
Programming Animation Using
Behavioral Programming

David Harel(B) and Shani Nitzan

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, 76100 Rehovot, Israel
dharel@weizmann.ac.il, Shani.Lesser@gmail.com

Abstract. We propose a simple, user-friendly way of creating computer
programs for hybrid systems whose execution involves animation. This is
done by adapting behavioral programming, a recently proposed approach
to software development that is aligned with how people describe system
behavior, for use in programming animation. Users can define discrete
and continuous behavior, which are then run simultaneously, interacting
with each other, and resulting in a smooth hybrid animation.

1 Introduction

We define a natural and intuitive method for programming animation through
scenarios. Each scenario describes a certain part of the motion of an object, and
can correspond to an individual requirement, specifying what can, must, or may
not happen following a sequence of events. Ideally, such motion scenarios should
enable incremental development, allowing the user to add new scenarios without
interfering with existing ones.

Behavioral programming (BP) is a recently proposed scenario-based program-
ming paradigm that centers on natural and incremental specification of behaviors;
see [8]. The BP approach was preceded by the language of live sequence charts
(LSC) [1], which extends message sequence charts (MSC), and is a scenario-based
language for reactive systems. LSCs add modalities to MSCs, allowing the spec-
ification of liveness and safety properties, as well as forbidden behaviors [1,2].
Two support tools for LSCs have been built, first the Play-Engine [2] and then
PlayGo [3]. Later, the ideas where extended and embedded also in conventional
programming languages like Java (resulting in BPJ, for behavioral programming
in Java) [4], C++ [5], as well as Erlang and Blockly [6,7], thus providing a more
classical programming point of view to this concept. See [8] for more details.
In this paper we use BPJ.

Heretofore,behavioralprogramminghadbeenusedpredominantly forprogram-
ming discrete systems. In this article we propose and demonstrate its use for pro-
gramming hybrid systems, whose execution can involve also continuous animation.

Animation programs can be executed by calculating the location of an object
according to the time elapsed between clock ticks, while considering the location
of the other objects. Although this can be made to produce satisfactory visual
c© Springer International Publishing Switzerland 2015
E. Roubtsova et al. (Eds.): BM-FA 2009-2014, LNCS 6368, pp. 113–132, 2015.
DOI: 10.1007/978-3-319-21912-7 5



114 D. Harel and S. Nitzan

results, it is not always a natural way to describe animation. Over the years, much
research has been carried out to simplify this by having moving objects assume
more life-like behavior. Scenarios have been used for animation [9], and an initial
attempt at using LSCs to create animations appears in [10]. A decision network
framework for specifying and activating human behaviors has been introduced
to create the behavioral animation of virtual humans [11].

Complex behavioral animation can also be obtained by defining simple, local
rules between the various objects [12], which can rely on the objects having
synthetic vision [13,14]. Synthetic vision has been used with other interaction
components (an attention component, a gaze generation component and a mem-
ory component) to create a virtual human animation [15]. It has been integrated
with cognitive science work on human locomotion to model interactive simula-
tion of crowds of individual humans [16]. Non-linear dynamical system theory,
kinetic data structures, and harmonic functions have also been used for agent
steering and crowd simulation [17]. Motion within a large crowd has also been
modelled by integrating global navigation and local collision avoidance [18].

A hybrid system is usually defined as one that exhibits both continuous and
discrete (reactive) behaviors. Continuous behaviors are those that create the
motion of an object; discrete behaviors are those that control sudden changes
in that motion. Thus, between bounces, a bouncing ball exhibits a continuous
behavior, its movement determined by angle, velocity, speed and gravity, but
when it hits the ground it undergoes a sudden change in motion, due to the hit
and the release of energy, which is considered a discrete behavior.

Hybrid behaviors can be modelled in many ways, a well known one being
hybrid automata [19]. A hybrid automaton is a finite-state machine, where each
state can be governed by a set of differential equations, enabling continuous
behaviors between discrete state changes.

In this article we introduce a system that integrates defining local rules
between various objects that have synthetic vision, with the behavioral program-
ming principles. Our method simplifies the creation of animation in several ways,
notably in that it enables the implementation of the local rules by using differ-
ent threads for different rules. The method of synchronization of these threads
is built into the BP execution mechanism, and in a way is transparent to the
user. This is explained later.

A bouncing ball can thus be modeled using two scenarios:Move andChange-
Direction. The scenario Move is responsible for moving the ball according to
its initial velocity and the force of gravity, and represents a continuous behavior.
When the ball hits the ground, ChangeDirection calculates the new velocity of
the ball, and it represents a discrete behavior. These scenarios can be implemented
incrementally, so that for each step the physical correctness can be verified and
simulated.

The code for all the examples presented in this article can be downloaded
from:
https://www.dropbox.com/sh/yjxgpuq1pjzb2xd/AAAozws8Ql7l8ssAqmp
KhmdAa?dl=0

https://www.dropbox.com/sh/yjxgpuq1pjzb2xd/AAAozws8Ql7l8ssAqmpKhmdAa?dl=0
https://www.dropbox.com/sh/yjxgpuq1pjzb2xd/AAAozws8Ql7l8ssAqmpKhmdAa?dl=0


Programming Animation Using Behavioral Programming 115

2 Behavioral Programming

2.1 Basic Idioms

A behavioral program [8] consists of separate behavioral components (called
b-threads) that generate a flow of events via an enhanced publish/subscribe pro-
tocol, as follows (see Fig. 1). Unlike regular threads, each b-thread runs atom-
ically until it reaches a synchronization point, at which point it yields. When
synchronizing, a b-thread specifies the following three sets of events:

– Requested events: The b-thread asks that these events be triggered, and to be
notified when any of them is.

– Waited-for events: The b-thread asks to be notified when any of these events
is triggered. It does not ask to trigger them.

– Blocked events: The b-thread prevents these events from being triggered.

When all the b-threads enter a synchronized point, some event is sought,
which is in the requested events set of at least one of the b-threads, and is
not in the blocked events set of any of the b-threads. One such event (if it
exists) is selected for triggering, and when it is triggered all b-threads that
requested or waited for it are notified, and their execution is resumed. Each of
the resumed b-threads then proceeds with its execution, all the way to its next
synchronization point, where it again presents its sets of requested, waited-for
and blocked events. When all b-threads are again at a synchronization point the
event selection process repeats. When more than one event is found as a legal
candidate for triggering, i.e., it is requested by some b-thread and not blocked
by any, the actual event to be triggered is chosen depending on the implemented
execution semantics, of which there are several, see [8].

Each b-thread has local variables and global variables; events are defined
globally. Since b-threads run atomically until a synchronization point is reached
there is no need for safety measures, such as locks, to be taken in order to ensure
that the b-threads work as expected.

BP principles can be implemented as part of various languages and program-
ming approaches, with possible variations on the actual programming idioms.
In addition to Java with the BPJ package, the idioms have been implemented in
Erlang [6,20], Blockly [7] and C++ [5]. The BP idioms have also been applied to
PicOS, a programming environment for wireless sensor networks, using C [21].
In addition to the Play-Engine and PlayGo, a visual approach called Synthesizing
Biological Theories (SBT) [22], a tool for biological modelling, was implemented
using the BP principles.

2.2 Behavioral Programming in Java

BPJ is implemented using the special BPJ package. In BPJ, every b-thread is
an instance of the class BThread, and events are instances of the class Event or
classes that extend it. The logic of each behavior is coded as a method supplied



116 D. Harel and S. Nitzan

Fig. 1. An illustration of the BP execution cycle

by the programmer, which in turn invokes the method bSync to synchronize with
other behaviors, and to specify its requested, waited-for and blocked events, as
follows:
bSync(requestedEvents, waitedForEvents, blockedEvents);

When a b-thread calls bSync, it is suspended, and is resumed when a requested
or waited-for event is triggered. To enforce predictable and repeatable execution
the events selected at a synchronization point must be uniquely defined. This can
be done in different ways. In BPJ every b-thread has a unique priority. When
more than one event is requested and not blocked the event that will be trig-
gered is the one requested by the b-thread with the lowest priority. If this b-thread
requests more than one event the first event in the list of requested events that is
not blocked is the one triggered (this is possible because in BPJ the requested
events set is ordered).

Example 1. We illustrate the use of BPJ by a water flow control example taken
from [4]. The goal is to have lukewarm water flow from a tap, by alternately
letting a small amount of warm water and then a small amount of cold water



Programming Animation Using Behavioral Programming 117

flow. Hot and cold water are supplied by different sources, each of which supplies
its type of water repeatedly. The alternation of the two is done by an external
mechanism. The b-threads for the three relevant behaviors are as follows:

1. AddHotThreeTimes: This b-thread requests the event addHot three times.
The event addHot represents opening the hot water-tap for a short time.

2. AddColdThreeTimes: This b-thread requests the event addCold three
times. The event addCold represents opening the cold water-tap for a short
time.

3. Interleave: This b-threads repeatedly waits for the event addHot and blocks
the event addCold, and then waits for the event addCold and blocks the event
addHot.

AddHotThreeTimes and AddColdThreeTimes can work independently
of one another, resulting in the flow of only hot or cold water from the tap.
To get lukewarm water, the b-thread Interleave is used to force the alternation
of the events addHot and addCold, which results in lukewarm water (Fig. 2).

The BPJ package, the code of the water flow problem and other BPJ exam-
ples can be downloaded from:
http://www.wisdom.weizmann.ac.il/∼bprogram/bpj/

2.3 Live Sequence Charts

The visual language live sequence charts (LSC) [1] is an extension of message
sequence charts (MSC). Like MSC, LSC use vertical lifelines to represent objects
and horizontal arrows to represent messages passed between them. Since time
flow is from top to bottom, a partial order of occurrences of the events ensues.

However the partial order alone cannot express what scenarios are to be
carried out and when. This is where the extension of LSCs comes into play. LSCs
can express what must happen (hot), what may happen (cold), and what is not
allowed to happen (forbidden). Scenarios that are to be executed proactively are
also distinguished from those that are only to be observed and monitored.

An LSC is composed of two parts, a prechart, depicted as a dashed-line
hexagon, and a main chart. The main chart contains instructions that should be
executed, and to activate it the scenario in the prechart must have occurred. The
chart in Fig. 3 is a part of an implementation of a cruise control. It represents
the scenario of the brake being pressed, resulting in the cruise releasing control
of the brakes and the accelerator and turning itself off.

Play-in. LSC allows a new way of coding, called play-in [2], which is similar to
programming by example. With play-in the user specifies the scenario in a way
that is close to how real interaction with the system occurs, and the programming
itself is done via a GUI. In the example in Fig. 3, the user would click the brake
(action of the prechart), which releases the control the cruise has on the brakes
and accelerator (action of the main chart).

http://www.wisdom.weizmann.ac.il/~bprogram/bpj/


118 D. Harel and S. Nitzan

Fig. 2. The water flow problem

Fig. 3. LSC chart

Play-out. The play-out technique facilitates the execution of an LSC. Play-out
does this by tracking the actions taken by the user and the system’s environment.
Events that may be selected next in all lifelines in all charts are tracked. When
needed, play-out responds to an action accordingly, by selecting and triggering
events. Play-out is also carried out via a GUI.

3 Animation in Behavioral Programming

Our method for creating animation with behavioral programming calls for each
object to have b-threads that control its motion. Each of these b-threads represents



Programming Animation Using Behavioral Programming 119

a certain behavior of that object and they interactwith one another through theBP
synchronization mechanism. The b-threads are divided into those that represent
discrete behaviors and those that represent continuous behaviors.

B-threads that represent discrete behaviors are called control b-threads. They
influencemotionb-threads, those that represent continuousbehaviors, through syn-
chronization. After a synchronization point, when a control b-thread senses that
the motion of the object it is in charge of needs to be manipulated it will do so.

It should be noted that in this article continuous behaviors are implemented
by discretization (the process of transforming a continuous model into discrete
parts), since computers work in a discrete way. This can be analogous to a person
walking. Even though the person is moving in a continuous way his/her motion
can be divided into discrete steps.

Like in regular animation programs, small movements of an object are trig-
gered by time ticks, which are controlled by the following b-thread:
Sleep(Event endSleep, long timeOfSleep, double priorityOfBThread)

When created, this b-thread sleeps for timeOfSleep milliseconds and
then requests that the event endSleep be triggered. The b-thread gets prior-
ity priorityOfBThread. The b-thread Sleep is always created by a motion
b-thread.

3.1 Motion B-Threads

Since motion b-threads represent an object’s continuous behavior, and continu-
ous behavior in animation is guided, among other things, by the velocity of an
object, the most basic and simple pattern of a motion b-thread is an infinite loop
that does the following: It first creates the b-thread Sleep, and then waits for
the event endSleep. It then requests the event takeStep, and finally calculates
the new position of the object.

while true do
Create the b-thread Sleep.
Wait for the event endSleep.
Request the event takeStep.
Calculate the new place of the object according to the velocity and the time passed.

end while

Algorithm 1. Basic motion b-thread algorithm

To understand how a motion b-thread works, imagine a green ball rolling
to the right. The ball has one continuous behavior, which is its movement. Its
motion b-thread is as follows:

while (true) {

createSleep(endSleep1, sleep, prio1);

bp.bSync(none, endSleep1, none);

bp.bSync(takeStep1, none, none);

x1 += getTimePassed()*step; //updates coordinate

}



120 D. Harel and S. Nitzan

An example of this animation can be viewed here:
https://www.dropbox.com/s/jaoptmayfn1cm8c/Sec3Sub1.mp4.

Now suppose another ball is added; this time a blue ball rolling at half the
speed of the green ball. Now there is a second continuous behavior, which is
represented by another appropriate motion b-thread.

An example of this animation can be viewed here:
https://www.dropbox.com/s/56eoxjxwcybv3cb/Sec3Sub1 2.mp4.

With these two b-threads the two balls move simultaneously, each at its
own pace. New moving objects can thus be added incrementally. Changing the
direction or speed of one of the balls requires no change in the b-threads of the
other balls.

3.2 Control B-Threads

Control b-threads can manipulate the motion of an object in different ways.
In our example, one of the simplest is to block the event takeStep. The motion
b-thread of the object being blocked terminates, which results in stopping the
motion. Imagine the rolling green ball of the previous subsection, and that this
ball is getting closer to a wall. When it reaches the wall we want it to stop
rolling. The continuous behavior of the ball is the same, which means that the
motion b-thread that represents it is the same as well, but now the following
control b-thread can be added:

while(true){

bp.bSync(none, endSleep1, none);

if(collision()) { //checks if the ball has reached the wall

bp.bSync(none, none, takeStep1);

}

}

An example of this animation can be viewed here:
https://www.dropbox.com/s/oh5cxuex8ww8i2k/Sec3Sub2.mp4.

This b-thread adds a behavior without the user having to alter existing ones.
More control b-threads can be added very easily. For example, all that needs
to be done in order to add a new wall is to enhance the program with a new
control b-thread that checks collision with the new wall and blocks takeStep1
accordingly.

These basic algorithms for control and motion b-threads are the basis for
implementing far more complex behaviors, as we show later.

3.3 Improving and Adding B-Threads

One problem that appears when integrating different b-threads for the balls, is
that a ball does not stop exactly when it reaches the wall, but a little later.
This is because the ball moves in steps and the wall will often be reached in

https://www.dropbox.com/s/jaoptmayfn1cm8c/Sec3Sub1.mp4
https://www.dropbox.com/s/56eoxjxwcybv3cb/Sec3Sub1_2.mp4
https://www.dropbox.com/s/oh5cxuex8ww8i2k/Sec3Sub2.mp4


Programming Animation Using Behavioral Programming 121

between two steps. In some cases this kind of issue does not cause a problem.
For example, if an object moves until it sees an obstacle 50 m away and it turns
left, then it does not matter if the object turned left when it was 50 m away
from the obstacle or 50 m and 1 cm away. However, in many cases, including the
one above, this does matter. The ball should appear to stop at the wall, which
means that it has to stop exactly when it gets to the wall.

To overcome this problem we make the control b-thread look ahead at the
next step, and if a change of motion is in order, it is fixed. This is done by making
small changes to both the motion and the control b-threads. The changes are
demonstrated in the bouncing ball example. The motion b-thread calculates the
new y-axis coordinate of the ball, and then requests the event takeStepY. After
it is triggered, the new coordinate is updated. The motion b-thread is as follows:

while (true) {

createSleep(endSleep, sleep, prio);

nextY = calcNextY(); //calculates the next coordinate

bp.bSync(takeStepY, none, none);

y = nextY; //updates the new coordinate

}

After checkStep (the event that symbolizes looking ahead at the next step)
is triggered, the control b-thread checks if the next coordinates will result in a
collision between the ball and the ground. If so, the b-thread requests the event
hitGround, and updates the next coordinate so that the ball is exactly on the
ground. Since the ball should bounce and not just stop, then instead of blocking
the event takeStepY the control b-thread calculates the new velocity, which is
in the opposite direction of the previous velocity, and its speed is slower, due to
friction. The control b-thread is as follows:

while (true) {

bp.bSync(none, endSleep, none);

bp.bSync(checkStep, none, none);

if(ballHitGround()){ //checks if the ball collides with the ground

bp.bSync(hitGround, none, none);

nextY = calcNewNextY(); //calculates the new next coordinate

calcNewInitVelocityY(); //calculates the new velocity

}

}

By using only these two b-threads the ball continues to bounce on the floor
forever, reaching increasingly lower latitudes. To stop the ball when its velocity
is near zero, another control b-thread is added. This one waits for the event
hitGround, then blocks the event endSleep if the velocity is near enough to
zero. The b-thread is as follows:



122 D. Harel and S. Nitzan

while(true) {

bp.bSync(none, hitGround, none);

/*The velocity is near zero so motion should stop*/

if(speedNearZero())

bp.bSync(none, none, endSleep);

}

An example of this animation can be viewed here:
https://www.dropbox.com/s/gg2m18rg5erjhjc/Sec3Sub3.mp4.

4 Using Behavioral Programming for Billiard

Our technique for creating animations using behavioral programming is fairly
simple, yet it can handle many of the general problems that occur when trying
to program animations. We now discuss billiard. The animation scenarios of a
billiard game are described in Fig. 4. The game consists of 16 balls; here the balls
are indexed 0–15, where 0 is the white ball. The event moveBall[i] is triggered
when ball number i starts moving (which happens when another ball hits it).

The b-thread that represents the continuous behavior of ball i is Move-
Ball(i). Since the ball should only start moving when the event moveBall[i] is
triggered, this b-thread repeatedly waits for it. After that, as long the velocity
of the ball is not zero the ball should move while decreasing its velocity at each

Fig. 4. Description of the animation scenarios of a billiard game

https://www.dropbox.com/s/gg2m18rg5erjhjc/Sec3Sub3.mp4


Programming Animation Using Behavioral Programming 123

time tick, due to friction. This is exactly what MoveBall(i) does, while block-
ing the event startMove with every call to the function bSync. Therefore, a new
move does not start while the ball is still moving. MoveBall(i) is as follows:

while(true){

bp.bSync(none, billiard.moveBall[i], none);

long t1 = System.currentTimeMillis(), t2 = t1; //initialized the time

/*continues in a loop until the ball’s velocity equals zero*/

while(ballHasVelocity()){

createSleep(endSleep[i], sleep, prio[i]);

bp.bSync(none, endSleep[i], startMove);

t2 = System.currentTimeMillis(); //updates the time

calculateNextStep(t2-t1); //calculates the next coordinates of the

ball

bp.bSync(takeStep[i], none, startMove);

takeNextStep(); //updates the coordinates of the ball

t1 = t2;

}

}

There are three discrete behaviors in the animation of a billiard game: a
ball’s collision with the borders of the billiard table (BallHitBorder(i)), a ball
falling into one of the holes on the table (BallInHole(i)) and a ball colliding
with another ball (BallHitsBall(i,j)). Every step these b-threads wait for the
event endSleep[i] (which is only requested when ball i has non-zero velocity).

Every time tick, BallHitBorder(i) checks if ball i has collided with the
borders of the table and updates the next coordinates of the ball and its velocity
accordingly. BallInHole(i) does the same for the holes of the table, with one
exception: when the ball falls into a hole it should stop moving altogether and
other balls shouldn’t check for collisions with it. To insure this as long as ball i
is inside the hole, the event ballOnTable[j] is blocked.

For every ordered pair of balls i and j, the b-thread BallHitsBall(i,j) rep-
resents ball i colliding with ball j. When there is a collision, the coordinates and
velocities of both balls should change accordingly, and if ball j was motionless it
should start moving. To enable this, every time a collision is detected, the event
moveBall(j) is requested, which resumes the execution of the motion b-thread
MoveBall[j]. After checking for a collision BallHitsBall(i,j) requests the event
ballOnTable[j], which prevents this b-thread from continuing if ball j is not
on the table. BallHitsBall(i,j) is as follows:



124 D. Harel and S. Nitzan

while(true) {

bp.bSync(none, endSleep[i], none);

bp.bSync(checkCollision[i], none, none);

//checks if there is a collision between balls i and j

if(areBallsColliding(i ,j)){

adjustPosition();

adjustVelocities();

bp.bSync(moveBall[j], none, none);

}

bp.bSync(ballOnTable[j], none, none);

}

All the control b-threads are independent of each other, while still affecting
the motion b-thread when it is required. This is important, and makes it possible
to add or remove discrete behaviors easily, without affecting other b-threads.
The current example shows only one motion b-thread per object, which may not
always be the case.

An example of this animation can be viewed here:
https://www.dropbox.com/s/oukaccxcke2m26n/billiard.mp4.

The billiards animation was based on open source code that can be down-
loaded from here: http://ftparmy.com/193538-billard4k.html.

5 Adding Continuous Behaviors

Sometimes moving objects have more than one continuous behavior. When a ball
is thrown it can be thought of having two continuous behaviors. The first is the
motion in the direction the ball was thrown, and the second is the acceleration
towards the ground, due to gravity. In our approach, like in many motion cal-
culations, each of these behaviors can be represented by an independent motion
b-thread, and integrating them is done using one or more control b-threads.

Separating an object’s motion into multiple continuous behaviors simplifies
the act of describing the motion. Describing a thrown ball with a single scenario is
difficult, because the ball has a curve-like motion. When the motion is separated

https://www.dropbox.com/s/oukaccxcke2m26n/billiard.mp4
http://ftparmy.com/193538-billard4k.html


Programming Animation Using Behavioral Programming 125

into the behaviors of movement with the initial velocity and movement towards
the ground due to gravity, describing the motion becomes easy.

Like with discrete behaviors, adding continuous behaviors to an already
working program should be done, as far as possible, without altering existing
b-threads. The BP’s incremental approach makes adding continuous behaviors
of an object relatively easy. Moreover, implementing motion b-threads that repre-
sent such continuous behaviors creates additional benefits. For example, it makes
the controlling of the motion simple. If there are several continuous behaviors
that work at different times, scheduling them can be done by control b-threads.

5.1 How it is Done

To demonstrate the b-threads of a thrown ball having an initial velocity parallel
to the x-axis, we use the example of a bouncing ball, which already has continu-
ous behavior of the acceleration due to gravity. Thus, the motion in the direction
that the ball was thrown is the only behavior that needs to be added.

The new b-thread has the same pattern as other motion b-threads. Each
time the event endSleep is triggered this motion b-thread requests the event
takeStepX, and then updates the new x-axis coordinate of the ball. The b-thread
is as follows:

while (true) {

bp.bSync(none, endSleep, none);

bp.bSync(takeStepX, none, none);

double x = calcNewX(); //updates new x-axis coordinates

}

Notice that the main difference between this motion b-thread and the earlier
ones is the fact that this one does not trigger the b-thread Sleep. This is because
the motion b-thread in charge of the motion towards the ground already does
this. Since we assume that every object has a single clock and all its b-threads
work in a way that is aligned with that clock, only one motion b-thread triggers
Sleep. We call it the main motion b-thread. All other b-threads (control and
motion) just wait for the event endSleep when a synchronization with the clock
is called for.

This scenario presents a problem that can occur when programming anima-
tions using behavioral programming. Sometimes a control b-thread can affect
more than one motion b-thread even when this is not desirable. The fact that
both motion b-threads work with the same clock means that, automatically,
when takeStepY is blocked due to the y-axis velocity being near zero the ball
stops moving along the x-axis too. If this scenario is not desired, then creating
the b-thread Sleep should not be done by the motion b-thread that represents
the motion on the y-axis. Rather, it can be done by creating a new main motion
b-thread.

In our example, every time the ball hits the ground the direction of the y-
axis velocity is flipped and its speed decreases due to friction. Although the



126 D. Harel and S. Nitzan

Fig. 5. Circle trying to pass an obstacle to get to its destination

x-axis velocity should not be flipped its speed should decrease. This can be done
easily by adding a control b-thread that waits for the event hitGround and then
decreases the speed of the x-axis velocity.

An example of this animation can be viewed here:
https://www.dropbox.com/s/ldy2wjv122s5lia/Sec5Sub1.mp4.

5.2 Blocking Unwanted Continuous Behaviors

When using more than one motion b-thread it is possible to block some of the
events requested by some of those b-threads. Every time a specific motion is
deemed unnecessary or harmful, an event requested by the motion b-thread
representing it can be blocked by a control b-thread.

This is demonstrated by the following example, which involves a green circle
that has to get to a destination point (depicted by a red circle), overcoming a
mid-way obstacle (in the form of a line). The green circle has to first move to the
closest edge of the obstacle and then move to the destination. There are three
motion b-threads involved (Fig. 5):

1. MoveY- This b-thread adds one unit to the circle’s y-axis coordinate every
time tick, and is the main motion b-thread, since the circle’s coordinates
should be increased until it reaches its destination.

2. MoveX1- This b-thread adds one unit to the circle’s x-axis coordinate every
time tick.

3. MoveX2- This b-thread removes one unit from the circle’s x-axis coordinate
every time tick.

Since the circle is continuously moving forward on the y-axis, the b-thread
MoveY should run until the circle reaches the destination. If the circle passes the

https://www.dropbox.com/s/ldy2wjv122s5lia/Sec5Sub1.mp4


Programming Animation Using Behavioral Programming 127

obstacle from the right-hand side, MoveX1 should run until the circle reaches
the obstacle. The b-thread MoveX2 should start running only when the circle
reaches the obstacle, and should stop when it reaches the destination.

In this example there is one control b-thread. As long as the circle has not
reached the obstacle it blocks the event moveX2. After that, as long as the circle
has not reached the destination, this b-thread blocks the event moveX1. When
the ball reaches the destination it should stop moving, which is why moveX1,
moveX2 and moveY are blocked. The b-thread is as follows:

//continues until circle reaches the obstacle

while(!reachObstacle())

bp.bSync(none, endSleep, moveX2);

//continues until circle reaches the destination

while(!reachDestination())

bp.bSync(none, endSleep, moveX1);

//blocks all movement of circle

bp.bSync(none, none, new EventSet(moveY, moveX1, moveX2));

An example of this animation can be viewed here:
https://www.dropbox.com/s/kad7uicwipwqfls/Sec5Sub2.mp4.

5.3 Random Continuous Behaviors

Imagine a winding corridor, and suppose that one should get an object from one
end of the corridor to the other. There are many known ways to get the object
to its destination. Here we show how animation using behavioral programming
can be used for this (Fig. 6).

The solution to this problem using BP is very simple. There is a set of
directions D in which the object can move. These are defined ahead of time.
For every direction d ∈ D a motion b-thread (Move) and a control b-thread
(BlockMove) are written.

The b-thread Move works in a different way from the motion b-threads
presented so far. It waits for the event takeStep(d), and then updates the
coordinates of the object according to the time passed and the direction d.
Move is as follows:

while (true) {

bp.bSync(none, takeStep, none); //waits for takeStep(f)

//updates coordinates according to the function f

x += speedX;

y += speedY;

}

Every time tick, BlockMove checks if moving the object in the direction d
will result in the object being too close to the walls of the corridor, and blocks
the event takeStep(d) if it does. Here is how this is programmed:

https://www.dropbox.com/s/kad7uicwipwqfls/Sec5Sub2.mp4


128 D. Harel and S. Nitzan

Fig. 6. An object that wants to get from one end of a winding corridor to the other

bp.bSync(none, endSleep, event);

while (true) {

//checks if moving in the direction of function f results in

intersection with the borders

if(intersectWithBorders())

bp.bSync(none, endSleep, takeStep); //blocks takeStep(f) until

next time tick

else

bp.bSync(none, endSleep, none);

}

To trigger the event takeStep(d), another b-thread is used, which is the
main motion b-thread. It waits for a time tick and then arranges the events
takeStep(d) for every direction d ∈ D in a random ordered list, and then
requests the list. This results in the object taking a step in a random direction,
but not in a direction that brings it too close to the walls of the corridor (because
in this case the relevant event is blocked).

If the set of directions is chosen correctly (the average direction of the set
is always in the general direction of the corridor) the object succeeds in getting
from one side of the corridor to the other.

An example of this animation can be viewed here:
https://www.dropbox.com/s/mqd239tu02xjbau/Sec5Sub3.mp4.

6 Flock Movements

Boids is an algorithm that simulates the flocking behavior of birds; see [23]. The
basic algorithm consists of three rules that each bird follows:

https://www.dropbox.com/s/mqd239tu02xjbau/Sec5Sub3.mp4


Programming Animation Using Behavioral Programming 129

1. Separation- maintain a small distance from other birds.
2. Alignment- try to match the velocity with the average velocity of the flock.
3. Cohesion- fly towards the center of mass of the flock.

Other behaviors can be added, such as flying away from the center of mass of
the flock when there is a threat, maintaining a certain minimum and maximum
speed, and keeping away from walls and other objects. In this example, the birds
fly in a flock as long as there is no threat. When a threat occurs (simulated in
our example by a mouse left-click) the birds fly away from the flock. When
they stop flying in a united flock (the mouse is right-clicked) the birds continue
flying, keeping away from each other and other objects, and they do not follow
the alignment and cohesion rules.

Since this algorithm is based on the birds’ individual behaviors, it can be
easily implemented using behavioral programming. We set things up so that
every bird in the flock has a motion b-thread for each rule. Control b-threads
are used to block events requested by motion b-threads that represent rules that
are not relevant to the state of the bird or flock.

Each bird has the following motion b-threads:

– Boid- Every time tick, this b-thread updates the coordinates according to
the velocity and the time passed. This is the main motion b-thread.

– MatchSpeed- Every time tick, this b-thread requests the event matchSpeed
and updates the velocity so that it is closer to the average velocity of the rest
of the flock.

– FlyTowardsCenterOfMass- Every time tick, this b-thread requests the
event flyTowardsCenterOfMass, and moves the bird towards the center of
the flock.

– FlyAwayFromCenterOfMass- Every time tick, this b-thread requests the
event flyAwayFromCenterOfMass and updates the velocity so that the bird
flies away from the center of the flock.

– KeepSpeed- Every time tick, this b-thread updates the velocity of the bird
to keep it between a given minimum and maximum.

– For every wall K SoftBounceFromKWall- Every time tick, this b-thread
requests the event softBounceFromKWall and updates the velocity of the bird
to make it move away from the wall.

– For every wall K HardBounceFromKWall- Every time tick, this b-thread
requests the event hardBounceFromKWall and reverses the velocity of the bird
to make it move away from the wall.

– For every other bird i in the flock KeepAway- Every time tick, this b-thread
requests the event keepAway[i] and moves the bird away from bird i.

We have the following control b-threads:

– MouseReleased- When the mouse is released from its left-click, the
b-thread is created. It waits for the event mousePressed and blocks flyAway-
FromCenterOfMass. This makes the birds fly as a flock with all the relevant
behaviors.



130 D. Harel and S. Nitzan

– Scared- When the mouse is left-clicked, the b-thread is created. It waits for
the event mouseReleased and blocks matchSpeed and flyTwardsCenterOf-
Mass. This is so that the birds fly away from each other as fast as possible, to
avoid the threat.

– NotCooperative- When the mouse is right-clicked, the b-thread is created.
It waits for the event mouseReleased and blocks matchSpeed, flyTwards-
CenterOfMass and flyAwayFromCenterOfMass. This way the birds continue
to move, but not as a united flock.

Every bird in the flock has the following control b-threads:

– For every wall K CheckKWall- Every time tick, this b-thread checks where
the bird is with respect to the wall, and then blocks hardBounceFromKWall
and softBounceFromKWall accordingly.

– For every pair of birds in the flock CheckCollision- Every time tick, this
b-thread blocks the keepAway event of both birds if they are not close to each
other. This is so they will not fly away from each other when there is no need
to do so.

The b-threads above implement the Boid algorithm using BP. It is an example
of how animation with BP integrates defining local rules between various objects
that have synthetic vision with BP, to further simplify the creation of complex
computerized animations.

Examples of this animation can be viewed here:
https://www.dropbox.com/s/g6zu5n34psxaoi3/flock.mp4, and here:
https://www.dropbox.com/s/yt7lhixhukuyu35/flock%205%20X2.avi

The boid animation was based on open source code that can be downloaded
here: http://ultrastudio.org/en/Project:Boids.

7 Future Work

In the billiard and flock examples, each object had a number of behaviors.
Since each of these was turned into a b-thread, there are many context switches
between b-threads before the new coordinates of an object can be calculated.
It takes a while to execute these context switches, because the system needs to
check that the next event to be triggered is not blocked by any b-thread, so that
it has to be compared to all the blocked events in the program.

In these two examples there is a relatively large number of objects. This
can create a problem if the time between each clock tick is too short. When
this occurs, an object with high priority can execute two or more moves, while
an object with a lower priority does not move at all. This happens when the
endSleep event of the higher priority object is requested before the endSleep
event of the lower priority object is triggered, which results in the endSleep
event of the higher priority object being triggered instead of the endSleep event
of the lower priority object. When this happens, it can be seen on-screen; some
of the objects move, while others do not. To solve this problem, the context
switch between b-threads should be optimized.

https://www.dropbox.com/s/g6zu5n34psxaoi3/flock.mp4
https://www.dropbox.com/s/yt7lhixhukuyu35/flock%205%20X2.avi
http://ultrastudio.org/en/Project:Boids


Programming Animation Using Behavioral Programming 131

In addition to optimizing the algorithm for the context switch between
b-threads, further work should be done on behavioral programming with mul-
tiple time scales [20]. Our work on programming animation using BP enables
using a different clock, and hence a different time scale, for each object. Although
objects then move independently of each other, they still share common vari-
ables and events. More work can be done on rendering the behaviors of these
objects truly independent, while still synchronizing their execution.

Our work simplifies programming animation, but is still far from becoming as
simple as we would like. Research could be done on analyzing how animation is
described informally in layman’s terms, and then using the results to suggest for-
mal programming language primitives to enhance the BP paradigm with means
for specifying animation. Also, the physical calculations in this article are carried
out in conventional code, and it would be beneficial for users to have a system
that incorporates a feature that enables making these calculations directly from
a mathematical formula. In addition, functionality should be added to BP, to
give the user a better illusion that motion b-threads are actually continuous.
This will make programming animation more user-friendly to non-programmers.

Additional work can also be done on more complex animation examples.
What comes to mind are compound objects that have many moving parts, such
as worm or a human. Another example is of an object with dynamic boundaries,
such as a stress ball. Other complex animations would involve the merging and
splitting of objects; cells, for example.

Acknowledgements. Part of this research was supported by the I- CORE program
of the Israel Planning and Budgeting Committee and the Israel Science Foundation.

References

1. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. Formal
Methods Syst. Des. 19(1), 45–80 (2001)

2. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, New York (2003)

3. Harel, D., Maoz, S., Szekely, S., Barkan, D.: PlayGo: towards a comprehensive tool
for scenario based programming. In: Proceedings of the IEEE/ACM 25th Inter-
national Conference on Automated Software Engineering (ASE 2010), Antwerp,
Belgium, pp. 359–360 (2010)

4. Harel, D., Marron, A., Weiss, G.: Programming coordinated behavior in Java.
In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 250–274. Springer,
Heidelberg (2010)

5. Harel, D., Kantor, A., Katz, G.: Relaxing synchronization constraints in behavioral
programs. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013.
LNCS, vol. 8312, pp. 355–372. Springer, Heidelberg (2013)

6. Wiener, G., Weiss, G., Marron, A.: Coordinating and visualizing independent
behaviors in erlang. In: Fritchie, S.L., Sagonas, K.F. (eds.) Erlang Workshop,
pp. 13–22. ACM (2010)



132 D. Harel and S. Nitzan

7. Marron, A., Weiss, G., Wiener, G.: A decentralized approach for programming
interactive applications with javascript and blockly. In: Proceedings of the 2nd
Edition on Programming Systems, Languages and Applications Based on Actors,
Agents, and Decentralized Control Abstractions, AGERE! 2012, pp. 59–70. ACM,
New York (2012)

8. Harel, D., Marron, A., Weiss, G.: Behavioral programming. Commun. ACM 55(7),
90–100 (2012)

9. Devillers, F., Donikian, S.: A scenario language to orchestrate virtual world evo-
lution. In: SCA 2003: Proceedings of the 2003 ACM SIGGRAPH/Eurograph-
ics Symposium on Computer Animation, Aire-la-Ville, Switzerland, Switzerland,
pp. 265–275. Eurographics Association (2003)

10. Atir, Y., Harel, D.: Using LSCs for scenario authoring in tactical simulators.
In: Proceedings of Summer Computer Simulation Conference (SCSC 2007),
pp. 437–442 (2007)

11. Yu, Q., Terzopoulos, D.: A decision network framework for the behavioral anima-
tion of virtual humans. In: Proceedings of the 2007 ACM SIGGRAPH/Eurograph-
ics Symposium on Computer Animation, pp. 119–128. Eurographics Association
(2007)

12. Haumann, D.R., Parent, R.E.: The behavioral test-bed: obtaining complex behav-
ior from simple rules. Vis. Comput. 4(6), 332–347 (1988)

13. Renault, O., Magnenat-Thalmann, N., Cui, M., Thalmann, D.: A vision-based
approach to behavioral animation (1990)

14. Noser, H., Thalmann, D.: Sensor-based synthetic actors in a tennis game simula-
tion. Vis. Comput. 14(4), 193–205 (1998)

15. Peters, C., O’Sullivan, C.: Bottom-up visual attention for virtual human anima-
tion. In: 16th International Conference on Computer Animation and Social Agents,
pp. 111–117. IEEE (2003)

16. Ondřej, J., Pettré, J., Olivier, A.H., Donikian, S.: A synthetic-vision based steering
approach for crowd simulation. ACM Trans. Graph. (TOG) 29, 123 (2010). ACM

17. Goldenstein, S., Karavelas, M., Metaxas, D., Guibas, L., Aaron, E., Goswami, A.:
Scalable nonlinear dynamical systems for agent steering and crowd simulation.
Comput. Graph. 25(6), 983–998 (2001)

18. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Trans. Graph.
(TOG) 25, 1160–1168 (2006). ACM

19. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.: Hybrid automata: an algorith-
mic approach to the specification and verification of hybrid systems. In: Hybrid
Systems, pp. 209–229 (1992)

20. Harel, D., Marron, A., Wiener, G., Weiss, G.: Behavioral programming, decentral-
ized control, and multiple time scales. In: Lopes, C.V. (ed.) SPLASH Workshops,
pp. 171–182. ACM (2011)

21. Shimony, B., Nikolaidis, I., Gburzynski, P., Stroulia, E.: On coordination tools
in the picos tuples system. In: Proceedings of the 2nd Workshop on Software
Engineering for Sensor Network Applications, SESENA 2011, pp. 19–24. ACM,
New York (2011)

22. Kugler, H., Plock, C., Roberts, A.: Synthesizing biological theories. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 579–584.
Springer, Heidelberg (2011)

23. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In:
Stone, M.C. (ed.) SIGGRAPH, pp. 25–34. ACM (1987)


	Programming Animation Using Behavioral Programming
	1 Introduction
	2 Behavioral Programming
	2.1 Basic Idioms
	2.2 Behavioral Programming in Java
	2.3 Live Sequence Charts

	3 Animation in Behavioral Programming
	3.1 Motion B-Threads
	3.2 Control B-Threads
	3.3 Improving and Adding B-Threads

	4 Using Behavioral Programming for Billiard
	5 Adding Continuous Behaviors
	5.1 How it is Done
	5.2 Blocking Unwanted Continuous Behaviors
	5.3 Random Continuous Behaviors

	6 Flock Movements
	7 Future Work
	References


