts by being able to accurately show sharp changes in
the graph structure. Examples are shown in [2].

4.2 Two-dimensional layouts

Our 1-D stress minimization algorithm can be used to compute 2-D layouts. We first
compute the x-coordinates, and then compute the y-coordinates given the x-coordinates,
as explained in Sec. 3. Several results are shown in Fig. 2.

(a) (b)

(c)

Fig. 2. 2-D layouts by 1-D stress minimization of: (a) Plsk1919, (b) 64 × 16 torus, (c) Shuttle.

Comparing the drawings in Fig. 2 to the drawings of the same graphs in Figs. 1, and
3(a,b) reveals that the results given in Fig. 2 are sub-optimal. Since the x-coordinates
were computed independently of the y-coordinates, the algorithm strives to minimize
the stress energy as much as possible using only the x-axis. This kind of a “greedy”
approach stretches the layout along the x-axis. However, when we minimize the stress
in 2-D from the beginning (using a method we describe in Sec. 5 or by employing the
Kamada and Kawai algorithm [11]), the overall result is better. We provide quantitative
results by comparing the values of the stress energy in the following table. For each
of the three graphs we measured its stress energy twice: once only along the x-axis

and another time in the 2-D drawing. The results show that when computing the x-
axis independently, the stress along it is smaller, but the overall 2-D stress is larger
compared with a method that computes the two axes together. We have concluded that
the algorithm as described so far is more suitable for achieving 1-D layouts.

Graph name Separate computation of axes Coupled computation of axes
x-axis stress 2-D stress x-axis stress 2-D stress

Plsk1919 198,343.09 66,367.90 347,724.76 20,141.41
Torus 64 × 16 107,855.51 43,581.09 144,607.29 26,029.12
Shuttle 529,776.08 203,817.77 1,035,382.73 48,909.45

4.3 Speed of Computation for Selected Graphs

Smart initialization
We recommend using our algorithm with a smart initialization. This way the proba-
bility of avoiding poor local minima is improved. Also, running time is significantly
decreased as the number of iterations is reduced. Moreover, for a random initializa-
tion, we should enlarge the set of target distances S (by increasing the parameters m or
B), which further increases running time. Such a smart initialization could result from
faster methods like those of [7, 8]. However, better results are obtained by initializing
the algorithm by an approximation of itself that addresses a simplified problem. For
such an approximation one can use the multiscale strategy and initialize the layout with
a layout of a related, but much smaller graph. However, we have done it differently. We
initialized the algorithm by first running a few iterations of the method described in the
forthcoming paper [10], which accelerates the stress minimization by constraining the
layout to lie in a unique small subspace. This significantly reduced the number of itera-
tions, and allowed us to run the sparse version of the algorithm with parameters m=50
and B=3, yielding good results for all the given graphs. Note that sometimes increasing
B improves the quality of the layouts.

Table 1 shows the number of iterations for several graphs. For each graph we have
computed a 2-D layout, so the results refer to the computation of two axes. The overall
running time, which includes the smart initialization, was measured on a Pentium IV
2GHz PC with 256MB RAM. As shown, for a medium-sized graph (up to ∼ 10, 000
nodes), running times are comparable to those of the multi-scale stress minimization
algorithms [4–6]. However, due to the better space complexity, our new method might
deal with graphs of ∼ 100, 000 nodes.

Graph name |V| |E| x-axis y-axis Time
iterations iterations (sec.)

Torus 64 × 16 1024 2048 11 8 0.33
4970 4970 7400 19 22 3.66
Shuttle (Data)† 2851 15093 64 61 5.28
Crack† 10240 30380 41 27 15.95
Fidap006§ 1651 23914 49 23 2.42
Nos3§ 960 7442 20 12 0.58
Nos5§ 468 2352 18 20 0.27
Nos6§ 675 1290 10 4 0.14
Nos7§ 729 1944 15 29 0.36
Plat362§ 362 2712 9 5 0.13
Plat1919§ 1919 15240 17 31 1.73
Plsk1919§ 1919 4831 8 19 1.16
Sierpinski (depth 10) 88575 177147 40 22 165.64
Grid 317 × 317 100489 200344 17 5 189.66
† From Walshaw’s collection: www.gre.ac.uk/˜c.walshaw/partition
§ From the Matrix Market collection: math.nist.gov/MatrixMarket

Table 1. Number of iterations and running time (in seconds) for various graphs

5 Alternating Two-Dimensional Stress Minimization
As we have seen, directly applying our algorithm to compute a 2-D layout produces
imperfect results, in which the graph is often “stretched” along the first computed axis.
However, we can overcome this artifact by coupling the computation of the two axes,
thereby neutralizing any preference for one of them. Here is the precise algorithm:

Function 2-D stress minimization (G(V,E), x, y ∈ R
n)

% Coordinates of node i are (xi, yi)
Compute the Laplacian L
do

x̃← x
Compute bx̃ using the residual distances dy

ij

Compute x for which Lx = bx̃

ỹ ← y
Compute bỹ using the residual distances dx

ij

Compute y for which Ly = bỹ

while (x �= x̃ or y �= ỹ)

This technique can be directly extended to higher dimensions. This way, we can use
our algorithm to compute multidimensional layouts. The results are comparable to the
Kamada-Kawai algorithm, but there is the advantage of the fast, pivot-based algorithm,
whose memory requirements are lower than other implementations of the Kamada-
Kawai algorithm. In [10] we describe another advantage of this technique, which en-
ables an additional substantial reduction of time and space complexity.

The actual running times of the algorithm are slightly larger than the results given
in Table 1 (mainly because of the added time for recomputing the residual distances at
each iteration). Results are shown in Fig. 3 (and in Fig. 1).

6 Discussion
Strategies based on minimizing the stress energy are known for their ability to pro-
duce nice graph layouts. Common optimization processes are based on node-by-node
local optimization methods. Specifically, Kamada and Kawai [11], use a localized 2-
dimensional Newton-Raphson process. However, working with a full Newton-Raphson
process is impractical, since it requires a recomputation of the Hessian matrix in each
step. Moreover, the Hessian might be singular or ill-conditioned, which may cause
additional numerical difficulties. We have devised an algorithm for minimizing the
stress energy needed for computing 1-D layouts. Technically, our algorithm introduces
a rather global optimization process that replaces the usual local node-by-node opti-
mization. Interestingly, it can be proved that this process is equivalent to performing a
full n-dimensional Newton-Raphson optimization, unlike the local 2-dimensional pro-
cess used by Kamada and Kawai. Hence, while the common wisdom is that stress-
minimization is very difficult for 1-D layouts as optimization processes tend to become
stuck in poor local minima, we have shown that the 1-D case is indeed the easier case
allowing the use of a global optimization process. This motivates us to try to find ways
to incorporate the powerful 1-D optimization process for computing multidimensional
layouts. Consequently, we devised an algorithm for axis-by-axis computation of multi-
dimensional layouts that has an advantage over other stress minimization approaches in
terms of time and space complexity.

References
1. L. Carmel, D. Harel and Y. Koren, “Drawing Directed Graphs Using One-Dimensional Op-

timization”, Proc. Graph Drawing 2002, LNCS 2528, pp. 193–206, Springer-Verlag, 2002.

(a) (b)

(c) (d)

Fig. 3. Drawing by alternating stress minimization of: (a) Shuttle, (b) Plsk1919, (c) 4970, (d) Crack.

2. L. Carmel, D. Harel and Y. Koren, “Combining Hierarchy and Energy for Drawing Directed
Graphs”, IEEE Transactions on Visualization and Computer Graphics, IEEE, in press.

3. J. D. Cohen, “Drawing Graphs to Convey Proximity: an Incremental Arrangement Method”,
ACM Transactions on Computer-Human Interaction 4 (1997), 197–229 .

4. P. Gajer, M. T. Goodrich and S. G. Kobourov, “A Multi-dimensional Approach to Force-
Directed Layouts of Large Graphs”, Proc. Graph Drawing 2000, LNCS 1984, pp. 211–221,
Springer-Verlag, 2000.

5. R. Hadany and D. Harel, “A Multi-Scale Method for Drawing Graphs Nicely”, Discrete
Applied Mathematics 113 (2001), 3-21.

6. D. Harel and Y. Koren, “A Fast Multi-Scale Method for Drawing Large Graphs”, Journal of
Graph Algorithms and Applications 6 (2002), 179–202.

7. D. Harel and Y. Koren, “Graph Drawing by High-Dimensional Embedding”, Proc. Graph
Drawing 2002, LNCS 2528, pp. 207–219, Springer-Verlag, 2002.

8. Y. Koren, L. Carmel and D. Harel, “ACE: A Fast Multiscale Eigenvectors Computation for
Drawing Huge Graphs”, Proc. IEEE Information Visualization (InfoVis’02), IEEE, pp. 137–
144, 2002.

9. Y. Koren and D. Harel, “One-Dimensional Graph Drawing: Part I — Drawing Graphs by
Axis Separation”, Technical report MCS03-08, Faculty of Math. and Computer Science, The
Weizmann Institute of Science, 2003.

10. Y. Koren, “Graph Drawing by Subspace Optimization”, to be published.
11. T. Kamada and S. Kawai, “An Algorithm for Drawing General Undirected Graphs”, Infor-

mation Processing Letters 31 (1989), 7–15.
12. J. W. Sammon, “A Nonlinear Mapping for Data Structure Analysis”, IEEE Trans. on Com-

puters 18 (1969), 401–409.

