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PREFACE

Dynamic Logic (��) is a formal system for reasoning about programs. Tradition-
ally, this has meant formalizing correctness specifications and proving rigorously
that those specifications are met by a particular program. Other activities fall into
this category as well: determining the equivalence of programs, comparing the
expressive power of various programming constructs, synthesizing programs from
specifications, etc. Formal systems too numerous to mention have been proposed
for these purposes, each with its own peculiarities.
�� can be described as a blend of three complementary classical ingredients:

first-order predicate logic, modal logic, and the algebra of regular events. These
components merge to form a system of remarkable unity that is theoretically rich
as well as practical.

The name Dynamic Logic emphasizes the principal feature distinguishing it
from classical predicate logic. In the latter, truth is static: the truth value of a
formula � is determined by a valuation of its free variables over some structure.
The valuation and the truth value of � it induces are regarded as immutable; there
is no formalism relating them to any other valuations or truth values. In Dynamic
Logic, there are explicit syntactic constructs called programs whose main role is
to change the values of variables, thereby changing the truth values of formulas.
For example, the program � �� � � � over the natural numbers changes the truth
value of the formula “� is even”.

Such changes occur on a metalogical level in classical predicate logic. For
example, in Tarski’s definition of truth of a formula, if � � ��� �� � � � � � � is a
valuation of variables over the natural numbers �, then the formula �� � � � �
is defined to be true under the valuation � iff there exists an � � � such that the
formula �� � � is true under the valuation ������, where ������ agrees with �
everywhere except �, on which it takes the value �. This definition involves a
metalogical operation that produces ������ from � for all possible values � � �.
This operation becomes explicit in �� in the form of the program � �� �, called a
nondeterministic or wildcard assignment. This is a rather unconventional program,
since it is not effective; however, it is quite useful as a descriptive tool. A more
conventional way to obtain a square root of �, if it exists, would be the program

� �� � 	 while �� 	 � do � �� � � �� (1)

In ��, such programs are first-class objects on a par with formulas, complete with
a collection of operators for forming compound programs inductively from a basis
of primitive programs. To discuss the effect of the execution of a program 
 on the
truth of a formula �, �� uses a modal construct �
��, which intuitively states, “It
is possible to execute 
 starting from the current state and halt in a state satisfying
�.” There is also the dual construct �
��, which intuitively states, “If 
 halts when
started in the current state, then it does so in a state satisfying �.” For example, the
first-order formula �� �� � � is equivalent to the �� formula �� ���� �� � �. In
order to instantiate the quantifier effectively, we might replace the nondeterministic
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assignment inside the � � with the while program (1); over �, the two formulas
would be equivalent.

Apart from the obvious heavy reliance on classical logic, computability the-
ory and programming, the subject has its roots in the work of [Thiele, 1966] and
[Engeler, 1967] in the late 1960’s, who were the first to advance the idea of for-
mulating and investigating formal systems dealing with properties of programs in
an abstract setting. Research in program verification flourished thereafter with the
work of many researchers, notably [Floyd, 1967], [Hoare, 1969], [Manna, 1974],
and [Salwicki, 1970]. The first precise development of a ��-like system was car-
ried out by [Salwicki, 1970], following [Engeler, 1967]. This system was called
Algorithmic Logic. A similar system, called Monadic Programming Logic, was
developed by [Constable, 1977]. Dynamic Logic, which emphasizes the modal
nature of the program/assertion interaction, was introduced by [Pratt, 1976].

Background material on mathematical logic, computability, formal languages
and automata, and program verification can be found in [Shoenfield, 1967] (logic),
[Rogers, 1967] (recursion theory), [Kozen, 1997a] (formal languages, automata,
and computability), [Keisler, 1971] (infinitary logic), [Manna, 1974] (program ver-
ification), and [Harel, 1992; Lewis and Papadimitriou, 1981; Davis et al., 1994 ]
(computability and complexity). Much of this introductory material as it pertains
to �� can be found in the authors’ text [Harel et al., 2000].

There are by now a number of books and survey papers treating logics of
programs, program verification, and Dynamic Logic [Apt and Olderog, 1991;
Backhouse, 1986; Harel, 1979; Harel, 1984; Parikh, 1981; Goldblatt, 1982; Gold-
blatt, 1987; Knijnenburg, 1988; Cousot, 1990; Emerson, 1990; Kozen and Tiuryn,
1990]. In particular, much of this chapter is an abbreviated summary of material
from the authors’ text [Harel et al., 2000], to which we refer the reader for a more
complete treatment. Full proofs of many of the theorems cited in this chapter can
be found there, as well as extensive introductory material on logic and complexity
along with numerous examples and exercises.
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1 REASONING ABOUT PROGRAMS

1.1 Programs

For us, a program is a recipe written in a formal language for computing desired
output data from given input data.

EXAMPLE 1. The following program implements the Euclidean algorithm for
calculating the greatest common divisor (gcd) of two integers. It takes as input a
pair of integers in variables � and � and outputs their gcd in variable �:

while � �� � do
begin

� �� � 
�� �;
� �� �;
� �� �

end

The value of the expression � 
�� � is the (nonnegative) remainder obtained when
dividing � by � using ordinary integer division.

Programs normally use variables to hold input and output values and interme-
diate results. Each variable can assume values from a specific domain of compu-
tation, which is a structure consisting of a set of data values along with certain
distinguished constants, basic operations, and tests that can be performed on those
values, as in classical first-order logic. In the program above, the domain of �,
�, and � might be the integers � along with basic operations including integer
division with remainder and tests including ��. In contrast with the usual use of
variables in mathematics, a variable in a program normally assumes different val-
ues during the course of the computation. The value of a variable � may change
whenever an assignment � �� � is performed with � on the left-hand side.

In order to make these notions precise, we will have to specify the program-
ming language and its semantics in a mathematically rigorous way. In this section
we give a brief introduction to some of these languages and the role they play in
program verification.

1.2 States and Executions

As mentioned above, a program can change the values of variables as it runs.
However, if we could freeze time at some instant during the execution of the pro-
gram, we could presumably read the values of the variables at that instant, and that
would give us an instantaneous snapshot of all information that we would need to
determine how the computation would proceed from that point. This leads to the
concept of a state—intuitively, an instantaneous description of reality.

Formally, we will define a state to be a function that assigns a value to each
program variable. The value for variable � must belong to the domain associated
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with �. In logic, such a function is called a valuation. At any given instant in time
during its execution, the program is thought to be “in” some state, determined by
the instantaneous values of all its variables. If an assignment statement is executed,
say � �� 
, then the state changes to a new state in which the new value of � is
2 and the values of all other variables are the same as they were before. We as-
sume that this change takes place instantaneously; note that this is a mathematical
abstraction, since in reality basic operations take some time to execute.

A typical state for the gcd program above is ���� 
�� �� � � � �, where (say) the
first, second, and third components of the sequence denote the values assigned
to �, �, and � respectively. The ellipsis “� � � ” refers to the values of the other
variables, which we do not care about, since they do not occur in the program.

A program can be viewed as a transformation on states. Given an initial (input)
state, the program will go through a series of intermediate states, perhaps eventu-
ally halting in a final (output) state. A sequence of states that can occur from the
execution of a program 
 starting from a particular input state is called a trace.
As a typical example of a trace for the program above, consider the initial state
���� 
�� �� (we suppress the ellipsis). The program goes through the following
sequence of states:

���� 
�� ��� ���� 
�� ���� �
�� 
�� ���� �
�� ��� ���� �
�� ��� �
�� ���� ��� �
��

���� �
� �
�� ���� �
� ��� ��
� �
� ��� ��
� �� ��� ��
� �� ��� ��� �� ��� ��� �� ���

The value of � in the last (output) state is 3, the gcd of 15 and 27.

The binary relation consisting of the set of all pairs of the form (input state,
output state) that can occur from the execution of a program 
, or in other words,
the set of all first and last states of traces of 
, is called the input/output relation
of 
. For example, the pair ����� 
�� ��� ��� �� ��� is a member of the input/output
relation of the gcd program above, as is the pair �������� ����� �
� �� ���. The
values of other variables besides �, �, and � are not changed by the program.
These values are therefore the same in the output state as in the input state. In this
example, we may think of the variables � and � as the input variables, � as the
output variable, and � as a work variable, although formally there is no distinction
between any of the variables, including the ones not occurring in the program.

1.3 Programming Constructs

In subsequent sections we will consider a number of programming constructs. In
this section we introduce some of these constructs and define a few general classes
of languages built on them.

In general, programs are built inductively from atomic programs and tests using
various program operators.
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While Programs

A popular choice of programming language in the literature on �� is the family
of deterministic while programs. This language is a natural abstraction of familiar
imperative programming languages such as Pascal or C. Different versions can be
defined depending on the choice of tests allowed and whether or not nondetermin-
ism is permitted.

The language of while programs is defined inductively. There are atomic pro-
grams and atomic tests, as well as program constructs for forming compound pro-
grams from simpler ones.

In the propositional version of Dynamic Logic (���), atomic programs are sim-
ply letters �� 
� � � � from some alphabet. Thus ��� abstracts away from the nature
of the domain of computation and studies the pure interaction between programs
and propositions. For the first-order versions of ��, atomic programs are simple
assignments � �� �, where � is a variable and � is a term. In addition, a nondeter-
ministic or wildcard assignment � �� � or nondeterministic choice construct may
be allowed.

Tests can be atomic tests, which for propositional versions are simply propo-
sitional letters �, and for first-order versions are atomic formulas ��� �� � � � � ���,
where ��� � � � � �� are terms and � is an �-ary relation symbol in the vocabulary
of the domain of computation. In addition, we include the constant tests � and
�. Boolean combinations of atomic tests are often allowed, although this adds no
expressive power. These versions of �� are called poor test.

More complicated tests can also be included. These versions of �� are some-
times called rich test. In rich test versions, the families of programs and tests are
defined by mutual induction.

Compound programs are formed from the atomic programs and tests by induc-
tion, using the composition, conditional, and while operators. Formally, if � is a
test and 
 and � are programs, then the following are programs:

� 
 	 �

� if � then 
 else �

� while � do 
.

We can also parenthesize with begin � � � end where necessary. The gcd program
of Example 1 above is an example of a while program.

The semantics of these constructs is defined to correspond to the ordinary oper-
ational semantics familiar from common programming languages.

Regular Programs

Regular programs are more general than while programs, but not by much. The
advantage of regular programs is that they reduce the relatively more complicated
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while program operators to much simpler constructs. The deductive system be-
comes comparatively simpler too. They also incorporate a simple form of nonde-
terminism.

For a given set of atomic programs and tests, the set of regular programs is
defined as follows:

(i) any atomic program is a program

(ii) if � is a test, then �� is a program

(iii) if 
 and � are programs, then 
 	 � is a program;

(iv) if 
 and � are programs, then 
 	 � is a program;

(v) if 
 is a program, then 

 is a program.

These constructs have the following intuitive meaning:

(i) Atomic programs are basic and indivisible; they execute in a single step.
They are called atomic because they cannot be decomposed further.

(ii) The program �� tests whether the property � holds in the current state. If
so, it continues without changing state. If not, it blocks without halting.

(iii) The operator 	 is the sequential composition operator. The program 
 	 �
means, “Do 
, then do �.”

(iv) The operator 	 is the nondeterministic choice operator. The program 
 	 �
means, “Nondeterministically choose one of 
 or � and execute it.”

(v) The operator 
 is the iteration operator. The program 
 means, “Execute 

some nondeterministically chosen finite number of times.”

Keep in mind that these descriptions are meant only as intuitive aids. A formal
semantics will be given in Section 2.2, in which programs will be interpreted as
binary input/output relations and the programming constructs above as operators
on binary relations.

The operators 	� 	 � 
 may be familiar from automata and formal language
theory (see [Kozen, 1997a]), where they are interpreted as operators on sets of
strings over a finite alphabet. The language-theoretic and relation-theoretic se-
mantics share much in common; in fact, they have the same equational theory, as
shown in [Kozen, 1994a].

The operators of deterministic while programs can be defined in terms of the
regular operators:

if � then 
 else �
���
� �� 	 
 	 ��� 	 � (2)

while � do 

���
� ��� 	 
�
 	 ��� (3)

The class of while programs is equivalent to the subclass of the regular programs
in which the program operators 	, �, and 
 are constrained to appear only in these
forms.
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Recursion

Recursion can appear in programming languages in several forms. Two such man-
ifestations are recursive calls and stacks. Under certain very general conditions,
the two constructs can simulate each other. It can also be shown that recursive
programs and while programs are equally expressive over the natural numbers,
whereas over arbitrary domains, while programs are strictly weaker. While pro-
grams correspond to what is often called tail recursion or iteration.

R.E. Programs

A finite computation sequence of a program 
, or seq for short, is a finite-length
string of atomic programs and tests representing a possible sequence of atomic
steps that can occur in a halting execution of 
. Seqs are denoted �� �� � � � . The set
of all seqs of a program
 is denoted�� �
�. We use the word “possible” loosely—
�� �
� is determined by the syntax of 
 alone. Because of tests that evaluate to
false, �� �
� may contain seqs that are never executed under any interpretation.

The set �� �
� is a subset of �
, where � is the set of atomic programs and
tests occurring in 
. For while programs, regular programs, or recursive programs,
we can define the set �� �
� formally by induction on syntax. For example, for
regular programs,

�� ���
���
� ���� � an atomic program or test

�� ������
���
� ���

�� ����	�
���
� �

�� �
 	 ��
���
� �� 	 � � � � �� �
�� � � �� ����

�� �
 	 ��
���
� �� �
� 	 �� ���

�� �

�
���
� �� �
�


�
�
���

�� �
���

where


� ���
� ����


���
���
� 
� 	 
�

For example, if � is an atomic program and � an atomic formula, then the pro-
gram

while � do � � ��� 	 ��
 	 ���

has as seqs all strings of the form

��� 	 ��� 	 ��� � ��	 �	 ��	 �	 
 
 
 	 ��	 �� �� �
�

	���
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for all � � �. Note that each seq � of a program 
 is itself a program, and

�� ��� � ����

While programs and regular programs give rise to regular sets of seqs, and
recursive programs give rise to context-free sets of seqs. Taking this a step further,
we can define an r.e. program to be simply a recursively enumerable set of seqs.
This is the most general programming language we will consider in the context of
��; it subsumes all the others in expressive power.

Nondeterminism

We should say a few words about the concept of nondeterminism and its role in
the study of logics and languages, since this concept often presents difficulty the
first time it is encountered.

In some programming languages we will consider, the traces of a program need
not be uniquely determined by their start states. When this is possible, we say
that the program is nondeterministic. A nondeterministic program can have both
divergent and convergent traces starting from the same input state, and for such
programs it does not make sense to say that the program halts on a certain input
state or that it loops on a certain input state; there may be different computations
starting from the same input state that do each.

There are several concrete ways nondeterminism can enter into programs. One
construct is the nondeterministic or wildcard assignment � �� �. Intuitively, this
operation assigns an arbitrary element of the domain to the variable �, but it is not
determined which one.1 Another source of nondeterminism is the unconstrained
use of the choice operator 	 in regular programs. A third source is the iteration
operator 
 in regular programs. A fourth source is r.e. programs, which are just
r.e. sets of seqs; initially, the seq to execute is chosen nondeterministically. For
example, over �, the r.e. program

�� �� � � � � ��

is equivalent to the regular program

� �� � 	 �� �� � � ��
�

Nondeterministic programs provide no explicit mechanism for resolving the
nondeterminism. That is, there is no way to determine which of many possi-
ble next steps will be taken from a given state. This is hardly realistic. So why
study nondeterminism at all if it does not correspond to anything operational? One
good answer is that nondeterminism is a valuable tool that helps us understand the
expressiveness of programming language constructs. It is useful in situations in

1This construct is often called random assignment in the literature. This terminology is misleading,
because it has nothing at all to do with probability.
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which we cannot necessarily predict the outcome of a particular choice, but we
may know the range of possibilities. In reality, computations may depend on in-
formation that is out of the programmer’s control, such as input from the user or
actions of other processes in the system. Nondeterminism is useful in modeling
such situations.

The importance of nondeterminism is not limited to logics of programs. Indeed,
the most important open problem in the field of computational complexity theory,
the P=NP problem, is formulated in terms of nondeterminism.

1.4 Program Verification

Dynamic Logic and other program logics are meant to be useful tools for facilitat-
ing the process of producing correct programs. One need only look at the miasma
of buggy software to understand the dire need for such tools. But before we can
produce correct software, we need to know what it means for it to be correct. It is
not good enough to have some vague idea of what is supposed to happen when a
program is run or to observe it running on some collection of inputs. In order to
apply formal verification tools, we must have a formal specification of correctness
for the verification tools to work with.

In general, a correctness specification is a formal description of how the pro-
gram is supposed to behave. A given program is correct with respect to a correct-
ness specification if its behavior fulfills that specification. For the gcd program of
Example 1, the correctness might be specified informally by the assertion

If the input values of � and � are positive integers � and �, respectively,
then

(i) the output value of � is the gcd of � and �, and

(ii) the program halts.

Of course, in order to work with a formal verification system, these properties must
be expressed formally in a language such as first-order logic.

The assertion (ii) is part of the correctness specification because programs do
not necessarily halt, but may produce infinite traces for certain inputs. A finite
trace, as for example the one produced by the gcd program above on input state
(15,27,0), is called halting, terminating, or convergent. Infinite traces are called
looping or divergent. For example, the program

while � � � do � �� � � �

loops on input state ��� � � � �, producing the infinite trace

��� � � � �� ���� � � � �� ���� � � � �� � � �

Dynamic Logic can reason about the behavior of a program that is manifested
in its input/output relation. It is not well suited to reasoning about program behav-
ior manifested in intermediate states of a computation (although there are close
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relatives, such as Process Logic and Temporal Logic, that are). This is not to say
that all interesting program behavior is captured by the input/output relation, and
that other types of behavior are irrelevant or uninteresting. Indeed, the restriction
to input/output relations is reasonable only when programs are supposed to halt
after a finite time and yield output results. This approach will not be adequate for
dealing with programs that normally are not supposed to halt, such as operating
systems.

For programs that are supposed to halt, correctness criteria are traditionally
given in the form of an input/output specification consisting of a formal relation
between the input and output states that the program is supposed to maintain, along
with a description of the set of input states on which the program is supposed to
halt. The input/output relation of a program carries all the information necessary to
determine whether the program is correct relative to such a specification. Dynamic
Logic is well suited to this type of verification.

It is not always obvious what the correctness specification ought to be. Some-
times, producing a formal specification of correctness is as difficult as producing
the program itself, since both must be written in a formal language. Moreover,
specifications are as prone to bugs as programs. Why bother then? Why not just
implement the program with some vague specification in mind?

There are several good reasons for taking the effort to produce formal specifi-
cations:

1. Often when implementing a large program from scratch, the programmer
may have been given only a vague idea of what the finished product is sup-
posed to do. This is especially true when producing software for a less
technically inclined employer. There may be a rough informal description
available, but the minor details are often left to the programmer. It is very
often the case that a large part of the programming process consists of taking
a vaguely specified problem and making it precise. The process of formulat-
ing the problem precisely can be considered a definition of what the program
is supposed to do. And it is just good programming practice to have a very
clear idea of what we want to do before we start doing it.

2. In the process of formulating the specification, several unforeseen cases may
become apparent, for which it is not clear what the appropriate action of the
program should be. This is especially true with error handling and other
exceptional situations. Formulating a specification can define the action of
the program in such situations and thereby tie up loose ends.

3. The process of formulating a rigorous specification can sometimes suggest
ideas for implementation, because it forces us to isolate the issues that drive
design decisions. When we know all the ways our data are going to be
accessed, we are in a better position to choose the right data structures that
optimize the tradeoffs between efficiency and generality.
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4. The specification is often expressed in a language quite different from the
programming language. The specification is functional—it tells what the
program is supposed to do—as opposed to imperative—how to do it. It is
often easier to specify the desired functionality independent of the details of
how it will be implemented. For example, we can quite easily express what
it means for a number � to be the gcd of � and � in first-order logic without
even knowing how to compute it.

5. Verifying that a program meets its specification is a kind of sanity check. It
allows us to give two solutions to the problem—once as a functional speci-
fication, and once as an algorithmic implementation—and lets us verify that
the two are compatible. Any incompatibilities between the program and
the specification are either bugs in the program, bugs in the specification,
or both. The cycle of refining the specification, modifying the program to
meet the specification, and reverifying until the process converges can lead
to software in which we have much more confidence.

Partial and Total Correctness

Typically, a program is designed to implement some functionality. As mentioned
above, that functionality can often be expressed formally in the form of an in-
put/output specification. Concretely, such a specification consists of an input con-
dition or precondition � and an output condition or postcondition �. These are
properties of the input state and the output state, respectively, expressed in some
formal language such as the first-order language of the domain of computation.
The program is supposed to halt in a state satisfying the output condition when-
ever the input state satisfies the input condition. We say that a program is partially
correct with respect to a given input/output specification �� � if, whenever the
program is started in a state satisfying the input condition �, then if and when it
ever halts, it does so in a state satisfying the output condition �. The definition of
partial correctness does not stipulate that the program halts; this is what we mean
by partial.

A program is totally correct with respect to an input/output specification �� � if

� it is partially correct with respect to that specification; and

� it halts whenever it is started in a state satisfying the input condition �.

The input/output specification imposes no requirements when the input state
does not satisfy the input condition �—the program might as well loop infinitely
or erase memory. This is the “garbage in, garbage out” philosophy. If we really
do care what the program does on some of those input states, then we had better
rewrite the input condition to include them and say formally what we want to
happen in those cases.

For example, in the gcd program of Example 1, the output condition � might
be the condition (i) stating that the output value of � is the gcd of the input values
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of � and �. We can express this completely formally in the language of first-order
number theory. We may try to start off with the input specification � � � � (true);
that is, no restrictions on the input state at all. Unfortunately, if the initial value
of � is 0 and � is negative, the final value of � will be the same as the initial
value, thus negative. If we expect all gcds to be positive, this would be wrong.
Another problematic situation arises when the initial values of � and � are both 0;
in this case the gcd is not defined. Therefore, the program as written is not partially
correct with respect to the specification ��� �.

We can remedy the situation by providing an input specification that rules out
these troublesome input values. We can limit the input states to those in which �
and � are both nonnegative and not both zero by taking the input specification

�� � �� � � � � � �� � �� � � � � � ���

The gcd program of Example 1 above would be partially correct with respect to the
specification ��� �. It is also totally correct, since the program halts on all inputs
satisfying ��.

Perhaps we want to allow any input in which not both � and � are zero. In that
case, we should use the input specification �� � ��� � � � � � ��. But then
the program of Example 1 is not partially correct with respect to � �� �; we must
amend the program to produce the correct (positive) gcd on negative inputs.

1.5 Exogenous and Endogenous Logics

There are two main approaches to modal logics of programs: the exogenous ap-
proach, exemplified by Dynamic Logic and its precursor Hoare Logic ( [Hoare,
1969]), and the endogenous approach, exemplified by Temporal Logic and its pre-
cursor, the invariant assertions method of [Floyd, 1967]. A logic is exogenous if its
programs are explicit in the language. Syntactically, a Dynamic Logic program is
a well-formed expression built inductively from primitive programs using a small
set of program operators. Semantically, a program is interpreted as its input/output
relation. The relation denoted by a compound program is determined by the re-
lations denoted by its parts. This aspect of compositionality allows analysis by
structural induction.

The importance of compositionality is discussed in [van Emde Boas, 1978]. In
Temporal Logic, the program is fixed and is considered part of the structure over
which the logic is interpreted. The current location in the program during execu-
tion is stored in a special variable for that purpose, called the program counter,
and is part of the state along with the values of the program variables. Instead
of program operators, there are temporal operators that describe how the program
variables, including the program counter, change with time. Thus Temporal Logic
sacrifices compositionality for a less restricted formalism. We discuss Temporal
Logic further in Section 14.2.
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2 PROPOSITIONAL DYNAMIC LOGIC (���)

Propositional Dynamic Logic (���) plays the same role in Dynamic Logic that
classical propositional logic plays in classical predicate logic. It describes the
properties of the interaction between programs and propositions that are indepen-
dent of the domain of computation. Since ��� is a subsystem of first-order ��,
we can be sure that all properties of ��� that we discuss in this section will also
be valid in first-order ��.

Since there is no domain of computation in ���, there can be no notion of
assignment to a variable. Instead, primitive programs are interpreted as arbitrary
binary relations on an abstract set of states �. Likewise, primitive assertions are
just atomic propositions and are interpreted as arbitrary subsets of �. Other than
this, no special structure is imposed.

This level of abstraction may at first appear too general to say anything of in-
terest. On the contrary, it is a very natural level of abstraction at which many
fundamental relationships between programs and propositions can be observed.

For example, consider the ��� formula

�
��� � �� � �
�� � �
��� (4)

The left-hand side asserts that the formula � � � must hold after the execution of
program 
, and the right-hand side asserts that � must hold after execution of 

and so must �. The formula (4) asserts that these two statements are equivalent.
This implies that to verify a conjunction of two postconditions, it suffices to verify
each of them separately. The assertion (4) holds universally, regardless of the
domain of computation and the nature of the particular 
, �, and �.

As another example, consider

�
 	 ��� � �
������ (5)

The left-hand side asserts that after execution of the composite program 
 	 �, �
must hold. The right-hand side asserts that after execution of the program 
, ����
must hold, which in turn says that after execution of �, � must hold. The formula
(5) asserts the logical equivalence of these two statements. It holds regardless of
the nature of 
, �, and �. Like (4), (5) can be used to simplify the verification of
complicated programs.

As a final example, consider the assertion

�
�� � ���� (6)

where � is a primitive proposition symbol and 
 and � are programs. If this for-
mula is true under all interpretations, then 
 and � are equivalent in the sense that
they behave identically with respect to any property expressible in ��� or any
formal system containing ��� as a subsystem. This is because the assertion will



DYNAMIC LOGIC 127

hold for any substitution instance of (6). For example, the two programs


 � if � then � else Æ

� � if �� then Æ else �

are equivalent in the sense of (6).

2.1 Syntax

Syntactically, ��� is a blend of three classical ingredients: propositional logic,
modal logic, and the algebra of regular expressions. There are several versions
of ���, depending on the choice of program operators allowed. In this section
we will introduce the basic version, called regular ���. Variations of this basic
version will be considered in later sections.

The language of regular ��� has expressions of two sorts: propositions or
formulas �� �� � � � and programs 
� �� �� � � � . There are countably many atomic
symbols of each sort. Atomic programs are denoted �� 
� �� � � � and the set of all
atomic programs is denoted ��. Atomic propositions are denoted �� �� �� � � � and
the set of all atomic propositions is denoted ��. The set of all programs is denoted
� and the set of all propositions is denoted �. Programs and propositions are built
inductively from the atomic ones using the following operators:

Propositional operators:

� implication
� falsity

Program operators:

	 composition
	 choice

 iteration

Mixed operators:

� � necessity
� test

The definition of programs and propositions is by mutual induction. All atomic
programs are programs and all atomic propositions are propositions. If �� � are
propositions and 
� � are programs, then

� � � propositional implication
� propositional falsity
�
�� program necessity
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are propositions and


 	 � sequential composition

 	 � nondeterministic choice


 iteration
�� test

are programs. In more formal terms, we define the set � of all programs and the
set � of all propositions to be the smallest sets such that

� �� � �

� �� � �

� if �� � � �, then � � � � � and � � �

� if 
� � � �, then 
	�, 
 	 �, and 

 � �

� if 
 � � and � � �, then �
�� � �

� if � � � then �� � ��

Note that the inductive definitions of programs � and propositions � are inter-
twined and cannot be separated. The definition of propositions depends on the
definition of programs because of the construct �
��, and the definition of pro-
grams depends on the definition of propositions because of the construct ��. Note
also that we have allowed all formulas as tests. This is the rich test version of ���.

Compound programs and propositions have the following intuitive meanings:

�
�� “It is necessary that after executing 
, � is true.”


	� “Execute 
, then execute �.”


 	 � “Choose either 
 or � nondeterministically and execute it.”



 “Execute 
 a nondeterministically chosen finite number of times
(zero or more).”

�� “Test �; proceed if true, fail if false.”

We avoid parentheses by assigning precedence to the operators: unary opera-
tors, including �
�, bind tighter than binary ones, and 	 binds tighter than 	. Thus
the expression

�
	�
 	 �
�� � �

should be read

���
	 ��
�� 	 ��
���� � ��
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Of course, parentheses can always be used to enforce a particular parse of an ex-
pression or to enhance readability. Also, under the semantics to be given in the
next section, the operators 	 and 	 will turn out to be associative, so we may write

 	 � 	 � and 
 	 � 	 � without ambiguity. We often omit the symbol 	 and write
the composition 
 	 � as 
�.

The propositional operators �, �, �, �, and � can be defined from� and � in
the usual way.

The possibility operator � � is the modal dual of the necessity operator � �. It
is defined by

�
��
���
� ��
����

The propositions �
�� and �
�� are read “box 
 �” and “diamond 
 �,” re-
spectively. The latter has the intuitive meaning, “There is a computation of 
 that
terminates in a state satisfying �.”

One important difference between � � and � � is that �
�� implies that 

terminates, whereas �
�� does not. Indeed, the formula �
�� asserts that no
computation of 
 terminates, and the formula �
�� is always true, regardless of

.

In addition, we define

����
���
� ��

���	
���
� ��

�� �� � 
� � 
 
 
 � �� � 
� 

���
� ���	
� 	 
 
 
 	 ���	
�

�� �� � 
� � 
 
 
 � �� � 
� ��
���
� �

��
���

���	
��

	 �

��
���

�����

if � then 
 else �
���
� �� � � 
 � �� � � 


� ��	
 	 ���	�

while � do 

���
� �� � � 
 ��

� ���	
�
	���

repeat 
 until �
���
� 
	while �� do 


� 
	 ����	
�
	��

��� 
 ���
���
� � � �
���

The programs ���� and ���	 are the program that does nothing (no-op) and
the failing program, respectively. The ternary if-then-else operator and the binary
while-do operator are the usual conditional and while loop constructs found in
conventional programming languages. The constructs if-�-fi and do-�-od are the
alternative guarded command and iterative guarded command constructs, respec-
tively. The construct ��� 
 ��� is the Hoare partial correctness assertion. We
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will argue later that the formal definitions of these operators given above correctly
model their intuitive behavior.

2.2 Semantics

The semantics of ��� comes from the semantics for modal logic. The structures
over which programs and propositions of ��� are interpreted are called Kripke
frames in honor of Saul Kripke, the inventor of the formal semantics of modal
logic. A Kripke frame is a pair

� � ��� ����

where � is a set of elements �� �� �� � � � called states and�� is a meaning function
assigning a subset of � to each atomic proposition and a binary relation on � to
each atomic program. That is,

����� � �� � � ��

����� � � ��� � � ���

We will extend the definition of the function �� by induction below to give a
meaning to all elements of � and � such that

����� � �� � � �
���
� � � ��� 
 � ��

Intuitively, we can think of the set ����� as the set of states satisfying the propo-
sition � in the model �, and we can think of the binary relation ���
� as the set
of input/output pairs of states of the program 
.

Formally, the meanings ����� of � � � and ���
� of 
 � � are defined by
mutual induction on the structure of � and 
. The basis of the induction, which
specifies the meanings of the atomic symbols � � �� and � � ��, is already given
in the specification of �. The meanings of compound propositions and programs
are defined as follows.

���� � ��
���
� �� ������� 	�����

�����
���
� �

����
���
���
� � � ����
� Æ �� ��������

� �� � �� � � if ��� �� � ���
� then � � ������

���
	��
���
� ���
� Æ����� (7)

� ���� �� � �� � � ����� � ���
� and ��� �� � ������

���
 	 ��
���
� ���
� 	�����

���


�

���
� ���
�


 �
�
���

���
�
� (8)

������
���
� ���� �� � � � �������
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The operator Æ in (7) is relational composition. In (8), the first occurrence of 


is the iteration symbol of ���, and the second is the reflexive transitive closure
operator on binary relations. Thus (8) says that the program 

 is interpreted as
the reflexive transitive closure of ���
�.

We write �� � � � and � � ����� interchangeably, and say that � satisfies � in
�, or that � is true at state � in �. We may omit the � and write � � � when � is
understood. The notation � � � means that � does not satisfy �, or in other words
that � �� �����. In this notation, we can restate the definition above equivalently
as follows:

� � � � �
���
�� � � � implies � � �

� � �

� � �
��
���
�� �� if ��� �� � ���
� then � � �

��� �� � ���
��
���
�� �� ����� � ���
� and ��� �� � �����

��� �� � ���
 	 ��
���
�� ��� �� � ���
� or ��� �� � �����

��� �� � ���


�

���
�� �� � � ���� � � � � �� � � ��� � � ���

and ���� ����� � ���
�� � � � � �� �

��� �� � ������
���
�� � � � and � � ��

The defined operators inherit their meanings from these definitions:

���� � ��
���
� ����� 	�����

���� � ��
���
� ����� ������

������
���
� � ������

����
���
���
� �� � �� � � ��� �� � ���
� and � � ������

� ���
� Æ�����

�����
���
� �

��������
���
� ������ �  � the identity relation

������	�
���
� ������ � ��

In addition, the if-then-else, while-do, and guarded commands inherit their se-
mantics from the above definitions, and the input/output relations given by the
formal semantics capture their intuitive operational meanings. For example, the re-
lation associated with the program while � do 
 is the set of pairs ��� �� for which
there exist states ��� ��� � � � � ��, � � �, such that � � ��, � � ��, �� � �����
and ���� ����� � ���
� for � � � 	 �, and �� �� �����.

This version of ��� is usually called regular ��� and the elements of � are
called regular programs because of the primitive operators 	, ;, and 
, which are
familiar from regular expressions. Programs can be viewed as regular expressions
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over the atomic programs and tests. In fact, it can be shown that if � is an atomic
proposition symbol, then any two test-free programs 
� � are equivalent as reg-
ular expressions—that is, they represent the same regular set—if and only if the
formula �
�� � ���� is valid.

EXAMPLE 2. Let � be an atomic proposition, let � be an atomic program, and let
� � ��� ��� be a Kripke frame with

� � ��� �� ��

����� � ��� ��

����� � ���� ��� ������ ��� ��� ��� ����

The following diagram illustrates �.

� �

�

� �

�

�
�

�
��

�
�
�
��

��
�
�
��

�
�

� �

In this structure, � � ����� � ����, but � � ����� and � � ����. Moreover,
every state of � satisfies the formula

��
������
�� � ��
������
����

2.3 Computation Sequences

Let 
 be a program. Recall from Section 1.3 that a finite computation sequence
of 
 is a finite-length string of atomic programs and tests representing a possi-
ble sequence of atomic steps that can occur in a halting execution of 
. These
strings are called seqs and are denoted �� �� � � � . The set of all such sequences is
denoted �� �
�. We use the word “possible” here loosely—���
� is determined
by the syntax of 
 alone, and may contain strings that are never executed in any
interpretation.

Formally, the set �� �
� is defined by induction on the structure of 
:

�� ���
���
� ���� � an atomic program

�� ����
���
� ����

�� �
	��
���
� ��Æ � � � �� �
�� Æ � �� ����

�� �
 	 ��
���
� �� �
� 	 �� ���

�� �

�
���
�

�
���

�� �
��
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where 
� � ���� and 
��� � 

�. For example, if � is an atomic program and
� is an atomic formula, then the program

while � do � � ���	 ��
	���

has as computation sequences all strings of the form

�� � �� � 
 
 
 �� � ���� ����

Note that each finite computation sequence � of a program 
 is itself a program,
and �� ��� � ���. Moreover, the following proposition is not difficult to prove
by induction on the structure of 
:

PROPOSITION 3.

���
� �
�

����	�


������

2.4 Satisfiability and Validity

The definitions of satisfiability and validity of propositions come from modal logic.
Let � � ��� ��� be a Kripke frame and let � be a proposition. We have defined
in Section 2.2 what it means for �� � � �. If �� � � � for some � � �, we say
that � is satisfiable in �. If � is satisfiable in some �, we say that � is satisfiable.

If �� � � � for all � � �, we write � � � and say that � is valid in �. If � � �
for all Kripke frames �, we write � � and say that � is valid.

If � is a set of propositions, we write � � � if � � � for all � � �. A
proposition � is said to be a logical consequence of � if � � � whenever � � �,
in which case we write � � �. (Note that this is not the same as saying that
�� � � � whenever �� � � �.) We say that an inference rule

��� � � � � ��
�

is sound if � is a logical consequence of ���� � � � � ���.
Satisfiability and validity are dual in the same sense that � and � are dual and

� � and � � are dual: a proposition is valid (in �) if and only if its negation is not
satisfiable (in �).

EXAMPLE 4. Let �� � be atomic propositions, let �� 
 be atomic programs, and
let � � ������ be a Kripke frame with

� � �!� �� �� ��

����� � ��� ��

����� � ��� ��

����� � ���� ��� ��� ��� �!� ��� ��� !��

���
� � ���� ��� ��� ��� �!� ��� ��� !���

The following figure illustrates �.
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�

�

�

�

�

!

�

�
�

�

�

�
�
�

�
�

�

� �

�

�

� �

	

	

�






� �

The following formulas are valid in �.

� � ���

��
��

� � ��
�

�
���

Also, let 
 be the program


 � ��� 	 

 	 ��
 	 
����� 	 

�
��
 	 
���
�

Thinking of 
 as a regular expression, 
 generates all words over the alphabet
��� 
�with an even number of occurrences of each of � and 
. It can be shown that
for any proposition �, the proposition � � �
�� is valid in �.

EXAMPLE 5. The formula

� � ��
���� � ������ � ��� � ������ � �����
�� � ������
���

is valid. Both sides assert in different ways that � is alternately true and false along
paths of execution of the atomic program �.

2.5 Basic Properties

THEOREM 6. The following are valid formulas of ���:

(i) �
��� � �� � �
�� � �
��

(ii) �
��� � �� � �
�� � �
��

(iii) �
�� � �
�� � �
��� � ��

(iv) �
��� � �� � ��
�� � �
���

(v) �
��� � �� � �
�� � �
��

(vi) �
�� � �
�� � �
��� � ��

(vii) �
�� � �

(viii) �
�� � ��
���.

(ix) �
 	 ��� � �
�� � ����
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(x) �
 	 ��� � �
�� � ����

(xi) �
 	 ��� � �
�����

(xii) �
 	 ��� � �
�����

(xiii) ����� � �� � ��

(xiv) ����� � �� � ��.

THEOREM 7. The following are sound rules of inference of ���:

(i) Modal generalization (GEN):

�

�
��

(ii) Monotonicity of �
�:

� � �

�
�� � �
��

(iii) Monotonicity of �
�:

� � �

�
�� � �
��

The converse operator � is a program operator with semantics

���

�� � ���
�

� � ���� �� � ��� �� � ���
���

Intuitively, the converse operator allows us to “run a program backwards;” seman-
tically, the input/output relation of the program 
� is the output/input relation of

. Although this is not always possible to realize in practice, it is nevertheless
a useful expressive tool. For example, it gives us a convenient way to talk about
backtracking, or rolling back a computation to a previous state.

THEOREM 8. For any programs 
 and �,

(i) ����
 	 ���� � ���

� 	 ���

(ii) ����
 	 ���� � ����
� 	 
��

(iii) ������� � ������

(iv) ���

�� � ���

�
�

(v) ���
��� � ���
�.
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THEOREM 9. The following are valid formulas of ���:

(i) � � �
��
���

(ii) � � �
���
��

(iii) �
��
��� � �

(iv) �
���
�� � �.

The iteration operator 
 is interpreted as the reflexive transitive closure operator
on binary relations. It is the means by which iteration is coded in ���. This
operator differs from the other operators in that it is infinitary in nature, as reflected
by its semantics:

���


� � ���
�


 �
�
���

���
�
�

(see Section 2.2). This introduces a level of complexity to ��� beyond the other
operators. Because of it, ��� is not compact: the set

��

��� 	 ���� ��
��� ��
�
��� � � � � (9)

is finitely satisfiable but not satisfiable. Because of this infinitary behavior, it is
rather surprising that ��� should be decidable and that there should be a finitary
complete axiomatization.

The properties of the 
 operator of ��� come directly from the properties of
the reflexive transitive closure operator 
 on binary relations. In a nutshell, for any
binary relation ", "
 is the � -least reflexive and transitive relation containing ".

THEOREM 10. The following are valid formulas of ���:

(i) �

�� � �

(ii) � � �

��

(iii) �

�� � �
��

(iv) �
�� � �

��

(v) �

�� � �



��

(vi) �

�� � �



��

(vii) �

�� � �


��

(viii) �

�� � �


��

(ix) �

�� � � � �
��

��.
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(x) �

�� � � � �
��

��.

(xi) �

�� � � � �

��� � �
���.

(xii) �

�� � � � �

���� � �
���.

Semantically, 

 is a reflexive and transitive relation containing 
, and Theo-
rem 10 captures this. That 

 is reflexive is captured in (ii); that it is transitive is
captured in (vi); and that it contains 
 is captured in (iv). These three properties
are captured by the single property (x).

Reflexive Transitive Closure and Induction

To prove properties of iteration, it is not enough to know that 

 is a reflexive and
transitive relation containing 
. So is the universal relation � ��, and that is not
very interesting. We also need some way of capturing the idea that 

 is the least
reflexive and transitive relation containing 
. There are several equivalent ways
this can be done:

(RTC) The reflexive transitive closure rule:

�� � �
���� �

�

�� � �

(LI) The loop invariance rule:

� � �
��

� � �

��

(IND) The induction axiom (box form):

� � �

��� � �
��� � �

��

(IND) The induction axiom (diamond form):

�

�� � � � �

���� � �
���

The rule (RTC) is called the reflexive transitive closure rule. Its importance is best
described in terms of its relationship to the valid ��� formula of Theorem 10(x).
Observe that the right-to-left implication of this formula is obtained by substituting
�

�� for " in the expression

� � �
�" � "� (10)
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Theorem 10(x) implies that �

�� is a solution of (10); that is, (10) is valid when
�

�� is substituted for ". The rule (RTC) says that �

�� is the least such
solution with respect to logical implication. That is, it is the least ���-definable
set of states that when substituted for " in (10) results in a valid formula.

The dual propositions labeled (IND) are jointly called the ��� induction axiom.
Intuitively, the box form of (IND) says, “If � is true initially, and if, after any
number of iterations of the program 
, the truth of � is preserved by one more
iteration of 
, then � will be true after any number of iterations of 
.” The diamond
form of (IND) says, “If it is possible to reach a state satisfying � in some number
of iterations of 
, then either � is true now, or it is possible to reach a state in
which � is false but becomes true after one more iteration of 
.”

Note that the box form of (IND) bears a strong resemblance to the induction
axiom of Peano arithmetic:

���� � �� ������ ��� � ��� � �� �����

Here ���� is the basis of the induction and �� ����� � ��� � ��� is the induc-
tion step, from which the conclusion �� ���� can be drawn. In the ��� axiom
(IND), the basis is � and the induction step is �

��� � �
���, from which the
conclusion �

�� can be drawn.

2.6 Encoding Hoare Logic

The Hoare partial correctness assertion ��� 
 ��� is encoded as � � �
��
in ���. The following theorem says that under this encoding, Dynamic Logic
subsumes Hoare Logic.

THEOREM 11. The following rules of Hoare Logic are derivable in ���:

(i) Composition rule:

��� 
 ���� ��� � ���

��� 
 	 � ���

(ii) Conditional rule:

�� � �� 
 ���� ��� � �� � ���

��� if � then 
 else � ���

(iii) While rule:

�� � �� 
 ���

��� while � do 
 ��� � ��

(iv) Weakening rule:

�� � �� ��� 
 ���� � � ��

���� 
 ����
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3 FILTRATION AND DECIDABILITY

The small model property for ��� says that if � is satisfiable, then it is satisfied at
a state in a Kripke frame with no more than 
 ��� states, where ��� is the number of
symbols of �. This result and the technique used to prove it, called filtration, come
directly from modal logic. This immediately gives a naive decision procedure for
the satisfiability problem for ���: to determine whether � is satisfiable, construct
all Kripke frames with at most 
��� states and check whether � is satisfied at some
state in one of them. Considering only interpretations of the primitive formulas
and primitive programs appearing in �, there are roughly 
 ����

such models, so
this algorithm is too inefficient to be practical. A more efficient algorithm will be
described in Section 5.

3.1 The Fischer–Ladner Closure

Many proofs in simpler modal systems use induction on the well-founded subfor-
mula relation. In ���, the situation is complicated by the simultaneous inductive
definitions of programs and propositions and by the behavior of the 
 operator,
which make the induction proofs somewhat tricky. Nevertheless, we can still use
the well-founded subexpression relation in inductive proofs. Here an expression
can be either a program or a proposition. Either one can be a subexpression of the
other because of the mixed operators � � and ?.

We start by defining two functions

�� � � � 
�

��
� � ��
�� � 
 � �� � � �� � 
�

by simultaneous induction. The set ����� is called the Fischer–Ladner closure of
�. The filtration construction for ��� uses the Fischer–Ladner closure of a given
formula where the corresponding proof for propositional modal logic would use
the set of subformulas.

The functions �� and ��� are defined inductively as follows:

(a) �����
���
� ���, � an atomic proposition

(b) ���� � ��
���
� �� � �� 	 ����� 	 �����

(c) �����
���
� ���

(d) ����
���
���
� ��

���
��� 	 �����

(e) ���������
���
� ������, � an atomic program

(f) �����
 	 ����
���
� ��
 	 ���� 	 �����
��� 	 ���������
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(g) �����
 	 ����
���
� ��
 	 ���� 	 �����
������ 	 ���������

(h) �����

���
���
� ��

��� 	 �����
��

���

(i) ����������
���
� ������� 	 �����.

This definition is apparently quite a bit more involved than for mere subexpres-
sions. In fact, at first glance it may appear circular because of the rule (h). The
auxiliary function ��� is introduced for the express purpose of avoiding any such
circularity. It is defined only for formulas of the form �
�� and intuitively pro-
duces those elements of ����
��� obtained by breaking down 
 and ignoring
�.

LEMMA 12.

(i) If �
�� � �����, then � � �����.

(ii) If �#��� � �����, then # � �����.

(iii) If �
 	 ��� � �����, then �
�� � ����� and ���� � �����.

(iv) If �
 	 ��� � �����, then �
����� � ����� and ���� � �����.

(v) If �

�� � �����, then �
��

�� � �����.

Even after convincing ourselves that the definition is noncircular, it may not be
clear how the size of ����� depends on the length of �. Indeed, the right-hand
side of rule (h) involves a formula that is larger than the formula on the left-hand
side. However, it can be shown by induction on subformulas that the relationship
is linear:

LEMMA 13.

(i) For any formula �, ������ � ���.

(ii) For any formula �
��, ������
��� � �
�.

3.2 Filtration

Given a ��� proposition � and a Kripke frame � � ��� ���, we define a new
frame ������� � ��������� �����	�
�, called the filtration of � by �����, as
follows. Define a binary relation� on states of � by:

� � �
���
�� �� � ����� �� � ������ � � �������
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In other words, we collapse states � and � if they are not distinguishable by any
formula of �����. Let

���
���
� �� � � � ��

�������
���
� ���� � � � ��

�����	�
���
���
� ���� � � � ������� � an atomic proposition

�����	�
���
���
� ������ ���� � ��� �� � ������� � an atomic program.

The map �����	�
 is extended inductively to compound propositions and pro-
grams as described in Section 2.2.

The following key lemma relates � and �������. Most of the difficulty in the
following lemma is in the correct formulation of the induction hypotheses in the
statement of the lemma. Once this is done, the proof is a fairly straightforward
induction on the well-founded subexpression relation.

LEMMA 14 (Filtration Lemma). Let � be a Kripke frame and let �� � be states of
�.

(i) For all � � �����, � � ����� iff ��� � �����	�
���.

(ii) For all �
�� � �����,

(a) if ��� �� � ���
� then ����� ���� � �����	�
�
�;

(b) if ����� ���� � �����	�
�
� and � � ����
���, then � � �����.

Using the filtration lemma, we can prove the small model theorem easily.

THEOREM 15 (Small Model Theorem). Let � be a satisfiable formula of ���.
Then � is satisfied in a Kripke frame with no more than 
��� states.

Proof. If � is satisfiable, then there is a Kripke frame � and state � � � with
� � �����. Let ����� be the Fischer-Ladner closure of �. By the filtration
lemma (Lemma 14), ��� � �����	�
���. Moreover, ������� has no more states
than the number of truth assignments to formulas in �����, which by Lemma
13(i) is at most 
���. �

It follows immediately that the satisfiability problem for��� is decidable, since
there are only finitely many possible Kripke frames of size at most 
 ��� to check,
and there is a polynomial-time algorithm to check whether a given formula is sat-
isfied at a given state in a given Kripke frame. A more efficient algorithm exists
(see Section 5).

The completeness proof for��� also makes use of the filtration lemma (Lemma
14), but in a somewhat stronger form. We need to know that it also holds for non-
standard Kripke frames as well as the standard Kripke frames defined in Section
2.2.
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A nonstandard Kripke frame is any structure � � �$���� that is a Kripke
frame in the sense of Section 2.2 in every respect, except that ���

� need not
be the reflexive transitive closure of ���
�, but only a reflexive, transitive binary
relation containing ���
� satisfying the ��� axioms for 
 (Axioms 17(vii) and
(viii) of Section 4.1).

LEMMA 16 (Filtration for Nonstandard Models). Let� be a nonstandard Kripke
frame and let �� � be states of�.

(i) For all � � �����, � � ����� iff ��� � �����	�
���.

(ii) For all �
�� � �����,

(a) if ��� �� � ���
� then ����� ���� � �����	�
�
�;

(b) if ����� ���� � �����	�
�
� and � � ����
���, then � � �����.
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4 DEDUCTIVE COMPLETENESS OF ���

4.1 A Deductive System

The following list of axioms and rules constitutes a sound and complete Hilbert-
style deductive system for ���.

Axiom System 17.

(i) Axioms for propositional logic

(ii) �
��� � �� � ��
�� � �
���

(iii) �
��� � �� � �
�� � �
��

(iv) �
 	 ��� � �
�� � ����

(v) �
 	 ��� � �
�����

(vi) ����� � �� � ��

(vii) � � �
��

�� � �

��

(viii) � � �

��� � �
��� � �

��

In ��� with converse �, we also include

(ix) � � �
��
���

(x) � � �
���
��

Rules of Inference

(MP)
�� � � �

�

(GEN)
�

�
��

�

The axioms (ii) and (iii) and the two rules of inference are not particular to ���,
but come from modal logic. The rules (MP) and (GEN) are called modus ponens
and (modal) generalization, respectively.

Axiom (viii) is called the ��� induction axiom. Intuitively, (viii) says: “Sup-
pose � is true in the current state, and suppose that after any number of iterations
of 
, if � is still true, then it will be true after one more iteration of 
. Then � will
be true after any number of iterations of 
.” In other words, if � is true initially,
and if the truth of � is preserved by the program 
, then � will be true after any
number of iterations of 
.
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We write � � if the proposition � is a theorem of this system, and say that � is
consistent if � ��; that is, if it is not the case that � ��. A set � of propositions
is consistent if all finite conjunctions of elements of � are consistent.

The soundness of these axioms and rules over Kripke frames can be established
by elementary arguments in relational algebra using the semantics of Section 2.2.

We write � � if the formula � is provable in this deductive system. A formula
� is consistent if � ��, that is, if it is not the case that � ��; that a finite set � of
formulas is consistent if its conjunction

�
� is consistent; and that an infinite set

of formulas is consistent if every finite subset is consistent.
Axiom System 17 is complete: all valid formulas of ��� are theorems. This

fact can be proved by constructing a nonstandard Kripke frame from maximal
consistent sets of formulas, then using the filtration lemma for nonstandard models
(Lemma 16) to collapse this nonstandard model to a finite standard model.

THEOREM 18 (Completeness of ���). If � � then � �.

In classical logics, a completeness theorem of the form of Theorem 18 can be
adapted to handle the relation of logical consequence � �� � between formulas
because of the deduction theorem, which says

� � � � � � � ��

Unfortunately, the deduction theorem fails in ���, as can be seen by taking � �
���� and � � �. However, the following result allows Theorem 18, as well
as the deterministic exponential-time satisfiability algorithm described in the next
section, to be extended to handle the logical consequence relation:

THEOREM 19. Let � and � be any ��� formulas. Then

� �� � � �� ���� 	 
 
 
 	 ���


�� � ��

where ��� � � � � �� are all atomic programs appearing in � or �. Allowing in-
finitary conjunctions, if � is a set of formulas in which only finitely many atomic
programs appear, then

� �� � � ��
�
����� 	 
 
 
 	 ���



�� � � � �� � ��

where ��� � � � � �� are all atomic programs appearing in � or �.
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5 COMPLEXITY OF ���

The small model theorem (Theorem 15) gives a naive deterministic algorithm
for the satisfiability problem: construct all Kripke frames of at most 
 ��� states
and check whether � is satisfied at any state in any of them. Although check-
ing whether a given formula is satisfied in a given state of a given Kripke frame
can be done quite efficiently, the naive satisfiability algorithm is highly inefficient.
For one thing, the models constructed are of exponential size in the length of the
given formula; for another, there are 
�

������

of them. Thus the naive satisfiability
algorithm takes double exponential time in the worst case.

There is a more efficient algorithm [Pratt, 1979b] that runs in deterministic
single-exponential time. One cannot expect to improve this significantly due to a
corresponding lower bound.

THEOREM 20. There is an exponential-time algorithm for deciding whether a
given formula of ��� is satisfiable.

THEOREM 21. The satisfiability problem for ��� is EXPTIME-complete.

COROLLARY 22. There is a constant � � � such that the satisfiability problem
for ��� is not solvable in deterministic time ��� �
��, where � is the size of the
input formula.

EXPTIME-hardness can be established by constructing a formula of���whose
models encode the computation of a given linear-space-bounded one-tape alternat-
ing Turing machine % on a given input � of length � over % ’s input alphabet.
Since the membership problem for alternating polynomial-space machines is EX-
PTIME-hard ([Chandra et al., 1981]), so is the satisfiability problem for ���.

It is interesting to compare the complexity of satisfiability in ��� with the
complexity of satisfiability in propositional logic. In the latter, satisfiability is
NP-complete; but at present it is not known whether the two complexity classes
EXPTIME and NP differ. Thus, as far as current knowledge goes, the satisfiability
problem is no easier in the worst case for propositional logic than for its far richer
superset ���.

As we have seen, current knowledge does not permit a significant difference to
be observed between the complexity of satisfiability in propositional logic and in
���. However, there is one easily verified and important behavioral difference:
propositional logic is compact, whereas ��� is not.

Compactness has significant implications regarding the relation of logical con-
sequence. If a propositional formula � is a consequence of a set � of propositional
formulas, then it is already a consequence of some finite subset of �; but this is not
true in ���.

Recall that we write � � � and say that � is a logical consequence of � if
� satisfied in any state of any Kripke frame � all of whose states satisfy all the
formulas of �. That is, if � � �, then � � �.

An alternative intepretation of logical consequence, not equivalent to the above,
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is that in any Kripke frame, the formula � holds in any state satisfying all formulas
in �. Allowing infinite conjunctions, we might write this as �

�
� � �. This is

not the same as � � �, since �
�
� � � implies � � �, but not necessarily vice

versa. A counterexample is provided by � � ��� and � � ����. However, if �
contains only finitely many atomic programs, we can reduce the problem � � � to
the problem �

�
�� � � for a related ��, as shown in Theorem 19.

Under either interpretation, compactness fails:

THEOREM 23. There is an infinite set of formulas � and a formula � such that
�
�
� � � (hence � � �), but for no proper subset � � � � is it the case that

�� � � (hence neither is it the case that �
�
�� � �).

As shown in Theorem 19, logical consequences � � � for finite � are no more
difficult to decide than validity of single formulas. But what if � is infinite? Here
compactness is the key factor. If � is an r.e. set and the logic is compact, then the
consequence problem is r.e.: to check whether � � �, the finite subsets of � can
be effectively enumerated, and checking � � � for finite � is a decidable problem.

Since compactness fails in ���, this observation does us no good, even when
� is known to be recursively enumerable. However, the following result shows
that the situation is much worse than we might expect: even if � is taken to be the
set of substitution instances of a single formula of ���, the consequence problem
becomes very highly undecidable. This is a rather striking manifestation of ���’s
lack of compactness.

Let � be a given formula. The set &� of substitution instances of � is the
set of all formulas obtained by substituting a formula for each atomic proposition
appearing in �.

THEOREM 24. The problem of deciding whether &� � � is ��
�-complete. The

problem is ��
�-hard even for a particular fixed �.
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6 NONREGULAR ���

In this section we enrich the class of regular programs in ��� by introducing
programs whose control structure requires more than a finite automaton. For ex-
ample, the class of context-free programs requires a pushdown automaton (PDA),
and moving up from regular to context-free programs is really going from itera-
tive programs to ones with parameterless recursive procedures. Several questions
arise when enriching the class of programs of ���, such as whether the expressive
power of the logic grows, and if so whether the resulting logics are still decidable.
It turns out that any nonregular program increases ���’s expressive power and
that the validity problem for ��� with context-free programs is undecidable. The
bulk of the section is then devoted to the difficult problem of trying to characterize
the borderline between decidable and undecidable extensions. On the one hand,
validity for ��� with the addition of even a single extremely simple nonregular
program is already ��

�-complete; but on the other hand, when we add another
equally simple program, the problem remains decidable. Besides these results,
which pertain to very specific extensions, we discuss some broad decidability re-
sults that cover many languages, including some that are not even context-free.
Since no similarly general undecidability results are known, we also address the
weaker issue of whether nonregular extensions admit the finite model property and
present a negative result that covers many cases.

6.1 Nonregular Programs

Consider the following self-explanatory program:

while � do � 	 now do 
 the same number of times (11)

This program is meant to represent the following set of computation sequences:

���� 	 ��� 	 ��� 	 
� � � � ���

Viewed as a language over the alphabet ��� 
� �����, this set is not regular, thus
cannot be programmed in ���. However, it can be represented by the following
parameterless recursive procedure:

proc ' �
if � then � � 	 
�		 ' 	 
 �

else return
�

The set of computation sequences of this program is captured by the context-free
grammar

' � ��� � ���' 
�
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We are thus led to the idea of allowing context-free programs inside the boxes and
diamonds of ���. From a pragmatic point of view, this amounts to extending
the logic with the ability to reason about parameterless recursive procedures. The
particular representation of the context-free programs is unimportant; we can use
pushdown automata, context-free grammars, recursive procedures, or any other
formalism that can be effectively translated into these.

In the rest of this section, a number of specific programs will be of interest, and
we employ special abbreviations for them. For example, we define:

��
��
���
� ���
�� � � � ��

��
�
���
� ���
� � � � ��


���
���
� �
��� � � � ���

Note that ��
� is really just a nondeterministic version of the program (11) in
which there is simply no � to control the iteration. In fact, (11) could have been
written in this notation as ���������
�.2 In programming terms, we can compare
the regular program ��
�
 with the nonregular one ��
� by observing that if � is
“purchase a loaf of bread” and 
 is “pay $1.00,” then the former program captures
the process of paying for each loaf when purchased, while the latter one captures
the process of paying for them all at the end of the month.

It turns out that enriching ��� with even a single arbitrary nonregular program
increases expressive power.

If ( is any language over atomic programs and tests, then ��� � ( is defined
exactly as ���, but with the additional syntax rule stating that for any formula �,
the expression �(�� is a new formula. The semantics of ��� � ( is like that of
��� with the addition of the clause

���(�
���
�

�
	�


������

Note that ��� � ( does not allow ( to be used as a formation rule for new
programs or to be combined with other programs. It is added to the programming
language as a single new stand-alone program only.

If ���� and ���� are two extensions of ���, we say that ���� is as expres-
sive as ���� if for each formula � of ���� there is a formula � of ���� such
that � � � �. If ���� is as expressive as ���� but ���� is not as expressive as
����, we say that ���� is strictly more expressive than ����.

Thus, one version of ��� is strictly more expressive than another if anything
the latter can express the former can too, but there is something the former can
express that the latter cannot.

2It is noteworthy that the results of this section do not depend on nondeterminism. For example,
the negative Theorem 28 holds for the deterministic version (11) too. Also, most of the results in this
section involve nonregular programs over atomic programs only, but can be generalized to allow tests
as well.
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A language is test-free if it is a subset of �
� ; that is, if its seqs contain no tests.

THEOREM 25. If ( is any nonregular test-free language, then ����( is strictly
more expressive than ���.

We can view the decidability of regular ��� as showing that propositional-
level reasoning about iterative programs is computable. We now wish to know
if the same is true for recursive procedures. We define context-free ��� to be
��� extended with context-free programs, where a context-free program is one
whose seqs form a context-free language. The precise syntax is unimportant, but
for definiteness we might take as programs the set of context-free grammars )
over atomic programs and tests and define

���)�
���
�

�
	���	�


������

where �� �)� is the set of computation sequences generated by ) as described in
Section 1.3.

THEOREM 26. The validity problem for context-free ��� is undecidable.

Theorem 26 leaves several interesting questions unanswered. What is the level
of undecidability of context-free ���? What happens if we want to add only a
small number of specific nonregular programs? The first of these questions arises
from the fact that the equivalence problem for context-free languages is co-r.e.-
complete, or complete for ��

� in the arithmetic hierarchy. Hence, all Theorem 26
shows is that the validity problem for context-free ��� is ��

�-hard, while it might
in fact be worse. The second question is far more general. We might be interested
in reasoning only about deterministic or linear context-free programs, 3 or we might
be interested only in a few special context-free programs such as ��
�� or ��
�.
Perhaps ��� remains decidable when these programs are added. The general
question is to determine the borderline between the decidable and the undecidable
when it comes to enriching the class of programs allowed in ���.

Interestingly, if we wish to consider such simple nonregular extensions as ����
��
�� or ��� � ��
�, we will not be able to prove undecidability by the tech-
nique used for context-free ��� in Theorem 26, since standard problems that are
undecidable for context-free languages, such as equivalence and inclusion, are de-
cidable for classes containing the regular languages and the likes of ��
�� and
��
�. Moreover, we cannot prove decidability by the technique used for ��� in
Section 3.2, since logics like ��� � ��
�� and ��� � ��
� do not enjoy the
finite model property. Thus, if we want to determine the decidability status of such
extensions, we will have to work harder.

THEOREM 27. There is a satisfiable formula in ������
� that is not satisfied
in any finite structure.

3A linear program is one whose seqs are generated by a context-free grammar in which there is
at most one nonterminal symbol on the right-hand side of each rule. This corresponds to a family of
recursive procedures in which there is at most one recursive call in each procedure.
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For ���� ��
��, the news is worse than mere undecidability:

THEOREM 28. The validity problem for ���� ��
�� is ��
�-complete.

The ��
� result holds also for ��� extended with the two programs ��
� and


���.
It is easy to show that the validity problem for context-free ��� in its entirety

remains in ��
�. Together with the fact that ��
�� is a context-free language,

this yields an answer to the first question mentioned earlier: context-free ��� is
��
�-complete. As to the second question, Theorem 28 shows that the high unde-

cidability phenomenon starts occurring even with the addition of one very simple
nonregular program.

We now turn to nonregular programs over a single letter. Consider the language
of powers of 2:

��
� ���

� ���
�

� � � ���

Here we have:

THEOREM 29. The validity problem for ���� ��
�

is undecidable.

It is actually possible to prove this result for powers of any fixed * � 
. Thus
��� with the addition of any language of the form ���

�

� � � �� for fixed * � 

is undecidable. Another class of one-letter extensions that has been proven to be
undecidable consists of Fibonacci-like sequences:

THEOREM 30. Let +�� +� be arbitrary elements of � with +� 	 +�, and let ,
be the sequence +�� +�� +�� � � � generated by the recurrence +� � +��� � +��� for

� � 
. Let �

���
� ���� � � � ��. Then the validity problem for ��� � �
 is

undecidable.

In both these theorems, the fact that the sequences of �’s in the programs grow
exponentially is crucial to the proofs. Indeed, we know of no undecidability results
for any one-letter extension in which the lengths of the sequences of �’s grow
subexponentially. Particularly intriguing are the cases of squares and cubes:

�

� ���

� ���
�

� � � ���

�

� ���

� ���
�

� � � ���

Are ���� �

�

and ���� �

�

undecidable?
There is a decidability result for a slightly restricted version of the squares ex-

tension, which seems to indicate that the full unrestricted version ��� � �

�

is
decidable too. However, we conjecture that for cubes the problem is undecidable.
Interestingly, several classical open problems in number theory reduce to instances
of the validity problem for ���� �


�

. For example, while no one knows whether
every integer greater than 10000 is the sum of five cubes, the following formula is
valid if and only if the answer is yes:

���

�

���� � ��������
���
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(The �-fold and �����-fold iterations have to be written out in full, of course.) If
�����


�

were decidable, then we could compute the answer in a simple manner,
at least in principle.

6.2 Decidable Extensions

We now turn to positive results. Theorem 27 states that ��� � ��
� does not
have the finite model property. Nevertheless, we have the following:

THEOREM 31. The validity problem for ���� ��
� is decidable.

When contrasted with Theorem 28, the decidability of ������
� is very sur-
prising. We have two of the simplest nonregular languages—��
�� and ��
�—
which are extremely similar, yet the addition of one to ��� yields high undecid-
ability while the other leaves the logic decidable.

Theorem 31 was proved originally by showing that, although������
� does
not always admit finite models, it does admit finite pushdown models, in which
transitions are labeled not only with atomic programs but also with push and pop
instructions for a particular kind of stack. A close study of the proof (which relies
heavily on the idiosyncrasies of the language ��
�) suggests that the decidability
or undecidability has to do with the manner in which an automaton accepts the lan-
guages involved. For example, in the usual way of accepting ��
��, a pushdown
automaton (PDA) reading an � will carry out a push or a pop, depending upon its
location in the input word. However, in the standard way of accepting ��
�, the
�’s are always pushed and the 
’s are always popped, regardless of the location;
the input symbol alone determines what the automaton does. More recent work,
which we now set out to describe, has yielded a general decidability result that
confirms this intuition. It is of special interest due to its generality, since it does
not depend on specific programs.

Let % � �-� �� �� ��� ��� Æ� be a PDA that accepts by empty stack. We say
that % is simple-minded if, whenever Æ��� �� �� � ��� 
�, then for each � � and � �,
either Æ���� �� ��� � ��� 
� or Æ���� �� ��� is undefined. A context-free language is
said to be simple-minded (a simple-minded CFL) if there exists a simple-minded
PDA that accepts it.

In other words, the action of a simple-minded automaton is determined uniquely
by the input symbol; the state and stack symbol are only used to help determine
whether the machine halts (rejecting the input) or continues. Note that such an
automaton is necessarily deterministic.

It is noteworthy that simple-minded PDAs accept a large fragment of the context-
free languages, including ��
� and 
���, as well as all balanced parenthesis
languages (Dyck sets) and many of their intersections with regular languages.

THEOREM 32. If ( is accepted by a simple-minded PDA, then ��� � ( is de-
cidable.

We can obtain another general decidability result involving languages accepted
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by deterministic stack automata. A stack automaton is a one-way PDA whose head
can travel up and down the stack reading its contents, but can make changes only at
the top of the stack. Stack automata can accept non-context-free languages such as
��
��� and its generalizations ��� ��� � � � ��� for any �, as well as many variants
thereof. It would be nice to be able to prove decidability of ��� when augmented
by any language accepted by such a machine, but this is not known. What has
been proven, however, is that if each word in such a language is preceded by a new
symbol to mark its beginning, then the enriched ��� is decidable:

THEOREM 33. Let . �� ��, and let ( be a language over �� that is accepted by
a deterministic stack automaton. If we let .( denote the language �.� � � � (�,
then ���� .( is decidable.

While Theorems 32 and 33 are general and cover many languages, they do not
prove decidability of ������
���, which may be considered the simplest non-
context-free extension of ���. Nevertheless, the constructions used in the proofs
of the two general results have been combined to yield:

THEOREM 34. ���� ��
��� is decidable.

As explained, we know of no undecidabile extension of ��� with a polynomi-
ally growing language, although we conjecture that the cubes extension is undecid-
able. Since the decidability status of such extensions seems hard to determine, we
now address a weaker notion: the presence or absence of a finite model property.
The technique used in Theorem 27 to show that ��� � ��
� violates the finite
model property does not work for one-letter alphabets. Nevertheless, we now state
a general result leading to many one-letter extensions that violate the finite model
property. In particular, the theorem will yield the following:

PROPOSITION 35 (squares and cubes). The logics ��� � �

�

and ��� � �

�

do not have the finite model property.

PROPOSITION 36 (polynomials). For every polynomial of the form

���� � ���
� � �����

��� � 
 
 
� �� � ����

with � � 
 and positive leading coefficient �� � �, let &� � ���/� � / � �� � �.
Then ���� ��� does not have the finite model property.

PROPOSITION 37 (sums of primes). Let �� be the ��� prime (with �� � 
), and
define

&�
�
���
� �

��
���

�� � � � ���

Then ���� ����� does not have the finite model property.

PROPOSITION 38 (factorials). Let &���
���
� ��� � � � ��. Then ��� � ���	


does not have the finite model property.
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The finite model property fails for any sufficiently fast-growing integer linear
recurrence, not just the Fibonacci sequence, although we do not know whether
these extensions also render ��� undecidable. A * ��-order integer linear recur-
rence is an inductively defined sequence

0�
���
� ��0��� � 
 
 
� ��0��� � ��� � � *� (12)

where * � �, ��� � � � � �� � �, �� �� �, and 0�� � � � � 0��� � � are given.

PROPOSITION 39 (linear recurrences). Let &�� � �0� � � � �� be the set defined
inductively by (12). The following conditions are equivalent:

(i) ���� is nonregular;

(ii) ���� ���� does not have the finite model property;

(iii) not all 0�� � � � � 0��� are zero and
	�

��� �� � �.
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7 OTHER VARIANTS OF ���

7.1 Deterministic Programs

Nondeterminism arises in ��� in two ways:

� atomic programs can be interpreted in a structure as (not necessarily single-
valued) binary relations on states; and

� the programming constructs 
 	 � and 

 involve nondeterministic choice.

Many modern programming languages have facilities for concurrency and dis-
tributed computation, certain aspects of which can be modeled by nondeterminism.
Nevertheless, the majority of programs written in practice are still deterministic.
Here we investigate the effect of eliminating either one or both of these sources of
nondeterminism from ���.

A program 
 is said to be (semantically) deterministic in a Kripke frame � if
its traces are uniquely determined by their first states. If 
 is an atomic program �,
this is equivalent to the requirement that����� be a partial function; that is, if both
�!� �� and �!� ��� � �����, then � � ��. A deterministic Kripke frame � � ������
is one in which all atomic � are semantically deterministic.

The class of deterministic while programs, denoted ���, is the class of pro-
grams in which

� the operators 	, �, and 
 may appear only in the context of the conditional
test, while loop, skip, or fail;

� tests in the conditional test and while loop are purely propositional; that is,
there is no occurrence of the � � or � � operators.

The class of nondeterministic while programs, denoted ��, is the same, except
unconstrained use of the nondeterministic choice construct 	 is allowed. It is
easily shown that if 
 and � are semantically deterministic in �, then so are
if � then 
 else � and while � do 
.

By restricting either the syntax or the semantics or both, we obtain the following
logics:

� ���� (deterministic ���), which is syntactically identical to ���, but in-
terpreted over deterministic structures only;

� ���� (strict ���), in which only deterministic while programs are allowed;
and

� ����� (strict deterministic ���), in which both restrictions are in force.

Validity and satisfiability in ���� and ����� are defined just as in ���, but
with respect to deterministic structures only. If � is valid in ���, then � is also
valid in ����, but not conversely: the formula

���� � ���� (13)
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is valid in ���� but not in ���. Also, ���� and ����� are strictly less expres-
sive than ��� or ����, since the formula

��� 	 
�
�� (14)

is not expressible in ����, as shown in [Halpern and Reif, 1983].

THEOREM 40. If the axiom scheme

���� � ����� � � �� (15)

is added to Axiom System 17, then the resulting system is sound and complete for
����.

THEOREM 41. Validity in ���� is deterministic exponential-time complete.

Now we turn to ����, in which atomic programs can be nondeterministic but
can be composed into larger programs only with deterministic constructs.

THEOREM 42. Validity in ���� is deterministic exponential-time complete.

The final version of interest is �����, in which both the syntactic restrictions
of ���� and the semantic ones of���� are adopted. The exponential-time lower
bound fails here, and we have:

THEOREM 43. The validity problem for ����� is complete in polynomial space.

The question of relative power of expression is of interest here. Is ���� 	
���? Is ����� 	 ����? The first of these questions is inappropriate, since the
syntax of both languages is the same but they are interpreted over different classes
of structures. Considering the second, we have:

THEOREM 44. ����� 	 ���� and ���� 	 ���.

In summary, we have the following diagram describing the relations of expres-
siveness between these logics. The solid arrows indicate added expressive power
and broken ones a difference in semantics. The validity problem is exponential-
time complete for all but �����, for which it is PSPACE-complete. Straightfor-
ward variants of Axiom System 17 are complete for all versions.

�����

��������

���







�







�

�
�

�
�







7.2 Representation by Automata

A ��� program represents a regular set of computation sequences. This same
regular set could possibly be represented exponentially more succinctly by a finite
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automaton. The difference between these two representations corresponds roughly
to the difference between while programs and flowcharts.

Since finite automata are exponentially more succinct in general, the upper
bound of Section 5 could conceivably fail if finite automata were allowed as pro-
grams. Moreover, we must also rework the deductive system of Section 4.1.

However, it turns out that the completeness and exponential-time decidability
results of ��� are not sensitive to the representation and still go through in the
presence of finite automata as programs, provided the deductive system of Section
4.1 and the techniques of Sections 4 and 5 are suitably modified, as shown in [Pratt,
1979b; Pratt, 1981b] and [Harel and Sherman, 1985].

In recent years, the automata-theoretic approach to logics of programs has yielded
significant insight into propositional logics more powerful than ���, as well as
substantial reductions in the complexity of their decision procedures. Especially
enlightening are the connections with automata on infinite strings and infinite trees.
By viewing a formula as an automaton and a treelike model as an input to that
automaton, the satisfiability problem for a given formula becomes the emptiness
problem for a given automaton. Logical questions are thereby transformed into
purely automata-theoretic questions.

We assume that nondeterministic finite automata are given in the form

% � ��� �� 1� Æ�� (16)

where � � ��� � � � � �� �� is the set of states, �� 1 � � are the start and final states
respectively, and Æ assigns a subset of �� 	 ��� � � � �� to each pair of states.
Intuitively, when visiting state 0 and seeing symbol �, the automaton may move to
state * if � � Æ�0� *�.

The fact that the automata (16) have only one accept state is without loss of gen-
erality. If % is an arbitrary nondeterministic finite automaton with accept states
, , then the set accepted by % is the union of the sets accepted by %� for * � , ,
where %� is identical to % except that it has unique accept state *. A desired
formula �%�� can be written as a conjunction�

��


�%���

with at most quadratic growth.
We now obtain a new logic ���� (automata ���) by defining � and � induc-

tively using the clauses for � from Section 2.1 and letting � � �� 	 ��� � � �
�� 	 , , where , is the set of automata of the form (16).

Axioms 17(iv), (v), and (vii) are replaced by:

��� �� 1� Æ�� �
�
���

��Æ	���


�
���� *� 1� Æ��� � �� 1 (17)

��� �� �� Æ�� � � �
�
���

��Æ	���


�
���� *� �� Æ��� (18)
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The induction axiom 17(viii) becomes

�
�
���

��� �� *� Æ���� �
�
���

��Æ	���


�
����� � ��� � ��� �� 1� Æ�����(19)

These and other similar changes can be used to prove:

THEOREM 45. Validity in ���� is decidable in exponential time.

THEOREM 46. The axiom system described above is complete for ����.

7.3 Converse

The converse operator � is a program operator that allows a program to be “run
backwards”:

���

��

���
� ��!� �� � ��� !� � ���
���

��� with converse is called ����.
The following identities allow us to assume without loss of generality that the

converse operator is applied to atomic programs only.

�
 	 ��� � �� 	 
�

�
 	 ��� � 
� 	 ��



� � 
�


�

The converse operator strictly increases the expressive power of ���, since the
formula �
��� is not expressible without it.

THEOREM 47. ��� 	 ����.

Proof. Consider the structure described in the following figure:

�

� �
�
�

�

! �

In this structure, ! � ����� but � � �����. On the other hand, it can be shown by
induction on the structure of formulas that if ! and � agree on all atomic formulas,
then no formula of ��� can distinguish between the two. �

More interestingly, the presence of the converse operator implies that the op-
erator �
� is continuous in the sense that if � is any (possibly infinite) family of
formulas possessing a join



�, then



�
�� exists and is logically equivalent to

�
�



�. In the absence of the converse operator, one can construct nonstandard
models for which this fails.
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The completeness and exponential time decidability results of Sections 4 and 5
can be extended to ���� provided the following two axioms are added:

� � �
��
���

� � �
���
���

The filtration lemma (Lemma 14) still holds in the presence of �, as does the finite
model property.

7.4 Well-foundedness

If 
 is a deterministic program, the formula � � �
�� asserts the total correct-
ness of 
 with respect to pre- and postconditions � and �, respectively. For non-
deterministic programs, however, this formula does not express the right notion of
total correctness. It asserts that � implies that there exists a halting computation
sequence of 
 yielding �, whereas we would really like to assert that � implies
that all computation sequences of 
 terminate and yield �. Let us denote the latter
property by

�� ��� 
� ���

Unfortunately, this is not expressible in ���.
The problem is intimately connected with the notion of well-foundedness. A

program
 is said to be well-founded at a state �� if there exists no infinite sequence
of states ��� ��� ��� � � � with ���� ����� � ���
� for all � � �. This property is
not expressible in ��� either, as we will see.

Several very powerful logics have been proposed to deal with this situation.
The most powerful is perhaps the propositional 2-calculus, which is essentially
propositional modal logic augmented with a least fixpoint operator 2. Using this
operator, one can express any property that can be formulated as the least fixpoint
of a monotone transformation on sets of states defined by the ��� operators. For
example, the well-foundedness of a program 
 is expressed

23��
�3 (20)

in this logic.
Two somewhat weaker ways of capturing well-foundedness without resorting

to the full 2-calculus have been studied. One is to add to ��� an explicit predicate
wf for well-foundedness:

���wf
� ���
� �!� � ��!�� !�� � � � �� � � �!�� !���� � ���
���

Another is to add an explicit predicate halt, which asserts that all computations of
its argument 
 terminate. The predicate halt can be defined inductively from wf
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as follows:

halt� ���
�� �� � an atomic program or test� (21)

halt 
	� ���
�� halt 
 � �
�halt�� (22)

halt
 	 �
���
�� halt 
 � halt �� (23)

halt

 ���
�� wf 
 � �

�halt
� (24)

These constructs have been investigated under the various names loop, repeat,
and �. The predicates loop and repeat are just the complements of halt and wf,
respectively:

loop 

���
�� �halt 


repeat
 ���
�� �wf 
�

Clause (24) is equivalent to the assertion

loop


���
�� repeat
 � �

�loop
�

It asserts that a nonhalting computation of 

 consists of either an infinite sequence
of halting computations of 
 or a finite sequence of halting computations of 

followed by a nonhalting computation of 
.

Let ���� and ���� denote the logics obtained by augmenting ��� with the
wf and halt predicates, respectively.4 It follows from the preceding discussion that

��� � ���� � ���� � the propositional 2-calculus�

Moreover, all these inclusions are known to be strict.
The logic ���� is powerful enough to express the total correctness of nonde-

terministic programs. The total correctness of 
 with respect to precondition �
and postcondition � is expressed

�� ��� 
� ��
���
�� � � halt
 � �
���

Conversely, halt can be expressed in terms of �� :

halt
 � �� ��� 
����

THEOREM 48. ��� 	 ����.

THEOREM 49. ���� 	 ����.

It is possible to extend Theorem 49 to versions ����� and ����� in which
converse is allowed in addition to wf or halt. Also, the proof of Theorem 47 goes

4The � in ���� stands for “loop” and the � in ���� stands for “repeat.” We retain these names
for historical reasons.
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through for ���� and ����, so that ����� is not expressible in either. Theorem
48 goes through for the converse versions too. We obtain the situation illustrated
in the following figure, in which the arrows indicate 	 and the absence of a path
between two logics means that each can express properties that the other cannot.

���

����

����

����

�����

�����






�






�






�






�

�
�

�


�
�

�


�
�

�


The filtration lemma fails for all halt and wf versions as in Theorem 48. However,
satisfiable formulas of the 2-calculus (hence of ���� and ����) do have finite
models. This finite model property is not shared by ����� or �����.

THEOREM 50. The ����� formula

�halt �
 � ��
�halt �
�

is satisfiable but has no finite model.

As it turns out, Theorem 50 does not prevent ����� from being decidable.
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THEOREM 51. The validity problems for �����, �����, ����, ����, and
the propositional 2-calculus are all decidable in deterministic exponential time.

Obviously, the simpler the logic, the simpler the arguments needed to show ex-
ponential time decidability. Over the years all these logics have been gradually
shown to be decidable in exponential time by various authors using various tech-
niques. Here we point to the exponential time decidability of the propositional
2-calculus with forward and backward modalities, proved in [Vardi, 1998b], from
which all these can be seen easily to follow. The proof in [Vardi, 1998b] is carried
out by exhibiting an exponential time decision procedure for two-way alternating
automata on infinite trees.

As mentioned above, ���� possesses the finite (but not necessarily the small
and not the collapsed) model property.

THEOREM 52. Every satisfiable formula of ����, ����, and the propositional
2-calculus has a finite model.

����� and ����� are extensions of ��� that, like ���� ��
� (Theorems
27 and 31), are decidable despite lacking a finite model property.

Complete axiomatizations for ���� and ���� can be obtained by embedding
them into the 2-calculus (see Section 14.4).

7.5 Concurrency

Another interesting extension of ��� concerns concurrent programs. One can de-
fine an intersection operator� such that the binary relation on states corresponding
to the program 
 � � is the intersection of the binary relations corresponding to 

and �. This can be viewed as a kind of concurrency operator that admits transitions
to those states that both 
 and � would have admitted.

Here we consider a different and perhaps more natural notion of concurrency.
The interpretation of a program will not be a binary relation on states, which relates
initial states to possible final states, but rather a relation between a states and sets
of states. Thus ���
� will relate a start state � to a collection of sets of states
4 . The intuition is that starting in state �, the (concurrent) program 
 can be run
with its concurrent execution threads ending in the set of final states 4 . The basic
concurrency operator will be denoted here by �, although in the original work
on concurrent Dynamic Logic ([Peleg, 1987b; Peleg, 1987c; Peleg, 1987a]) the
notation � is used.

The syntax of concurrent ��� is the same as ���, with the addition of the
clause:

� if 
� � � �, then 
 � � � �.

The program 
 � � means intuitively, “Execute 
 and � in parallel.”
The semantics of concurrent ��� is defined on Kripke frames � � ������ as

with ���, except that for programs 
,

���
� � � � 
� �
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Thus the meaning of 
 is a collection of reachability pairs of the form ��� 4�,
where � � � and 4 � �. In this brief description of concurrent���, we require
that structures assign to atomic programs sequential, non-parallel, meaning; that
is, for each � � ��, we require that if ��� 4� � �����, then �4 � �. The true
parallelism will stem from applying the concurrency operator to build larger sets
4 in the reachability pairs of compound programs. For details, see [Peleg, 1987b;
Peleg, 1987c].

The relevant results for this logic are the following:

THEOREM 53. ��� 	 concurrent ���.

THEOREM 54. The validity problem for concurrent ��� is decidable in deter-
ministic exponential time.

Axiom System 17, augmented with the following axiom, can be be shown to be
complete for concurrent ���:

�
 � ��� � �
�� � �����
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8 FIRST-ORDER DYNAMIC LOGIC (��)

In this section we begin the study of first-order Dynamic Logic. The main dif-
ference between first-order �� and the propositional version ��� discussed in
previous sections is the presence of a first-order structure �, called the domain of
computation, over which first-order quantification is allowed. States are no longer
abstract points, but valuations of a set of variables over �, the carrier of�. Atomic
programs in �� are no longer abstract binary relations, but assignment statements
of various forms, all based on assigning values to variables during the computation.
The most basic example of such an assignment is the simple assignment � �� �,
where � is a variable and � is a term. The atomic formulas of �� are generally
taken to be atomic first-order formulas.

In addition to the constructs of ���, the basic �� syntax contains individual
variables ranging over �, function and predicate symbols for distinguished func-
tions and predicates of �, and quantifiers ranging over �, exactly as in classical
first-order logic. More powerful versions of the logic contain array and stack vari-
ables and other constructs, as well as primitive operations for manipulating them,
and assignments for changing their values. Sometimes the introduction of a new
construct increases expressive power and sometimes not; sometimes it has an ef-
fect on the complexity of deciding satisfiability and sometimes not. Indeed, one of
the central goals of research has been to classify these constructs in terms of their
relative expressive power and complexity.

In this section we lay the groundwork for this by defining the various logical
and programming constructs we shall need.

8.1 Basic Syntax

The language of first-order Dynamic Logic is built upon classical first-order logic.
There is always an underlying first-order vocabulary �, which involves a vocabu-
lary of function symbols and predicate (or relation) symbols. On top of this vocab-
ulary, we define a set of programs and a set of formulas. These two sets interact by
means of the modal construct � � exactly as in the propositional case. Programs
and formulas are usually defined by mutual induction.

Let � � �+� 5� � � � � �� �� � � � � be a finite first-order vocabulary. Here + and 5
denote typical function symbols of �, and � and � denote typical relation symbols.
Associated with each function and relation symbol of � is a fixed arity (number
of arguments), although we do not represent the arity explicitly. We assume that �
always contains the equality symbol�, whose arity is 2. Functions and relations of
arity �� �� 
� � and � are called nullary, unary, binary, ternary, and �-ary, respec-
tively. Nullary functions are also called constants. We shall be using a countable
set of individual variables ' � ���� ��� � � � �.

We always assume that � contains at least one function symbol of positive arity.
A vocabulary � is polyadic if it contains a function symbol of arity greater than
one. Vocabularies whose function symbols are all unary are called monadic.
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A vocabulary� is rich if either it contains at least one predicate symbol besides
the equality symbol or the sum of arities of the function symbols is at least two.
Examples of rich vocabularies are: two unary function symbols, or one binary
function symbol, or one unary function symbol and one unary predicate symbol.
A vocabulary that is not rich is poor. Hence a poor vocabulary has just one unary
function symbol and possibly some constants, but no relation symbols other than
equality. The main difference between rich and poor vocabularies is that the for-
mer admit exponentially many pairwise non-isomorphic structures of a given finite
cardinality, whereas the latter admit only polynomially many.

We say that the vocabulary � is mono-unary if it contains no function symbols
other than a single unary one. It may contain constants and predicate symbols.

The definitions of �� programs and formulas below depend on the vocabulary
�, but in general we shall not make this dependence explicit unless we have some
specific reason for doing so.

Atomic Formulas and Programs

In all versions of �� that we will consider, atomic formulas are atomic formulas
of the first-order vocabulary �; that is, formulas of the form ��� �� � � � � ���, where
� is an �-ary relation symbol of � and ��� � � � � �� are terms of �.

As in ���, programs are defined inductively from atomic programs using var-
ious programming constructs. The meaning of a compound program is given in-
ductively in terms of the meanings of its constituent parts. Different classes of
programs are obtained by choosing different classes of atomic programs and pro-
gramming constructs.

In the basic version of ��, an atomic program is a simple assignment � �� �,
where � � ' and � is a term of �. Intuitively, this program assigns the value of �
to the variable �. This is the same form of assignment found in most conventional
programming languages.

More powerful forms of assignment such as stack and array assignments and
nondeterministic “wildcard” assignments will be discussed later. The precise choice
of atomic programs will be made explicit when needed, but for now, we use the
term atomic program to cover all of these possibilities.

Tests

As in ���, �� contains a test operator �, which turns a formula into a program.
In most versions of �� that we shall discuss, we allow only quantifier-free first-
order formulas as tests. We sometimes call these versions poor test. Alternatively,
we might allow any first-order formula as a test. Most generally, we might place
no restrictions on the form of tests, allowing any �� formula whatsoever, includ-
ing those that contain other programs, perhaps containing other tests, etc. These
versions of�� are labeled rich test as in Section 2.1. Whereas programs can be de-
fined independently from formulas in poor test versions, rich test versions require
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a mutually inductive definition of programs and formulas.
As with atomic programs, the precise logic we consider at any given time de-

pends on the choice of tests we allow. We will make this explicit when needed, but
for now, we use the term test to cover all possibilities.

Regular Programs

For a given set of atomic programs and tests, the set of regular programs is defined
as in ��� (see Section 2.1):

� any atomic program or test is a program;

� if 
 and � are programs, then 
 	 � is a program;

� if 
 and � are programs, then 
 	 � is a program;

� if 
 is a program then 

 is a program.

While Programs

Much of the literature on �� is concerned with the class of while programs (see
Section 2.1). Formally, deterministic while programs form the subclass of the
regular programs in which the program operators 	, �, and 
 are constrained to
appear only in the forms

����
���
� ��

���	
���
� ��

if � then 
 else �
���
� ���	
� 	 ����	�� (25)

while � do 

���
� ���	
�
	��� (26)

The class of nondeterministic while programs is the same, except that we allow
unrestricted use of the nondeterministic choice construct	. Of course, unrestricted
use of the sequential composition operator is allowed in both languages.

Restrictions on the form of atomic programs and tests apply as with regular
programs. For example, if we are allowing only poor tests, then the � occurring in
the programs (25) and (26) must be a quantifier-free first-order formula.

The class of deterministic while programs is important because it captures the
basic programming constructs common to many real-life imperative programming
languages. Over the standard structure of the natural numbers �, deterministic
while programs are powerful enough to define all partial recursive functions, and
thus over� they are as as expressive as regular programs. A similar result holds for
a wide class of models similar to �, for a suitable definition of “partial recursive
functions” in these models. However, it is not true in general that while programs,
even nondeterministic ones, are universally expressive. We discuss these results in
Section 12.
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Formulas

A formula of �� is defined in way similar to that of ���, with the addition of a
rule for quantification. Equivalently, we might say that a formula of �� is defined
in a way similar to that of first-order logic, with the addition of a rule for modality.
The basic version of �� is defined with regular programs:

� the false formula � is a formula;

� any atomic formula is a formula;

� if � and � are formulas, then � � � is a formula;

� if � is a formula and � � ' , then �� � is a formula;

� if � is a formula and 
 is a program, then �
�� is a formula.

The only missing rule in the definition of the syntax of �� are the tests. In our
basic version we would have:

� if � is a quatifier-free first-order formula, then �� is a test.

For the rich test version, the definitions of programs and formulas are mutually
dependent, and the rule defining tests is simply:

� if � is a formula, then �� is a test.

We will use the same notation as in propositional logic that �� stands for � �
�. As in first-order logic, the first-order existential quantifier � is considered a
defined construct: �� � abbreviates ��� ��. Similarly, the modal construct � �

is considered a defined construct as in Section 2.1, since it is the modal dual of
� �. The other propositional constructs �, �, � are defined as in Section 2.1. Of
course, we use parentheses where necessary to ensure unique readability.

Note that the individual variables in ' serve a dual purpose: they are both
program variables and logical variables.

8.2 Richer Programs

Seqs and R.E. Programs

Some classes of programs are most conveniently defined as certain sets of seqs.
Recall from Section 2.3 that a seq is a program of the form � �	 
 
 
 	��, where
each �� is an assignment statement or a quantifier-free first-order test. Each regular
program 
 is associated with a unique set of seqs �� �
� (Section 2.3). These
definitions were made in the propositional context, but they apply equally well to
the first-order case; the only difference is in the form of atomic programs and tests.

Construing the word in the broadest possible sense, we can consider a program
to be an arbitrary set of seqs. Although this makes sense semantically—we can
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assign an input/output relation to such a set in a meaningful way—such programs
can hardly be called executable. At the very least we should require that the set
of seqs be recursively enumerable, so that there will be some effective procedure
that can list all possible executions of a given program. However, there is a subtle
issue that arises with this notion. Consider the set of seqs

��� �� + ���� � � � ���

This set satisfies the above restriction, yet it can hardly be called a program. It
uses infinitely many variables, and as a consequence it might change a valuation
at infinitely many places. Another pathological example is the set of seqs

����� �� +���� � � � ���

which not only could change a valuation at infinitely many locations, but also
depends on infinitely many locations of the input valuation.

In order to avoid such pathologies, we will require that each program use only
finitely many variables. This gives rise to the following definition of r.e. programs,
which is the most general family of programs we will consider. Specifically, an
r.e. program 
 is a Turing machine that enumerates a set of seqs over a finite set of
variables. The set of seqs enumerated will be called �� �
�. By �� �
� we will
denote the finite set of variables that occur in seqs of �� �
�.

An important issue connected with r.e. programs is that of bounded memory.
The assignment statements or tests in an r.e. program may have infinitely many
terms with increasingly deep nesting of function symbols (although, as discussed,
these terms only use finitely many variables), and these could require an un-
bounded amount of memory to compute. We define a set of seqs to be bounded
memory if the depth of terms appearing in it is bounded. In fact, without sacrificing
computational power, we could require that all terms be of the form +�� �� � � � � ���
in a bounded-memory set of seqs.

Arrays and Stacks

Interesting variants of the programming language we use in �� arise from allow-
ing auxiliary data structures. We shall define versions with arrays and stacks, as
well as a version with a nondeterministic assignment statement called wildcard
assignment.

Besides these, one can imagine augmenting while programs with many other
kinds of constructs such as blocks with declarations, recursive procedures with
various parameter passing mechanisms, higher-order procedures, concurrent pro-
cesses, etc. It is easy to arrive at a family consisting of thousands of programming
languages, giving rise to thousands of logics. Obviously, we have had to restrict
ourselves. It is worth mentioning, however, that certain kinds of recursive proce-
dures are captured by our stack operations, as explained below.
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Arrays

To handle arrays, we include a countable set of array variables

'����� � �,�� ,�� � � � ��

Each array variable has an associated arity, or number of arguments, which we
do not represent explicitly. We assume that there are countably many variables
of each arity � � �. In the presence of array variables, we equate the set ' of
individual variables with the set of nullary array variables; thus ' � ' �����.

The variables in '����� of arity � will range over �-ary functions with argu-
ments and values in the domain of computation. In our exposition, elements of
the domain of computation play two roles: they are used both as indices into an
array and as values that can be stored in an array. One might equally well intro-
duce a separate sort for array indices; although conceptually simple, this would
complicate the notation and would give no new insight.

We extend the set of first-order terms to allow the unrestricted occurrence of
array variables, provided arities are respected.

The classes of regular programs with arrays and deterministic and nondeter-
ministic while programs with arrays are defined similarly to the classes without,
except that we allow array assignments in addition to simple assignments. Array
assignments are similar to simple assignments, but on the left-hand side we allow
a term in which the outermost symbol is an array variable:

, ���� � � � � ��� �� ��

Here , is an �-ary array variable and ��� � � � � ��� � are terms, possibly involving
other array variables. Note that when � � �, this reduces to the ordinary simple
assignment.

Recursion via an Algebraic Stack

We now consider �� in which the programs can manipulate a stack. The literature
in automata theory and formal languages often distinguishes a stack from a push-
down store. In the former, the automaton is allowed to inspect the contents of the
stack but to make changes only at the top. We shall use the term stack to denote
the more common pushdown store, where the only inspection allowed is at the top
of the stack.

The motivation for this extension is to be able to capture recursion. It is well
known that recursive procedures can be modeled using a stack, and for various
technical reasons we prefer to extend the data-manipulation capabilities of our
programs than to introduce new control constructs. When it encounters a recursive
call, the stack simulation of recursion will push the return location and values of
local variables and parameters on the stack. It will pop them upon completion of
the call. The LIFO (last-in-first-out) nature of stack storage fits the order in which
control executes recursive calls.
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To handle the stack in our stack version of��, we add two new atomic programs

push��� and pop����

where � is a term and � � ' . Intuitively, push��� pushes the current value of �
onto the top of the stack, and pop��� pops the top value off the top of the stack and
assigns that value to the variable �. If the stack is empty, the pop operation does
not change anything. We could have added a test for stack emptiness, but it can be
shown to be redundant. Formally, the stack is simply a finite string of elements of
the domain of computation.

The classes of regular programs with stack and deterministic and nondetermin-
istic while programs with stack are obtained by augmenting the respective classes
of programs with the push and pop operations as atomic programs in addition to
simple assignments.

In contrast to the case of arrays, here there is only a single stack. In fact, ex-
pressiveness changes dramatically when two or more stacks are allowed. Also, in
order to be able to simulate recursion, the domain must have at least two distinct
elements so that return addresses can be properly encoded in the stack. One way
of doing this is to store the return address itself in unary using one element of the
domain, then store one occurrence of the second element as a delimiter symbol,
followed by domain elements constituting the current values of parameters and
local variables.

The kind of stack described here is often termed algebraic, since it contains el-
ements from the domain of computation. It should be contrasted with the Boolean
stack described next.

Parameterless Recursion via a Boolean Stack

An interesting special case is when the stack can contain only two distinct ele-
ments. This version of our programming language can be shown to capture re-
cursive procedures without parameters or local variables. This is because we only
need to store return addresses, but no actual data items from the domain of compu-
tation. This can be achieved using two values, as described above. We thus arrive
at the idea of a Boolean stack.

To handle such a stack in this version of ��, we add three new kinds of atomic
programs and one new test. The atomic programs are

push-1 push-0 pop�

and the test is simply top?. Intuitively, push-1 and push-0 push the corresponding
distinct Boolean values on the stack, pop removes the top element, and the test
top? evaluates to true iff the top element of the stack is �, but with no side effect.

With the test ���� only, there is no explicit operator that distinguishes a stack
with top element � from the empty stack. We might have defined such an oper-
ator, and in a more realistic language we would certainly do so. However, it is
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mathematically redundant, since it can be simulated with the operators we already
have.

Wildcard Assignment

The nondeterministic assignment � �� � is a device that arises in the study of fair-
ness; see [Apt and Plotkin, 1986]. It has often been called random assignment in
the literature, although it has nothing to do with randomness or probability. We
shall call it wildcard assignment. Intuitively, it operates by assigning a nondeter-
ministically chosen element of the domain of computation to the variable �. This
construct together with the � � modality is similar to the first-order universal quan-
tifier, since it will follow from the semantics that the two formulas �� �� ��� and
�� � are equivalent. However, wildcard assignment may appear in programs and
can therefore be iterated.

8.3 Semantics

In this section we assign meanings to the syntactic constructs described in the
previous sections. We interpret programs and formulas over a first-order structure
�. Variables range over the carrier of this structure. We take an operational view
of program semantics: programs change the values of variables by sequences of
simple assignments � �� � or other assignments, and flow of control is determined
by the truth values of tests performed at various times during the computation.

States as Valuations

An instantaneous snapshot of all relevant information at any moment during the
computation is determined by the values of the program variables. Thus our states
will be valuations �� �� � � � of the variables ' over the carrier of the structure �.
Our formal definition will associate the pair ��� �� of such valuations with the
program 
 if it is possible to start in valuation �, execute the program 
, and halt
in valuation �. In this case, we will call ��� �� an input/output pair of 
 and write
��� �� � ���
�. This will result in a Kripke frame exactly as in Section 2.

Let � � ��� ��� be a first-order structure for the vocabulary �. We call �
the domain of computation. Here � is a set, called the carrier of �, and ��
is a meaning function such that ���+� is an �-ary function ���+� � �� � �
interpreting the �-ary function symbol + of �, and ����� is an �-ary relation
����� � �� interpreting the �-ary relation symbol � of �. The equality symbol
� is always interpreted as the identity relation.

For � � �, let �� � � denote the set of all �-ary functions in �. By conven-
tion, we take �� � � � �. Let �
 denote the set of all finite-length strings over
�.

The structure � determines a Kripke frame, which we will also denote by �, as
follows. A valuation over � is a function � assigning an �-ary function over � to
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each �-ary array variable. It also assigns meanings to the stacks as follows. We
shall use the two unique variable names ��� and ���� to denote the algebraic
stack and the Boolean stack, respectively. The valuation � assigns a finite-length
string of elements of � to ��� and a finite-length string of Boolean values � and
� to ���� . Formally:

��, � � �� � �� if , is an �-ary array variable,
����� � � �
�

������ � � �����
�

By our convention �� � � � �, and assuming that ' � '�����, the individual
variables (that is, the nullary array variables) are assigned elements of � under this
definition:

���� � � if � � '�

The valuation � extends uniquely to terms � by induction. For an �-ary function
symbol + and an �-ary array variable , ,

��+���� � � � � ����
���
� ���+�������� � � � � ������

��, ���� � � � � ����
���
� ��, �������� � � � � �������

The function-patching operator is defined as follows: if 3 and 6 are sets, + �
3 � 6 is any function, � � 3 , and � � 6, then + ����� � 3 � 6 is the function
defined by

+ ��������
���
�

�
�� if � � �
+���� otherwise.

We will be using this notation in several ways, both at the logical and metalogical
levels. For example:

� If � is a valuation, � is an individual variable, and � � �, then ������ is the
new valuation obtained from � by changing the value of � to � and leaving
the values of all other variables intact.

� If , is an �-ary array variable and + � �� � �, then ��,�+ � is the new
valuation that assigns the same value as � to the stack variables and to all
array variables other than , , and

��,�+ ��, � � +�

� If + � �� � � is an �-ary function and � � ��� � � � � �� � �� and � � �,
then the expression + ����� denotes the �-ary function that agrees with +
everywhere except for input �, on which it takes the value �. More precisely,

+ ������
� �

�
�� if 
 � �

+�
�� otherwise.
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We call valuations � and � finite variants of each other if

��, ����� � � � � ��� � ��, ����� � � � � ���

for all but finitely many array variables , and �-tuples ��� � � � � �� � ��. In other
words, � and � differ on at most finitely many array variables, and for those , on
which they do differ, the functions ��, � and ��, � differ on at most finitely many
values.

The relation “is a finite variant of” is an equivalence relation on valuations.
Since a halting computation can run for only a finite amount of time, it can execute
only finitely many assignments. It will therefore not be able to cross equivalence
class boundaries; that is, in the binary relation semantics given below, if the pair
��� �� is an input/output pair of the program 
, then � is a finite variant of �.

We are now ready to define the states of our Kripke frame. For � � �, let � � be
the valuation in which the stacks are empty and all array and individual variables
are interpreted as constant functions taking the value � everywhere. A state of �
is any finite variant of a valuation ��. The set of states of � is denoted &�.

Call a state initial if it differs from some �� only at the values of individual
variables.

It is meaningful, and indeed useful in some contexts, to take as states the set of
all valuations. Our purpose in restricting our attention to states as defined above
is to prevent arrays from being initialized with highly complex oracles that would
compromise the value of the relative expressiveness results of Section 12.

Assignment Statements

As in Section 2.2, with every program 
 we associate a binary relation

���
� � &� � &�

(called the input/output relation of �), and with every formula � we associate a set

����� � &��

The sets ���
� and ����� are defined by mutual induction on the structure of 

and �.

For the basis of this inductive definition, we first give the semantics of all the
assignment statements discussed earlier.

� The array assignment , ���� � � � � ��� �� � is interpreted as the binary relation

���, ���� � � � � ��� �� ��
���
� ���� ��,���, �������� � � � � ������������� � � � &���

In other words, starting in state �, the array assignment has the effect of
changing the value of , on input ������ � � � � ����� to ����, and leaving the
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value of , on all other inputs and the values of all other variables intact. For
� � �, this definition reduces to the following definition of simple assign-
ment:

���� �� ��
���
� ���� ���������� � � � &���

� The push operations, push��� for the algebraic stack and push-1 and push-0
for the Boolean stack, are interpreted as the binary relations

���push���� ���
� ���� ����������� 
 ����� ���� � � � &��

���push-1� ���
� ���� ��������� 
 ������ ���� � � � &��

���push-0� ���
� ���� ��������� 
 ������ ���� � � � &���

respectively. In other words, push��� changes the value of the algebraic
stack variable ��� from ����� � to the string ���� 
����� �, the concate-
nation of the value ���� with the string ����� �, and everything else is left
intact. The effects of push-1 and push-0 are similar, except that the special
constants � and � are concatenated with ������ � instead of ����.

� The pop operations, pop��� for the algebraic stack and pop for the Boolean
stack, are interpreted as the binary relations

���pop����
���
� ���� ������tail������ ������head������ �� ������� � � � &��

���pop�
���
� ���� �������tail������� ���� � � � &���

respectively, where

tail�� 
 �� ���
� �

tail��� ���
� �

head�� 
 �� 
�
���
� �

head��� 
� ���
� 


and � is the empty string. In other words, if ����� � �� �, this operation
changes the value of ��� from ����� � to the string obtained by deleting
the first element of ����� � and assigns that element to the variable �. If
����� � � �, then nothing is changed. Everything else is left intact. The
Boolean stack operation pop changes the value of ���� only, with no
additional changes. We do not include explicit constructs to test whether the
stacks are empty, since these can be simulated. However, we do need to be
able to refer to the value of the top element of the Boolean stack, hence we
include the ���� test.
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� The Boolean test program ���� is interpreted as the binary relation

��������
���
� ���� �� � � � &�� head������� �� � ���

In other words, this test changes nothing at all, but allows control to proceed
iff the top of the Boolean stack contains �.

� The wildcard assignment � �� � for � � ' is interpreted as the relation

���� �� ��
���
� ���� ������� � � � &�� � � ���

As a result of executing this statement, � will be assigned some arbitrary
value of the carrier set �, and the values of all other variables will remain
unchanged.

Programs and Formulas

The meanings of compound programs and formulas are defined by mutual induc-
tion on the structure of 
 and � essentially as in the propositional case (see Sec-
tion 2.2). We include these definitions below for completeness.

Regular Programs and While Programs

Here are the semantic definitions for the four constructs of regular programs.

���
 	 ��
���
� ���
� Æ�����

� ���� �� � �� ����� � ���
� and ��� �� � ������ (27)

���
 	 ��
���
� ���
� 	����� (28)

���


�

���
� ���
�


 �
�
���

���
�
�

������
���
� ���� �� � � � ������� (29)

The semantics of defined constructs such as if-then-else and while-do are ob-
tained using their definitions exactly as in ���.

Seqs and R.E. Programs

Recall that an r.e. program is a Turing machine enumerating a set �� �
� of seqs.
If 
 is an r.e. program, we define

���
�
���
�

�
����	�


������
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Thus, the meaning of 
 is defined to be the union of the meanings of the seqs in
�� �
�. The meaning ����� of a seq � is determined by the meanings of atomic
programs and tests and the sequential composition operator.

There is an interesting point here regarding the translation of programs using
other programming constructs into r.e. programs. This can be done for arrays and
stacks (for Booleans stacks, even into r.e. programs with bounded memory), but
not for wildcard assignment. Since later in the book we shall be referring to the
r.e. set of seqs associated with such programs, it is important to be able to carry
out this translation. To see how this is done for the case of arrays, for example,
consider an algorithm for simulating the execution of a program by generating
only ordinary assignments and tests. It does not generate an array assignment
of the form , ���� � � � � ��� �� �, but rather “remembers” it and when it reaches
an assignment of the form � �� , ���� � � � � ��� it will aim at generating � �� �
instead. This requires care, since we must keep track of changes in the variables
inside � and ��� � � � � �� and incorporate them into the generated assignments.

Formulas

Here are the semantic definitions for the constructs of formulas of��. The seman-
tics of atomic first-order formulas is the standard semantics of classical first-order
logic.

�����
���
� � (30)

���� � ��
���
� �� � if � � ����� then � � ������ (31)

����� ��
���
� �� � �� � � ������ � ������ (32)

����
���
���
� �� � �� if ��� �� � ���
� then � � ������� (33)

Equivalently, we could define the first-order quantifiers � and � in terms of the
wildcard assignment:

�� � � �� �� ��� (34)

�� � � �� �� ���� (35)

Note that for deterministic programs 
 (for example, those obtained by us-
ing the while programming language instead of regular programs and disallowing
wildcard assignments),���
� is a partial function from states to states; that is, for
every state �, there is at most one � such that ��� �� � ���
�. The partiality of
the function arises from the possibility that 
 may not halt when started in certain
states. For example, ���while � do ����� is the empty relation. In general, the
relation���
� need not be single-valued.

If � is a given set of syntactic constructs, we refer to the version of Dy-
namic Logic with programs built from these constructs as Dynamic Logic with
� or simply as �����. Thus, we have ��������, ��� �� !�, ���"#$�, ���%"#$�,
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���&'(��, and so on. As a default, these logics are the poor-test versions, in which
only quantifier-free first-order formulas may appear as tests. The unadorned�� is
used to abbreviate �����)�, and we use ������)� to denote �� with while pro-
grams, which are really deterministic regular programs. Again, while programs
use only poor tests. Combinations such as ��(dreg+wild) are also allowed.

8.4 Satisfiability and Validity

The concepts of satisfiability, validity, etc. are defined as for ��� in Section 2 or
as for first-order logic under the standard semantics.

Let � � ������ be a structure, and let � be a state in &�. For a formula �,
we write �� � � � if � � ����� and say that � satisfies � in �. We sometimes
write � � � when � is understood. We say that � is �-valid and write � � � if
�� � � � for all � in �. We say that � is valid and write � � if � � � for all �.
We say that � is satisfiable if �� � � � for some �� �.

For a set of formulas �, we write � � � if � � � for all � � �.
Informally,�� � � �
�� iff every terminating computation of 
 starting in state

� terminates in a state satisfying �, and�� � � �
�� iff there exists a computation
of 
 starting in state � and terminating in a state satisfying �. For a pure first-order
formula �, the metastatement �� � � � has the same meaning as in first-order
logic.
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9 RELATIONSHIPS WITH STATIC LOGICS

9.1 Uninterpreted Reasoning

In contrast to the propositional version ��� discussed in Sections 2–7,�� formu-
las involve variables, functions, predicates, and quantifiers, a state is a mapping
from variables to values in some domain, and atomic programs are assignment
statements. To give semantic meaning to these constructs requires a first-order
structure � over which to interpret the function and predicate symbols. Never-
theless, we are not obliged to assume anything special about � or the nature of
the interpretations of the function and predicate symbols, except as dictated by
first-order semantics. Any conclusions we draw from this level of reasoning will
be valid under all possible interpretations. Uninterpreted reasoning refers to this
style of reasoning.

For example, the formula

��+���� 5��� +����� � �� �� +�������� 5��� ���

is true over any domain, irrespective of the interpretations of �, + , and 5.
Another example of a valid formula is

� � � � �� +�5���� � �

� �while ���� do � �� 5�����while � �� � do � �� +������

Note the use of � � applied to � �. This formula asserts that under the assumption
that + “undoes” 5, any computation consisting of applying 5 some number of times
to � can be backtracked to the original � by applying + some number of times to
the result.

We now observe that three basic properties of classical (uninterpreted) first-
order logic, the Löwenheim–Skolem theorem, completeness, and compactness, fail
for even fairly weak versions of ��.

The Löwenheim–Skolem theorem for classical first-order logic states that if a
formula � has an infinite model then it has models of all infinite cardinalities.
Because of this theorem, classical first-order logic cannot define the structure of
elementary arithmetic

� � �7� �� 
� �� �� ��

up to isomorphism. That is, there is no first-order sentence that is true in a structure
� if and only if � is isomorphic to �. However, this can be done in ��.

PROPOSITION 55. There exists a formula *� of ������)� that defines � up to
isomorphism.

The Löwenheim–Skolem theorem does not hold for ��, because * � has an
infinite model (namely �), but all models are isomorphic to � and are therefore
countable.
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Besides the Löwenheim–Skolem Theorem, compactness fails in �� as well.
Consider the following countable set � of formulas:

��while ���� do � �� +������ 	 ���+����� � � � ���

It is easy to see that � is not satisfiable, but it is finitely satisfiable, i.e. each finite
subset of it is satisfiable.

Worst of all, completeness cannot hold for any deductive system as we normally
think of it (a finite effective system of axioms schemes and finitary inference rules).
The set of theorems of such a system would be r.e., since they could be enumerated
by writing down the axioms and systematically applying the rules of inference in
all possible ways. However, the set of valid statements of �� is not recursively
enumerable. In fact, we will describe in Section 10 exactly how bad the situation
is.

This is not to say that we cannot say anything meaningful about proofs and
deduction in ��. On the contrary, there is a wealth of interesting and practical
results on axiom systems for �� that we will cover in Section 11.

In this section we investigate the power of �� relative to classical static logics
on the uninterpreted level. In particular, rich test �� of r.e. programs is equivalent
to the infinitary language (�



� �. Some consequences of this fact are drawn in later
sections.

First we introduce a definition that allows to compare different variants of ��.
Let us recall from Section 8.3 that a state is initial if it differs from a constant state
�� only at the values of individual variables. If ��� and ��� are two variants of
�� over the same vocabulary, we say that ��� is as expressive as ��� and write
��� � ��� if for each formula � in ��� there is a formula � in ��� such that
�� � � � � � for all structures � and initial states �. If ��� is as expressive
as ��� but ��� is not as expressive as ���, we say that ��� is strictly more
expressive than ���, and write ��� 	 ���. If ��� is as expressive as ��� and
��� is as expressive as ���, we say that ��� and ��� are of equal expressive
power, or are simply equivalent, and write ��� � ���. We will also use these
notions for comparing versions of �� with static logics such as (��.

There is a technical reason for the restriction to initial states in the above defini-
tion. If ��� and ��� have access to different sets of data types, then they may be
trivially incomparable for uninteresting reasons, unless we are careful to limit the
states on which they are compared. We shall see examples of this in Section 12.

Also, in the definition of ����� given in Section 8.4, the programming lan-
guage � is an explicit parameter. Actually, the particular first-order vocabulary �
over which ����� and � are considered should be treated as a parameter too. It
turns out that the relative expressiveness of versions of �� is sensitive not only to
�, but also to �. This second parameter is often ignored in the literature, creating
a source of potential misinterpretation of the results. For now, we assume a fixed
first-order vocabulary �.
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Rich Test Dynamic Logic of R.E. Programs

We are about to introduce the most general version of �� we will ever consider.
This logic is called rich test Dynamic Logic of r.e. programs, and it will be de-
noted ����'+,-#�"# �����. Programs of ����'+,-#�"# ����� are r.e. sets of seqs as
defined in Section 8.2, except that the seqs may contain tests �� for any previously
constructed formula �.

The formal definition is inductive. All atomic programs are programs and all
atomic formulas are formulas. If �� � are formulas, 
� � are programs, �
 � � � �
7� is an r.e. set of programs over a finite set of variables (free or bound), and � is
a variable, then

� �

� � � �

� �
��

� �� �

are formulas and

� 
 	 �

� �
� � � � 7�

� ��

are programs. The set �� �
� of computation sequences of a rich test r.e. program

 is defined as usual.

The language (��� is the language with the formation rules of the first-order
language(��, but in which countably infinite conjunctions and disjunctions

�
��� ��

and


��� �� are also allowed. In addition, if ��� � � � 8� is recursively enu-

merable, then the resulting language is denoted (�


� � and is sometimes called

constructive (���.

PROPOSITION 56. ����'+,-#�"# ����� � (�


� �.

Since r.e. programs as defined in Section 8.2 are clearly a special case of gen-
eral rich-test r.e. programs, it follows that ����'+,-#�"# ����� is as expressive as
��������. In fact they are not of the same expressive power.

THEOREM 57. �������� 	 ����'+,-#�"# �����.

Henceforth, we shall assume that the first-order vocabulary � contains at least
one function symbol of positive arity. Under this assumption, �� can easily be
shown to be strictly more expressive than (��:

THEOREM 58. (�� 	 ��.

COROLLARY 59.

(�� 	 �� 	 �������� 	 ����'+,-#�"# ����� � (�


� ��
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The situation with the intermediate versions of ��, e.g. ���"#$�, ���%"#$�,
���&'(��, etc., is of interest. We deal with the relative expressive power of these
in Section 12.

9.2 Interpreted Reasoning

Arithmetical Structures

This is the most detailed level we will consider. It is the closest to the actual
process of reasoning about concrete, fully specified programs. Syntactically, the
programs and formulas are as on the uninterpreted level, but here we assume a
fixed structure or class of structures.

In this framework, we can study programs whose computational behavior de-
pends on (sometimes deep) properties of the particular structures over which they
are interpreted. In fact, almost any task of verifying the correctness of an actual
program falls under the heading of interpreted reasoning.

One specific structure we will look at carefully is the natural numbers with the
usual arithemetic operations:

� � �7� �� �� �� 
� ���

Let � denote the (first-order-definable) operation of subtraction and let )+���� ��
denote the first-order-definable operation giving the greatest common divisor of �
and �. The following formula of �� is �-valid, i.e., true in all states of �:

� � �� � � � �� � �� � � � �
��� � )+����� ���� (36)

where 
 is the while program of Example 1 or the regular program

�� �� ��	 ��� � ��	� �� �� �� 	 �� 	 ��	 � �� � � ����
� � ���

Formula (36) states the correctness and termination of an actual program over �
computing the greatest common divisor.

As another example, consider the following formula over �:

�� � � ��if ������� then � �� ��
 else � �� �� � ��
��� � ���

Here � denotes integer division, and ����� � is the relation that tests if its argument
is even. Both of these are first-order definable. This innocent-looking formula
asserts that starting with an arbitrary positive integer and repeating the following
two operations, we will eventually reach 1:

� if the number is even, divide it by 2;

� if the number is odd, triple it and add 1.
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The truth of this formula is as yet unknown, and it constitutes a problem in number
theory (dubbed “the �� � � problem”) that has been open for over 60 years. The
formula �� � � �
��, where 
 is

while � �� � do if ������� then � �� ��
 else � �� �� � ��

says this in a slightly different way.
The specific structure � can be generalized, resulting in the class of arithmetical

structures. Briefly, a structure� is arithmetical if it contains a first-order-definable
copy of � and has first-order definable functions for coding finite sequences of
elements of � into single elements and for the corresponding decoding.

Arithmetical structures are important because (i) most structures arising natu-
rally in computer science (e.g., discrete structures with recursively defined data
types) are arithmetical, and (ii) any structure can be extended to an arithmetical
one by adding appropriate encoding and decoding capabilities. While most of the
results we present for the interpreted level are given in terms of � alone, many of
them hold for any arithmetical structure, so their significance is greater.

Expressive Power over �

The results of Corollary 59 establishing that

(�� 	 �� 	 �������� 	 ����'+,-#�"# �����

were on the uninterpreted level, where all structures are taken into account. Thus
first-order logic, regular ��, and ����'+,-#�"# ����� form a sequence of increas-
ingly more powerful logics when interpreted uniformly over all structures.

What happens if one fixes a structure, say �? Do these differences in expressive
power still hold? We now address these questions.

First, we introduce notation for comparing expressive power over �. If �� �

and ��� are variants of �� (or static logics, such as (��) and are defined over the
vocabulary of �, we write ��� �� ��� if for each � � ��� there is � � ���

such that � � � � �. We define 	� and �� from �� in a way analogous to the
definition of 	 and � from�.

It turns out that over �, �� is no more expressive than first-order logic (��.
This is true even for finite-test ��. The result is stated for �, but is actually true
for any arithmetical structure.

THEOREM 60. (�� �� �� �� ��������.

The significance of this result is that in principle, one can carry out all reason-
ing about programs interpreted over � in the first-order logic (�� by translating
each �� formula into an equivalent first-order formula. The translation is effec-
tive. Moreover, Theorem 60 holds for any arithmetical structure containing the
requisite coding power. As mentioned earlier, every structure can be extended to
an arithmetical one.
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However, the translation of Theorem 60 produces unwieldly formulas having
little resemblance to the original ones. This mechanism is thus somewhat unnat-
ural and does not correspond closely to the type of arguments one would find in
practical program verication. In Section 11, a remedy is provided that makes the
process more orderly.

We now observe that over �, ����'+,-#�"# ����� has considerably more power
than the equivalent logics of Theorem 60. This too is true for any arithmetical
structure.

THEOREM 61. Over �, ����'+,-#�"# ����� defines precisely the ��
� (hyperarith-

metic) sets.

Theorems 60 and 61 say that over �, the languages �� and �������� define the
arithmetic (first-order definable) sets and����'+,-#�"# ����� defines the hyperarith-
metic or ��

� sets. Since the inclusion between these classes is strict—for example,
first-order number theory is hyperarithmetic but not arithmetic—we have

COROLLARY 62. �������� 	� ����'+,-#�"# �����.
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10 COMPLEXITY OF ��

This section addresses the complexity of first-order Dynamic Logic.
Since all versions of �� subsume first-order logic, the truth, satisfiability, or

validity of a given formula can be no easier to establish than in (��. Also, since
�������� is subsumed by (�



� �, these questions are no harder to establish than in
(�



� �. These bounds hold for both uninterpreted and interpreted levels of reason-
ing.

10.1 The Uninterpreted Level

In this section we discuss the complexity of the validity problem for ��. By the
remarks above, this problem is between ��

� and ��
�. That is, as a lower bound it

is undecidable and can be no better than recursively enumerable, and as an upper
bound it is in ��

�. This is a rather large gap, so we are still interested in determining
more precise complexity bounds for �� and its variants. An interesting related
question is whether there is some nontrivial5 fragment of �� that is in ��

�, since
this would allow a complete axiomatization.

In the following, we consider these questions for full �����)�, but we also
consider two important subclasses of formulas for which better upper bounds are
derivable:

� partial correctness assertions of the form � � �
��, and

� termination or total correctness assertions of the form � � �
��,

where � and � are first-order formulas. The results are stated for regular programs,
but they remain true for the more powerful programming languages too. They also
hold for deterministic while programs.

We state the results without mentioning the underlying first-order vocabulary
�. For the upper bounds this is irrelevant. For the lower bounds, we assume the �
contains a unary function symbol and ternary predicate symbols.

THEOREM 63. The validity problem for �� is ��
�-hard, even for formulas of the

form �� �
��, where 
 is a regular program and � is first-order.

THEOREM 64. The validity problem for �� and ����'+,-#�"# �����, as well as
all intermediate versions, is ��

�-complete.

To soften the negative flavor of these results, we now observe that the special
cases of unquantified one-program �������� formulas have easier validity prob-
lems (though, as mentioned, they are still undecidable).

THEOREM 65. The validity problem for the sublanguage of �������� consisting
of formulas of the form �
��, where � is first-order and 
 is an r.e. program, is
��
�-complete.

5Nontrivial here means containing ��� and allowing programs with iteration. The reason for this
requirement is that loop-free programs add no expressive power over first-order logic.
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It is easy to see that the result holds for formulas of the form � � �
��, where
� is also first-order. Thus, termination assertions for nondeterministic programs
with first-order tests (or total correctness assertions for deterministic programs),
on the uninterpreted level of reasoning, are recursively enumerable and therefore
axiomatizable. We shall give an explicit axiomatization in Section 11.

We now turn to partial correctness.

THEOREM 66. The validity problem for the sublanguage of �������� consisting
of formulas of the form �
��, where � is first-order and 
 is an r.e. program, is
��
�-complete. The ��

�-completeness property holds even if we restrict 
 to range
over deterministic while programs.

Theorem 66 extends easily to partial correctness assertions; that is, to formulas
of the form � � �
��, where � is also first-order. Thus, while ��

� is obviously
better than ��

�, it is noteworthy that on the uninterpreted level of reasoning, the
truth of even simple correctness assertions for simple programs is not r.e., so that
no finitary complete axiomatization for such validities can be given.

10.2 The Interpreted Level

The characterizations of the various versions of �� in terms of classical static
logics established in Section 9.2 provide us with the precise complexity of the
validity problem over �.

THEOREM 67. The �-validity problem for ������)� and ����'+,-#�"# �����, as
well as all intermediate versions, when defined over the vocabulary of �, is hyper-
arithmetic (��

�) but not arithmetic.

10.3 Spectral Complexity

We now introduce the spectral complexity of a programming language. As men-
tioned, this notion provides a measure of the complexity of the halting problem for
programs over finite interpretations.

Recall that a state is a finite variant of a constant valuation �� for some � �
� (see Section 8.3), and a state � is initial if it differs from �� for individual
variables only. Thus, an initial state can be uniquely defined by specifying its
relevant portion of values on individual variables. For / � �, we call an initial
state � an /-state if for some � � � and for all � � /, ����� � �. An /-
state can be specified by an �/ � ��-tuple of values ���� � � � � ��� that represent
values of � for the first / � � individual variables ��� � � � � ��. Call an /-state
� � ���� � � � � ��� Herbrand-like if the set ���� � � � � ��� generates �; that is, if
every element of � can be obtained as a value of a term in the state �.

We are now ready to define the notion of a spectrum of a programming lan-
guage. Let � be a programming language and let 
 � � and / � �. The / ��
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spectrum of 
 is the set

&9��
�
���
� ����� � � is a finite �-structure, � is an /-state in �, and �� � � �
����

The spectrum of � is the set

&9 ���
���
� �&9��
� � 
 � �� / � ���

Given / � �, observe that structures in &
��������� ���	
� can be viewed as struc-

tures of the form �� for a certain �-structure � and an /-state � in �. This
representation is unique.

In this section we establish the complexity of spectra; that is, the complexity of
the halting problem in finite interpretations. Let us fix / � �, a rich vocabulary
�, and new constants ��� � � � � ��. Since not every binary string is of the form ���

for some �-structure� and /-state � in �, we will restrict our attention to strings
that are of this form. Let

:�
�

���
� ���� � � � &

��������� ���	
� for some � � ���

It is easy to show that the language :�
� is in �	
����
 for every vocabulary

� and / � �.
We are now ready to connect complexity classes with spectra. Let � be any

programming language and let ; � 
����	



be a family of sets. We say that
&9 ��� captures ;, denoted &9 ��� � ;, if

� &9 ��� � ;, and

� for every 3 � ; and / � �, if 3 � :�
�, then there is a program 
 � �

such that &9��
� � 3 .

For example, if ; is the class of all sets recognizable in polynomial time, then
&9 ��� � � means that

� the halting problem over finite interpretations for programs from � is de-
cidable in polynomial time, and

� every polynomial-time-recognizable set of codes of finite interpretations is
the spectrum of some program from �.

We conclude this section by characterizing the spectral complexity of some of
the programming languages introduced in Section 8.

THEOREM 68. Let � be a rich vocabulary. Then

(i) ������)� � �	
����
 .

(ii) �����)� � ��	
����
 .
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Moreover, if� is mono-unary, then ������)� captures�	
����
 and�����)�
captures ��	
����
 .

THEOREM 69. Over a rich vocabulary �, ����"#$� and ���"#$� capture P.

THEOREM 70. If � is a rich vocabulary, then ���� �� !� and ��� �� !� cap-
ture PSPACE.
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11 AXIOMATIZATION OF ��

11.1 Uninterpreted Reasoning

Recall from Section 10.1 that validity in �� is ��
�-complete, but only r.e. when

restricted to simple termination assertions. This means that termination (or total
correctness when the programs are deterministic) can be fully axiomatized in the
standard sense. This we do first, and we then turn to the problem of axiomatizing
full ��.

Since the validity problem for such termination assertions is r.e., it is of interest
to find a nicely-structured complete axiom system. We propose the following.

Axiom System S1

Axiom Schemes

� all instances of valid first-order formulas;

� all instances of valid formulas of ���;

� ������� �� �� ���� where � is a first-order formula.

Inference Rules

� modus ponens:

�� � � �

�

We denote provability in Axiom System S1 by �
��

.

THEOREM 71. For any�� formula of the form � � �
��, for first-order � and
� and program 
 containing first-order tests only,

� � � �
�� � �
��

� � �
���

Given the high undecidability of validity in ��, we cannot hope for a complete
axiom system in the usual sense. Nevertheless, we do want to provide an orderly
axiomatization of valid �� formulas, even if this means that we have to give up
the finitary nature of standard axiom systems.

Below we present a complete infinitary axiomatization S2 of �� that includes
an inference rule with infinitely many premises. Before doing so, however, we
must get a certain technical complication out of the way. We would like to be able
to consider valid first-order formulas as axiom schemes, but instantiated by general
formulas of ��. In order to make formulas amenable to first-order manipulation,
we must be able to make sense of such notions as “a free occurrence of � in �” and
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the substitution ������. For example, we would like to be able to use the axiom
scheme of the predicate calculus �� � � ������, even if � contains programs.

The problem arises because the dynamic nature of the semantics of �� may
cause a single occurrence of a variable in a �� formula to act as both a free and
bound occurrence. For example, in the formula �while � � -- do � �� � � ���,
the occurrence of � in the expression � � � acts as both a free occurrence (for the
first assignment) and as a bound occurrence (for subsequent assignments).

There are several reasonable ways to deal with this, and we present one for
definiteness. Without loss of generality, we assume that whenever required, all
programs appear in the special form

�� �� � 	 
 	 � �� ��� (37)

where � � ���� � � � � ��� and � � ���� � � � � ��� are tuples of variables, � �� �
stands for

�� �� �� 	 
 
 
 	 �� �� ��

(and similarly for � �� �), the �� do not appear in 
, and the �� are new variables
appearing nowhere in the relevant context outside of the program 
. The idea is
to make programs act on the “local” variables � � by first copying the values of
the �� into the ��, thus freezing the ��, executing the program with the ��, and
then restoring the ��. This form can be easily obtained from any �� formula by
consistently changing all variables of any program to new ones and adding the
appropriate assignments that copy and then restore the values. Clearly, the new
formula is equivalent to the old. Given a �� formula in this form, the following
are bound occurrences of variables:

� all occurrences of � in a subformula of the form �� �;

� all occurrences of �� in a subformula of the form (37) (note, though, that � �
does not occur in � at all);

� all occurrences of �� in a subformula of the form (37) except for its occur-
rence in the assignment �� �� ��.

Every occurrence of a variable that is not bound is free. Our axiom system
will have an axiom that enables free translation into the special form discussed,
and in the sequel we assume that the special form is used whenever required (for
example, in the assignment axiom scheme below).

As an example, consider the formula:

�� ��� �� +���	 � �� 5��� ������� ��� �

��� �� <���	 �� �� �	 �� �� +����	 �� �� 5���� ���	 � �� ��	 � �� ������� ���

Denoting �� �� +���	� �� 5��� ������� �� by �, the conclusion of the impli-
cation is just ����<���� according to the convention above; that is, the result of
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replacing all free occurrences of � in � by <��� after � has been transformed into
special form. We want the above formula to be considered a legal instance of the
assignment axiom scheme below.

Axiom System S2

Axiom Schemes

� all instances of valid first-order formulas;

� all instances of valid formulas of ���;

� �� �� ��� � ������;

� � � ��, where �� is � in which some occurrence of a program 
 has been
replaced by the program � �� �	 
 �	 � �� � for � not appearing in �, and
where 
� is 
 with all occurrences of � replaced by �.

Inference Rules

� modus ponens:

�� � � �

�

� generalization:

�

�
��
 .�

�

�� �

� infinitary convergence:

� � �
���� � � 7

� � �

��

Provability in Axiom System S2, denoted by �
�� , is the usual concept for sys-

tems with infinitary rules of inference; that is, deriving a formula using the infini-
tary rule requires infinitely many premises to have been previously derived.

Axiom System S2 consists of an axiom for assignment, facilities for proposi-
tional reasoning about programs and first-order reasoning with no programs (but
with programs possibly appearing in instantiated first-order formulas), and an in-
finitary rule for �

�. The dual construct, �

�, is taken care of by the “unfold-
ing” validity of ���:

�

�� � �� � �
	

����

THEOREM 72. For any formula � of ��,

� � � �
��

��
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11.2 Interpreted Reasoning

Proving properties of real programs very often involves reasoning on the inter-
preted level, where one is interested in �-validity for a particular structure �. A
typical proof might use induction on the length of the computation to establish
an invariant for partial correctness or to exhibit a decreasing value in some well-
founded set for termination. In each case, the problem is reduced to the problem of
verifying some domain-dependent facts, sometimes called verification conditions.
Mathematically speaking, this kind of activity is really an effective transformation
of assertions about programs into ones about the underlying structure.

For ��, this transformation can be guided by a direct induction on program
structure using an axiom system that is complete relative to any given arithmeti-
cal structure �. The essential idea is to exploit the existence, for any given ��
formula, of a first-order equivalent in �, as guaranteed by Theorem 60. In the ax-
iom systems we construct, instead of dealing with the ��

�-hardness of the validity
problem by an infinitary rule, we take all �-valid first-order formulas as additional
axioms. Relative to this set of axioms, proofs are finite and effective.

For partial correctness assertions of the form � � �
�� with � and � first-
order and 
 containing first-order tests, it suffices to show that �� reduces to the
first-order logic (��, and there is no need for the natural numbers to be present.
Thus, Axiom System S3 below works for finite structures too. Axiom System S4
is an arithmetically complete system for full �� that does make explicit use of
natural numbers.

It follows from Theorem 66 that for partial correctness formulas we cannot
hope to obtain a completeness result similar to the one proved in Theorem 71 for
termination formulas. A way around this difficulty is to consider only expressive
structures.

A structure � for the first-order vocabulary � is said to be expressive for a
programming language � if for every 
 � � and for every first-order formula �,
there exists a first-order formula �
 such that � � �
 � �
��. Examples of
structures that are expressive for most programming languages are finite structures
and arithmetical structures.

Axiom System S3

Axiom Schemes

� all instances of valid formulas of ���;

� �� �� ��� � ������ for first-order �.

Inference Rules
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� modus ponens:

�� � � �

�

� generalization:
�

�
��
�

Note that Axiom System S3 is really the axiom system for ��� from Section 4
with the addition of the assignment axiom. Given a �� formula � and a structure
�, denote by � �

��
� provability of � in the system obtained from Axiom System

S3 by adding the following set of axioms:

� all �-valid first-order sentences.

THEOREM 73. For every expressive structure� and for every formula = of �� of
the form � � �
��, where � and � are first-order and 
 involves only first-order
tests, we have

� � = � � �
��

=�

Now we present an axiom system S4 for full ��. It is similar in spirit to S3 in
that it is complete relative to the formulas valid in the structure under considera-
tion. However, this system works for arithmetical structures only. It is not tailored
to deal with other expressive structures, notably finite ones, since it requires the
use of the natural numbers. The kind of completeness result stated here is thus
termed arithmetical.

As in Section 9.2, we state the results for the special structure �, omitting the
technicalities needed to deal with general arithmetical structures. The main differ-
ence is that in � we can use variables �, /, etc., knowing that their values will
be natural numbers. We can thus write � � �, for example, assuming the standard
interpretation. When working in an unspecified arithmetical structure, we have to
precede such usage with appropriate predicates that guarantee that we are indeed
talking about that part of the domain that is isomorphic to the natural numbers. For
example, we would often have to use the first-order formula, call it . #���, which
is true precisely for the elements representing natural numbers, and which exists
by the definition of an arithmetical structure.

Axiom System S4

Axiom Schemes

� all instances of valid first-order formulas;

� all instances of valid formulas of ���;

� �� �� ��� � ������ for first-order �.
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Inference Rules

� modus ponens:

�� � � �

�

� generalization:

�

�
��
 .�

�

�� �

� convergence:

��� � ��� �
�����

����� �

�����

for first order � and variable � not appearing in 
.

REMARK 74. For general arithmetical structures, the �� and � in the rule of
convergence denote suitable first-order definitions.

As in Axiom System S3, denote by � �
��

� provability of � in the system
obtained from Axiom System S4 by adding all �-valid first-order sentences as
axioms.

THEOREM 75. For every formula = of ��,

� � = � � �
�� =�

The use of the natural numbers as a device for counting down to 0 in the con-
vergence rule of Axiom System S4 can be relaxed. In fact, any well-founded set
suitably expressible in any given arithmetical structure suffices. Also, it is not nec-
essary to require that an execution of 
 causes the truth of the parameterized ����
in that rule to decrease exactly by 1; it suffices that the decrease is positive at each
iteration.

In closing, we note that appropriately restricted versions of all axiom systems of
this section are complete for������)�. In particular, as pointed out in Section 2.6,
the Hoare while-rule

� � = � �
��

� � �while = do 
��� � �=�

results from combining the generalization rule with the induction and test axioms
of ���, when 
 is restricted to appear only in the context of a while statement;
that is, only in the form �=�	 ��
	 ��=��.
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12 EXPRESSIVENESS OF ��

The subject of study in this section is the relative expressive power of languages.
We will be primarily interested in comparing, on the uninterpreted level, the ex-
pressive power of various versions of ��. That is, for programming languages 9 �

and 9� we will study whether ���9�� � ���9�� holds. Recall from Section 9
that the latter relation means that for each formula � in ���9��, there is a formula
� in ���9�� such that �� � � � � � for all structures � and initial states �.

Studying the expressive power of logics rather than the computational power of
programs allows us to compare, for example, deterministic and nondeterministic
programming languages. Also, we will see that the answer to the fundamental
question “���9�� � ���9��?” may depend crucially on the vocabulary over
which we consider logics and programs. For this reason we always make clear in
the theorems of this section our assumptions on the vocabulary.

THEOREM 76. Let � be a rich vocabulary. Then

(i) ���"#$� � ��� �� !�.

(ii) ���"#$� � ��� �� !� iff � � �����
 .

Moreover, the same holds for deterministic regular programs with an algebraic
stack and deterministic regular programs with arrays.

THEOREM 77. Over a monadic vocabulary, nondeterministic regular programs
with a Boolean stack have the same computational power as nondeterministic reg-
ular programs with an algebraic stack.

Now we investigate the role that nondeterminism plays in the expressive power
of logics of programs. As we shall see, the general conclusion is that for a pro-
gramming language of sufficient computational power, nondeterminism does not
increase the expressive power of the logic.

We start our discussion of the role of nondeterminism with the basic case of
regular programs. Recall that �� and ��� denote the logics of nondeterministic
and deterministic regular programs, respectively.

We can now state the main result that separates the expressive power of deter-
ministic and nondeterministic while programs.

THEOREM 78. For every vocabulary containing at least two unary function sym-
bols or at least one function symbol of arity greater than one, ��� is strictly less
expressive than ��; that is, ��� 	 ��.

It turns out that Theorem 78 cannot be extended to vocabularies containing
just one unary function symbol without solving a well known open problem in
complexity theory.

THEOREM 79. For every rich mono-unary vocabulary, the statement “��� is
strictly less expressive than��” is equivalent to �	
����
 �� ��	
����
 .



194 DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

We now turn our attention to the discussion of the role nondeterminism plays
in the expressive power of regular programs with a Boolean stack. For a vocabu-
lary containing at least two unary function symbols, nondeterminism increases the
expressive power of �� over regular programs with a Boolean stack.

For the rest of this section, we let the vocabulary contain two unary function
symbols.

THEOREM 80. For a vocabulary containing at least two unary function symbols
or a function symbol of arity greater than two, ����%"#$� 	 ���%"#$�.

It turns out that for programming languages that use sufficiently strong data
types, nondeterminism does not increase the expressive power of Dynamic Logic.

THEOREM 81. For every vocabulary,

(i) ����"#$� � ���"#$�;

(ii) ���� �� !� � ��� �� !�.

We will discuss the role of unbounded memory of programs for the expressive
power of the corresponding logic. However, this result depends on assumptions
about the vocabulary �.

Recall from Section 8.2 that an r.e. program 
 has bounded memory if the set
�� �
� contains only finitely many distinct variables from ' , and if in addition
the nesting of function symbols in terms that occur in seqs of �� �
� is bounded.
This restriction implies that such a program can be simulated in all interpretations
by a device that uses a fixed finite number of registers, say ��� � � � � ��, and all its
elementary steps consist of either performing a test of the form

����� � � � � � ������

where � is an /-ary relation symbol of �, or executing a simple assignment of
either of the following two forms:

�� �� +���� � � � � � ��� � �� �� �� �

In general, however, such a device may need a very powerful control (that of a
Turing machine) to decide which elementary step to take next.

An example of a programming language with bounded memory is the class of
regular programs with a Boolean stack. Indeed, the Boolean stack strengthens
the control structure of a regular program without introducing extra registers for
storing algebraic elements. It can be shown without much difficulty that regular
programs with a Boolean stack have bounded memory. On the other hand, regular
programs with an algebraic stack or with arrays are programming languages with
unbounded memory.

For monadic vocabularies, the class of nondeterministic regular programs with
a Boolean stack is computationally equivalent to the class of nondeterministic reg-
ular programs with an algebraic stack. For deterministic programs, the situation is
slightly different.
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THEOREM 82.

(i) For every vocabulary containing a function symbol of arity greater than one,
����%"#$� 	 ����"#$� and ���%"#$� 	 ���"#$�.

(ii) For all monadic vocabularies, ���%"#$� � ���"#$�.

(iii) For all mono-unary vocabularies, ����%"#$� � ����"#$�.

(iv) For all monadic vocabularies containing at least two function symbols,
����%"#$� 	 ����"#$�.

Regular programs with a Boolean stack are situated between pure regular pro-
grams and regular programs with an algebraic stack. We start our discussion by
comparing the expressive power of regular programs with and without a Boolean
stack. The only known definite answer to this problem is given in the following
result, which covers the case of deterministic programs only.

THEOREM 83.

(i) Let the vocabulary be rich and mono-unary. Then

������)� � ����"#$� � �	
����
 � � �

(ii) If the vocabulary contains at least one function symbol of arity greater than
one or at least two unary function symbols, then ������)� 	 ����%"#$�.

It is not known whether Theorem 83(ii) holds for nondeterministic programs,
and neither is its statement known to be equivalent to any of the well known open
problems in complexity theory. In contrast, it follows from Theorems 83(i) and
82(iii) that for rich mono-unary vocabularies, ������)� � ����%"#$� if and only
if �	
����
 � � . Hence, this problem cannot be solved without solving one
of the major open problems in complexity theory.

The wildcard assignment statement � �� � discussed in Section 8.2 chooses an
element of the domain of computation nondeterministically and assigns it to �. It
is a device that represents unbounded nondeterminism as opposed to the binary
nondeterminism of the nondeterministic choice construct 	. The programming
language of regular programs augmented with wildcard assignment is not an ac-
ceptable programming language, since a wildcard assignment can produce values
that are outside the substructure generated by the input.

Our first result shows that wildcard assignment increases the expressive power
in quite a substantial way; it cannot be simulated even by r.e. programs.

THEOREM 84. Let the vocabulary� contain two constants ��� ��, a binary pred-
icate symbol �, the symbol � for equality, and no other function or predicate sym-
bols. There is a formula of ���&'(�� that is equivalent to no formula of ��������,
thus ���&'(�� �� ��������.
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It is not known whether any of the logics with unbounded memory are reducible
to ���&'(��.

When both wildcard and array assignments are allowed, it is possible to define
the finiteness of (the domain of) a structure, but not in the logics with either of the
additions removed. Thus, having both memory and nondeterminism unbounded
provides more power than having either of them bounded.

THEOREM 85. Let vocabulary � contain only the symbol of equality. There is
a formula of ��(array+wild) equivalent to no formula of either ��� �� !� or
���&'(��.
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13 VARIANTS OF ��

In this section we consider some restrictions and extensions of ��. We are inter-
ested mainly in questions of comparative expressive power on the uninterpreted
level. In arithmetical structures these questions usually become trivial, since it
is difficult to go beyond the power of first-order arithmetic without allowing in-
finitely many distinct tests in programs (see Theorems 60 and 61). In regular ��
this luxury is not present.

13.1 Algorithmic Logic

Algorithmic Logic (��) is the predecessor of Dynamic Logic. The basic system
was defined by [Salwicki, 1970] and generated an extensive amount of subsequent
research carried out by a group of mathematicians working in Warsaw. Two sur-
veys of the first few years of their work can be found in [Banachowski et al., 1977]
and [Salwicki, 1977].

The original version of �� allowed deterministic while programs and formulas
built from the constructs


� 	 
� � 
�

corresponding in our terminology to

�
�� �

��
�
���

�
����

respectively, where 
 is a deterministic while program and � is a quantifier-free
first-order formula.

In [Mirkowska, 1980; Mirkowska, 1981a; Mirkowska, 1981b ], �� was ex-
tended to allow nondeterministic while programs and the constructs

�
� �
�

corresponding in our terminology to

�
�� halt�
� � �
�� � �
���

respectively. The latter asserts that all traces of 
 are finite and terminate in a state
satisfying �.

A feature present in �� but not in �� is the set of “dynamic terms” in addition
to dynamic formulas. For a first-order term � and a deterministic while program

, the meaning of the expression 
� is the value of � after executing program 
.
If 
 does not halt, the meaning is undefined. Such terms can be systematically
eliminated; for example, 9 ��� 
�� is replaced by �� ��
��� � �� � 9 ��� ���.
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The emphasis in the early research on �� was in obtaining infinitary complete-
ness results, developing normal forms for programs, investigating recursive pro-
cedures with parameters, and axiomatizing certain aspects of programming using
formulas of ��. As an example of the latter, the algorithmic formula

�while ! �� � do ! �� pop�!���

can be viewed as an axiom connected with the data structure stack. One can then
investigate the consequences of such axioms within ��, regarding them as proper-
ties of the corresponding data structures.

Complete infinitary deductive systems for first-order and propositional versions
are given in [Mirkowska, 1980; Mirkowska, 1981a; Mirkowska, 1981b ]. The in-
finitary completeness results for �� are usually proved by the algebraic methods
of [Rasiowa and Sikorski, 1963].

[Constable, 1977], [Constable and O’Donnell, 1978] and [Goldblatt, 1982]
present logics similar to �� and �� for reasoning about deterministic while pro-
grams.

13.2 Well-Foundedness

As in Section 7 for ���, we consider adding to �� assertions to the effect that
programs can enter infinite computations. Here too, we shall be interested both in
��� and in ��� versions; i.e., those in which halt
 and wf 
, respectively, have
been added inductively as new formulas for any program 
. As mentioned there,
the connection with the more common notation repeat
 and loop
 (from which
the � and � in the names ��� and ��� derive) is by:

loop

���
�� �halt


repeat
 ���
�� �wf
�

We now state some of the relevant results. The first concerns the addition of halt
:

THEOREM 86. ��� � ��.

In contrast to this, we have:

THEOREM 87. ��� 	 ���.

Turning to the validity problem for these extensions, clearly they cannot be any
harder to decide than that of ��, which is ��

�-complete. However, the following
result shows that detecting the absence of infinite computations of even simple
uninterpreted programs is extremely hard.

THEOREM 88. The validity problems for formulas of the form � � wf 
 and
formulas of the form � � halt 
, for first-order � and regular 
, are both ��

�-
complete. If 
 is constrained to have only first-order tests then the � � wf 
 case
remains ��

�-complete but the � � halt
 case is r.e.; that is, it is ��
�-complete.
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We just mention here that the additions to Axiom System S4 of Section 11 that
are used to obtain an arithmetically complete system for ��� are the axiom

�

��� � �
��� � �� � �wf
�

and the inference rule

��� � ��� �
������ �����

����� wf 


for first-order � and � not occurring in 
.

13.3 Probabilistic Programs

There is wide interest recently in programs that employ probabilistic moves such
as coin tossing or random number draws and whose behavior is described proba-
bilistically (for example, 
 is “correct” if it does what it is meant to do with prob-
ability 1). To give one well known example taken from [Miller, 1976] and [Rabin,
1980], there are fast probabilistic algorithms for checking primality of numbers
but no known fast nonprobabilistic ones. Many synchronization problems includ-
ing digital contract signing, guaranteeing mutual exclusion, etc. are often solved
by probabilistic means.

This interest has prompted research into formal and informal methods for rea-
soning about probabilistic programs. It should be noted that such methods are also
applicable for reasoning probabilistically about ordinary programs, for example,
in average-case complexity analysis of a program, where inputs are regarded as
coming from some set with a probability distribution.

[Kozen, 1981d] provided a formal semantics for probabilistic first-order while
programs with a random assignment statement � �� �. Here the term “random”
is quite appropriate (contrast with Section 8.2) as the statement essentially picks
an element out of some fixed distribution over the domain 6. This domain is
assumed to be given with an appropriate set of measurable subsets. Programs are
then interpreted as measurable functions on a certain measurable product space of
copies of 6.

In [Feldman and Harel, 1984] a probabilistic version of first-order Dynamic
Logic, 9�����, was investigated on the interpreted level. Kozen’s semantics is
extended as described below to a semantics for formulas that are closed under
Boolean connectives and quantification over reals and integers and that employ
terms of the form ,���� for first-order �. In addition, if 
 is a while program with
nondeterministic assignments and � is a formula, then �
�� is a new formula.

The semantics assumes a domain 6, say the reals, with a measure space consist-
ing of an appropriate family of measurable subsets of 6. The states 2� >� � � � are
then taken to be the positive measures on this measure space. Terms are interpreted
as functions from states to real numbers, with ,���� in 2 being the frequency (or
simply, the measure) of � in 2. Frequency is to positive measures as probability is
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to probability measures. The formula �
�� is true in 2 if � is true in >, the state
(i.e., measure) that is the result of applying 
 to 2 in Kozen’s semantics. Thus
�
�� means “after 
, �” and is the construct analogous to �
�� of ��.

For example, in 9����� one can write

,���� � � � �
�,���� � �

to mean, “
 halts with probability at least �.” The formula

,���� � � � �� �� �	� �� �	while � � ��
 do �� �� �	 � �� � � ���

�� ��� � �� ,��� � �� � 
��� � �� 	 �� ,��� � �� � ���

is valid in all structures in which the distribution of the random variable used in
� �� � is a uniform distribution on the real interval ��� ��.

An axiom system for 9����� was proved in [Feldman and Harel, 1984] to be
complete relative to an extension of first-order analysis with integer variables, and
for discrete probabilities first-order analysis with integer variables was shown to
suffice.
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14 OTHER APPROACHES

Here we discuss briefly some topics closely related to Dynamic Logic.

14.1 Logic of Effective Definitions

The Logic of Effective Definitions (�	�), introduced by [Tiuryn, 1981a], was
intended to study notions of computability over abtract models and to provide a
universal framework for the study of logics of programs over such models. It
consists of first-order logic augmented with new atomic formulas of the form 
 �
�, where 
 and � are effective definitional schemes (the latter notion is due to
[Friedman, 1971]):

if �� then ��
else if �� then ��

else if �� then ��
else if � � �

where the �� are quantifier-free formulas and �� are terms over a bounded set of
variables, and the function � �� ���� ��� is recursive. The formula 
 � � is defined
to be true in a state if both 
 and � terminate and yield the same value, or neither
terminates.

Model theory and infinitary completeness of �	� are treated in [Tiuryn, 1981a].
Effective definitional schemes in the definition of �	� can be replaced by any

programming language �, giving rise to various logical formalisms. The follow-
ing result, which relates �	� to other logics discussed here, is proved in [Meyer
and Tiuryn, 1981; Meyer and Tiuryn, 1984 ].

THEOREM 89. For every vocabulary (, �	� � ��������.

14.2 Temporal Logic

Temporal Logic (
�) is an alternative application of modal logic to program spec-
ification and verification. It was first proposed as a useful tool in program verifi-
cation by [Pnueli, 1977] and has since been developed by many authors in various
forms. This topic is surveyed in depth in [Emerson, 1990] and [Gabbay et al.,
1994].

� differs from �� chiefly in that it is endogenous; that is, programs are not

explicit in the language. Every application has a single program associated with it,
and the language may contain program-specific statements such as ��(, meaning
“execution is currently at location ( in the program.” There are two competing se-
mantics, giving rise to two different theories called linear-time and branching-time

�. In the former, a model is a linear sequence of program states representing an
execution sequence of a deterministic program or a possible execution sequence
of a nondeterministic or concurrent program. In the latter, a model is a tree of
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program states representing the space of all possible traces of a nondeterministic
or concurrent program. Depending on the application and the semantics, different
syntactic constructs can be chosen. The relative advantages of linear and branch-
ing time semantics are discussed in [Lamport, 1980; Emerson and Halpern, 1986;
Emerson and Lei, 1987; Vardi, 1998a].

Modal constructs used in 
� include

�� “� holds in all future states”
�� “� holds in some future state”
�� “� holds in the next state”

�����	� “there exists some strictly future point � at which � will be satis-
fied and all points strictly between the current state and � satisfy
�”

for linear-time logic, as well as constructs for expressing

“for all traces starting from the present state � � � ”
“for some trace starting from the present state � � � ”

for branching-time logic.
Temporal logic is useful in situations where programs are not normally sup-

posed to halt, such as operating systems, and is particularly well suited to the
study of concurrency. Many classical program verification methods such as the
intermittent assertions method are treated quite elegantly in this framework.

Temporal logic has been most successful in providing tools for proving proper-
ties of concurrent finite state protocols, such as solutions to the dining philosophers
and mutual exclusion problems, which are popular abstract versions of synchro-
nization and resource management problems in distributed systems.

The induction principle of 
� takes the form:

� � ��� � ��� � ��� (38)

Note the similarity to the ��� induction axiom (Axiom 17(viii)):

� � �

��� � �
��� � �

���

This is a classical program verification method known as inductive or invariant
assertions.

The operators �, �, and � can all be defined in terms of ����	:

�� � �������	���

�� � � � ������	��

�� � � � �������	����

but not vice-versa. It has been shown in [Kamp, 1968] and [Gabbay et al., 1980]
that the ����	 operator is powerful enough to express anything that can be ex-
pressed in the first-order theory of �7�	�. It has also been shown in [Wolper, 1981;
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Wolper, 1983] that there are very simple predicates that cannot be expressed by
����	; for example, “� is true at every multiple of 4.”

The ����	 operator has been shown to be very useful in expressing properties of
programs that are not properties of the input/output relation, such as: “If process
� requests a resource before � does, then it will receive it before � does.” Indeed,
much of the research in 
� has concentrated on providing useful methods for
proving these and other kinds of properties (see [Manna and Pnueli, 1981; Gabbay
et al., 1980]).

Concurrency and Nondeterminism

Unlike ��, 
� can be applied to programs that are not normally supposed to halt,
such as operating systems, because programs are interpreted as traces instead of
pairs of states.

Up to now we have only considered deterministic, single-process programs.
There is no reason however not to apply 
� to nondeterministic and concurrent
(multiprocessor) systems, in which next states are not unique. The computation is
no longer a single trace, but many different traces are possible. We can assemble
them all together to get a computation tree in which each node represents a state
accessible from the start state.

As above, an invariance property is a property of the form ��. However, the
dual� of the operator� defined in this way does not really capture what we mean
by eventuality or liveness properties. We would like to be able to say that every
possible trace in the computation tree has a state satisfying �. For instance, a
nondeterministic program is total if there is no chance of an infinite trace out of
the start state !; that is, every trace out of ! satisfies �halt. The dual � of � as
defined by�� � ���� does not really express this. It says instead

! � �� � there is some node � in the tree below ! such that � � ��

This is not a very useful statement.
One way to fix this is to introduce the branching time operator � that says, “For

all traces in the tree � � � ,” and then use �, � in the sense of linear 
� applied to
the trace quantified by �. The dual of � is 	, which says, “There exists a trace in
the tree � � � .” Thus, in order to say that the computation tree starting from the
current state satisfies a safety or invariance property, we would write

����

which says, “For all traces ? out of the current state, ? satisfies ��,” and to say
that the tree satisfies an eventuality property, we would write

����

which says, “For all traces ? out of the current state, ? satisfies ��; that is, �
occurs somewhere along the trace ?.” The logic with the linear temporal operators
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augmented with the trace quantifiers � and 	 is known as �
�; see [Emerson,
1990; Emerson and Halpern, 1986; Emerson and Halpern, 1985; Emerson and
Lei, 1987; Emerson and Sistla, 1984].

Complexity and Deductive Completeness

A useful axiomatization of linear-time 
� without the until operator is given by
the axioms

��� � �� � ��� � ���

��� � �� � �� � ��

�� � � � ���
��� � �� � �� � ��
��� � �� � �� � ��

� � ��� � ��� � ��

�� ���� � ���� (� is free for � in �)

�� �� � ��� �

and rules

�� � � �

�

�

��

�

�� �
�

Compare the axioms of ��� (Axioms 17). The propositional fragment of this de-
ductive system is complete for linear-time propositional 
�, as shown in [Gabbay
et al., 1980].

[Sistla and Clarke, 1982] and [Emerson and Halpern, 1985] have shown that the
validity problem for most versions of propositional 
� is PSPACE-complete for
linear structures and EXPTIME-complete for branching structures.

Embedding 
� in ��


� is subsumed by ��. To embed propositional 
� into ���, take an atomic
program � to mean “one step of program �.” In the linear model, the 
� constructs
��, ��, ��, and �����	� are then expressed by ����, ��
��, ��
��, and
���	���
	 ���, respectively.

14.3 Process Logic

Dynamic Logic and Temporal Logic embody markedly different approaches to
reasoning about programs. This dichotomy has prompted researchers to search for
an appropriate process logic that combines the best features of both. An appropri-
ate candidate should combine the ability to reason about programs compositionally
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with the ability to reason directly about the intermediate states encountered during
the course of a computation.

[Pratt, 1979c], [Parikh, 1978b], [Nishimura, 1980], and [Harel et al., 1982b]
all suggested increasingly more powerful propositional-level formalisms in which
the basic idea is to interpret formulas in traces rather than in states. In partic-
ular, [Harel et al., 1982b] present a system called Process Logic (��), which is
essentially a union of 
� and test-free regular ���. That paper proves that the
satisfiability problem is decidable and gives a complete finitary axiomatization.

Syntactically, we have programs 
� �� � � � and propositions �� �� � � � as in ���.
We have atomic symbols of each type and compound expressions built up from the
operators �, �, 	, 	, 
, � (applied to Boolean combinations of atomic formulas
only), 7, and � �. In addition we have the temporal operators 
��� and ����	. The
temporal operators are available for expressing and reasoning about trace proper-
ties, but programs are constructed compositionally as in ���. Other operators are
defined as in ��� (see Section 2.1) except for skip, which is handled specially.

Semantically, both programs and propositions are interpreted as sets of traces.
We start with a Kripke frame � � ������ as in Section 2.2, where � is a set
of states !� �� � � � and the function �� interprets atomic formulas � as subsets of
� and atomic programs � as binary relations on �. The temporal operators are
defined as in 
�.

Trace models satisfy (most of) the ��� axioms. As in Section 14.2, define

halt ���
�� ��


�
���
�� �halt

���
���
�� �
��

which say that the trace is of length 0, of finite length, or of infinite length, respec-
tively. Define two new operators �� �� and �� ��:

��
���
���
�� 
�� �
��

��
���
���
�� ���
���� � 
� � �
���

The 
 operator is the same as in ���. It can be shown that the two ��� axioms

� � �
��

�� � �

��

� � �

��� � �
��� � �

��

hold by establishing that�
���

���

�� � ���


�� 	 ����
� Æ
�
���

���

���

� ���

�� 	 ��

�
���

���

��� Æ���
���
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As mentioned, the version of �� of [Harel et al., 1982b] is decidable (but, it
seems, in nonelementary time only) and complete. It has also been shown that if
we restrict the semantics to include only finite traces (not a necessary restriction for
obtaining the results above), then �� is no more expressive than ���. Translations
of �� structures into ��� structures have also been investigated, making possible
an elementary time decision procedure for deterministic ��; see [Halpern, 1982;
Halpern, 1983]. An extension of �� in which 
��� and ����	 are replaced by
regular operators on formulas has been shown to be decidable but nonelementary
in [Harel et al., 1982b]. This logic perhaps comes closer to the desired objective of
a powerful decidable logic of traces with natural syntactic operators that is closed
under attachment of regular programs to formulas.

14.4 The �-Calculus

The 2-calculus was suggested as a formalism for reasoning about programs in
[Scott and de Bakker, 1969] and was further developed in [Hitchcock and Park,
1972], [Park, 1976], and [de Bakker, 1980].

The heart of the approach is 2, the least fixpoint operator, which captures the
notions of iteration and recursion. The calculus was originally defined as a first-
order-level formalism, but propositional versions have become popular.

The 2 operator binds relation variables. If ��3� is a logical expression with a
free relation variable 3 , then the expression 23���3�represents the least 3 such
that ��3� � 3 , if such an 3 exists. For example, the reflexive transitive closure
"
 of a binary relation " is the least binary relation containing " and closed under
reflexivity and transitivity; this would be expressed in the first-order 2-calculus as

"

���
� 23��� ����� � � � �� �"��� �� �3��� ����� (39)

This should be read as, “the least binary relation 3��� �� such that either � �
� or � is related by " to some � such that � and � are already related by 3 .”
This captures the usual fixpoint formulation of reflexive transitive closure. The
formula (39) can be regarded either as a recursive program computing " 
 or as
an inductively defined assertion that is true of a pair ��� �� iff that pair is in the
reflexive transitive closure of ".

The existence of a least fixpoint is not guaranteed except under certain restric-
tions. Indeed, the formula �3 has no fixpoint, therefore 23��3 does not exist.
Typically, one restricts the application of the binding operator 23 to formulas that
are positive or syntactically monotone in 3 ; that is, those formulas in which every
free occurrence of 3 occurs in the scope of an even number of negations. This
implies that the relation operator 3 �� ��3� is (semantically) monotone, which
by the Knaster–Tarski theorem ensures the existence of a least fixpoint.

The first-order 2-calculus can define all sets definable by first-order induction
and more. In particular, it can capture the input/output relation of any program
built from any of the �� programming constructs we have discussed. Since the
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first-order 2-calculus also admits first-order quantification, it is easily seen to be
as powerful as ��.

It was shown by [Park, 1976] that finiteness is not definable in the first-order
2-calculus with the monotonicity restriction, but well-foundedness is. Thus this
version of the 2-calculus is independent of (�



� � (and hence of ��������) in ex-
pressive power. Well-foundedness of a binary relation " can be written

�� �23������ �"��� ��� 3������

A more severe syntactic restriction on the binding operator 23 is to allow its
application only to formulas that are syntactically continuous in 3 ; that is, those
formulas in which 3 does not occur free in the scope of any negation or any
universal quantifier. It can be shown that this syntactic restriction implies semantic
continuity, so the least fixpoint is the union of �, ����, �������� � � � . As shown
in [Park, 1976], this version is strictly weaker than (�



� �.
In [Pratt, 1981a] and [Kozen, 1982; Kozen, 1983], propositional versions of

the 2-calculus were introduced. The latter version consists of propositional modal
logic with a least fixpoint operator. It is the most powerful logic of its type, sub-
suming all known variants of ���, game logic of [Parikh, 1983], various forms
of temporal logic (see Section 14.2), and other seemingly stronger forms of the
2-calculus ([Vardi and Wolper, 1986b]). In the following presentation we focus on
this version, since it has gained fairly widespread acceptance; see [Kozen, 1984;
Kozen and Parikh, 1983; Streett, 1985b; Streett and Emerson, 1984; Vardi and
Wolper, 1986b; Walukiewicz, 1993; Walukiewicz, 1995; Walukiewicz, 2000; Stir-
ling, 1992; Mader, 1997; Kaivola, 1997].

The language of the propositional 2-calculus, also called the modal 2-calculus,
is syntactically simpler than ���. It consists of the usual propositional constructs
� and �, atomic modalities ���, and the least fixpoint operator 2. A greatest
fixpoint operator dual to 2 can be defined:

>3���3�
���
�� �23�����3��

Variables are monadic, and the 2 operator may be applied only to syntactically
monotone formulas. As discussed above, this ensures monotonicity of the corre-
sponding set operator. The language is interpreted over Kripke frames in which
atomic propositions are interpreted as sets of states and atomic programs are inter-
preted as binary relations on states.

The propositional 2-calculus subsumes ���. For example, the ��� formula
��
�� for atomic � can be written 23��� � ���3�. The formula 23�������3 ,
which expresses the existence of a forced win for the first player in a two-player
game, and the formula 23����3 , which expresses well-foundedness and is equiv-
alent to wf � (see Section 7), are both inexpressible in ���, as shown in [Streett,
1981; Kozen, 1981c]. [Niwinski, 1984] has shown that even with the addition of
the halt construct, ��� is strictly less expressive than the 2-calculus.
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The propositional 2-calculus satisfies a finite model theorem, as first shown in
[Kozen, 1988]. Progressively better decidability results were obtained in [Kozen
and Parikh, 1983; Vardi and Stockmeyer, 1985; Vardi, 1985b ], culminating in a
deterministic exponential-time algorithm of [Emerson and Jutla, 1988] based on
an automata-theoretic lemma of [Safra, 1988]. Since the 2-calculus subsumes
���, it is EXPTIME-complete.

In [Kozen, 1982; Kozen, 1983], an axiomatization of the propositional2-calculus
was proposed and conjectured to be complete. The axiomatization consists of the
axioms and rules of propositional modal logic, plus the axiom

��3�23��� � 23��

and rule

��3��� � �

23�� � �

for 2. Completeness of this deductive system for a syntactically restricted sub-
set of formulas was shown in [Kozen, 1982; Kozen, 1983]. Completeness for
the full language was proved by [Walukiewicz, 1995; Walukiewicz, 2000]. This
was quickly followed by simpler alternative proofs by [Ambler et al., 1995; Bon-
sangue and Kwiatkowska, 1995; Hartonas, 1998]. [Bradfield, 1996] showed that
the alternating 2�> hierarchy (least/greatest fixpoints) is strict. An interesting
open question is the complexity of model checking: does a given formula of the
propositional 2-calculus hold in a given state of a given Kripke frame? Although
some progress has been made (see [Bhat and Cleaveland, 1996; Cleaveland, 1996;
Emerson and Lei, 1986; Sokolsky and Smolka, 1994; Stirling and Walker, 1989 ]),
it is still unknown whether this problem has a polynomial-time algorithm.

The propositional 2-calculus has become a popular system for the specification
and verification of properties of transition systems, where it has had some practical
impact ([Steffen et al., 1996]). Several recent papers on model checking work in
this context; see [Bhat and Cleaveland, 1996; Cleaveland, 1996; Emerson and Lei,
1986; Sokolsky and Smolka, 1994; Stirling and Walker, 1989 ]. A comprehensive
introduction can be found in [Stirling, 1992].

14.5 Kleene Algebra

Kleene algebra (��) is the algebra of regular expressions. It is named for the
mathematician S. C. Kleene (1909–1994), who among his many other achieve-
ments invented regular expressions and proved their equivalence to finite automata
in [Kleene, 1956].

Kleene algebra has appeared in various guises and under many names in rela-
tional algebra ([Ng, 1984; Ng and Tarski, 1977]), semantics and logics of programs
([Kozen, 1981b; Pratt, 1988]), automata and formal language theory ( [Kuich, 1987;
Kuich and Salomaa, 1986]), and the design and analysis of algorithms ([Aho et al.,
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1975; Tarjan, 1981; Mehlhorn, 1984; Iwano and Steiglitz, 1990; Kozen, 1991b ]).
As discussed in Section 13, Kleene algebra plays a prominent role in dynamic
algebra as an algebraic model of program behavior.

Beginning with the monograph of [Conway, 1971], many authors have con-
tributed over the years to the development of the algebraic theory; see [Backhouse,
1975; Krob, 1991; Kleene, 1956; Kuich and Salomaa, 1986; Sakarovitch, 1987;
Kozen, 1990; Bloom and Ésik, 1992; Hopkins and Kozen, 1999]. See also [Kozen,
1996] for further references.

A Kleene algebra is an algebraic structure ��� �� 
� 
� �� �� satisfying the
axioms


 � �� � �� � �
 � �� � �


 � � � � � 



 � � � 
 � 
 � 



���� � �
���

�
 � 
� � 



�� � �� � 
� � 
�

�
 � ��� � 
� � ��

�
 � 
� � �

� � 


 � � � 


 � 

 (40)

� � 
� � � � 

� � � (41)

� � �
 � � � �

 � � (42)

where� refers to the natural partial order on �:


 � �
���
�� 
 � � � ��

In short, a �� is an idempotent semiring under �� 
� �� � such that 

� is the least
solution to � � 
� � � and �

 is the least solution to � � �
 � �. The axioms
(40)–(42) say essentially that 
 behaves like the asterate operator on sets of strings
or reflexive transitive closure on binary relations. This particular axiomatization is
from [Kozen, 1991a; Kozen, 1994a], but there are other competing ones.

The axioms (41) and (42) correspond to the reflexive transitive closure rule
(RTC) of ��� (Section 2.5). Instead, we might postulate the equivalent axioms


� � � � 

� � � (43)

�
 � � � �

 � �� (44)

which correspond to the loop invariance rule (LI). The induction axiom (IND) is
inexpressible in ��, since there is no negation.

A Kleene algebra is 
-continuous if it satisfies the infinitary condition


�
� � "/0
���


��� (45)
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where

�� ���
� � ����

���
� ���

and where the supremum is with respect to the natural order �. We can think of
(45) as a conjunction of the infinitely many axioms 
� �� � 
�
�, � � �, and
the infinitary Horn formula

�
�
���


��� � Æ� � 
�
� � Æ�

In the presence of the other axioms, the *-continuity condition (45) implies
(41)–(44) and is strictly stronger in the sense that there exist Kleene algebras that
are not *-continuous ([Kozen, 1990]).

The fundamental motivating example of a Kleene algebra is the family of reg-
ular sets of strings over a finite alphabet, but other classes of structures share the
same equational theory, notably the binary relations on a set. In fact it is the
latter interpretation that makes Kleene algebra a suitable choice for modeling pro-
grams in dynamic algebras. Other more unusual interpretations are the 
'.��
algebra used in shortest path algorithms (see [Aho et al., 1975; Tarjan, 1981;
Mehlhorn, 1984; Kozen, 1991b]) and ��s of convex polyhedra used in compu-
tational geometry as described in [Iwano and Steiglitz, 1990].

Axiomatization of the equational theory of the regular sets is a central ques-
tion going back to the original paper of [Kleene, 1956]. A completeness the-
orem for relational algebras was given in an extended language by [Ng, 1984;
Ng and Tarski, 1977]. Axiomatization is a central focus of the monograph of
[Conway, 1971], but the bulk of his treatment is infinitary. [Redko, 1964] proved
that there is no finite equational axiomatization. Schematic equational axiomatiza-
tions for the algebra of regular sets, necessarily representing infinitely many equa-
tions, have been given by [Krob, 1991] and [Bloom and Ésik, 1993]. [Salomaa,
1966] gave two finitary complete axiomatizations that are sound for the regular
sets but not sound in general over other standard interpretations, including rela-
tional interpretations. The axiomatization given above is a finitary universal Horn
axiomatization that is sound and complete for the equational theory of standard re-
lational and language-theoretic models, including the regular sets ( [Kozen, 1991a;
Kozen, 1994a]). Other work on completeness appears in [Krob, 1991; Boffa, 1990;
Boffa, 1995; Archangelsky, 1992].

The literature contains a bewildering array of inequivalent definitions of Kleene
algebras and related algebraic structures; see [Conway, 1971; Pratt, 1988; Pratt,
1990; Kozen, 1981b; Kozen, 1991a; Aho et al., 1975; Mehlhorn, 1984; Kuich,
1987; Kozen, 1994b]. As demonstrated in [Kozen, 1990], many of these are
strongly related. One important property shared by most of them is closure under
the formation of �� � matrices. This was proved for the axiomatization above in
[Kozen, 1991a; Kozen, 1994a], but the idea essentially goes back to [Kleene, 1956;
Conway, 1971; Backhouse, 1975]. This result gives rise to an algebraic treatment
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of finite automata in which the automata are represented by their transition matri-
ces.

The equational theory of Kleene algebra is PSPACE-complete ( [Stockmeyer
and Meyer, 1973]); thus it is apparently less complex than ���, which is EXP-
TIME-complete (Theorem 21), although the strict separation of the two complexity
classes is still open.

Kleene Algebra with Tests

From a practical standpoint, many simple program manipulations such as loop
unwinding and basic safety analysis do not require the full power of ���, but
can be carried out in a purely equational subsystem using the axioms of Kleene
algebra. However, tests are an essential ingredient, since they are needed to model
conventional programming constructs such as conditionals and while loops and
to handle assertions. This motivates the definition of the following variant of ��
introduced in [Kozen, 1996; Kozen, 1997b].

A Kleene algebra with tests (��
) is a Kleene algebra with an embedded
Boolean subalgebra. Formally, it is a two-sorted algebra

��� @� �� 
� 
� � �� ��

such that

� ��� �� 
� 
� �� �� is a Kleene algebra

� �@� �� 
� � �� �� is a Boolean algebra

� @ � �.

The unary negation operator is defined only on @. Elements of @ are called tests
and are written �� �� � � � . Elements of � (including elements of @) are written

� �� � � � . In ���, a test would be written ��, but in ��
 we dispense with the
symbol �.

This deceptively concise definition actually carries a lot of information. The op-
erators�� 
� �� � each play two roles: applied to arbitrary elements of �, they refer
to nondeterministic choice, composition, fail, and skip, respectively; and applied
to tests, they take on the additional meaning of Boolean disjunction, conjunction,
falsity, and truth, respectively. These two usages do not conflict—for example,
sequential testing of two tests is the same as testing their conjunction—and their
coexistence admits considerable economy of expression.

For applications in program verification, the standard interpretation would be a
Kleene algebra of binary relations on a set and the Boolean algebra of subsets of
the identity relation. One could also consider trace models, in which the Kleene
elements are sets of traces (sequences of states) and the Boolean elements are
sets of states (traces of length 0). As with ��, one can form the algebra � �
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� matrices over a ��
 ��� @�; the Boolean elements of this structure are the
diagonal matrices over @.
��
 can express conventional imperative programming constructs such as con-

ditionals and while loops as in ���. It can perform elementary program manip-
ulation such as loop unwinding, constant propagation, and basic safety analysis
in a purely equational manner. The applicability of ��
 and related equational
systems in practical program verification has been explored in [Cohen, 1994a;
Cohen, 1994b; Cohen, 1994c; Kozen, 1996; Kozen and Patron, 2000 ].

There is a language-theoretic model that plays the same role in ��
 that the
regular sets play in ��, namely the algebra of regular sets of guarded strings, and
a corresponding completeness result was obtained by [Kozen and Smith, 1996].
Moreover, ��
 is complete for the equational theory of relational models, as
shown in [Kozen and Smith, 1996]. Although less expressive than ���, ��

is also apparently less difficult to decide: it is PSPACE-complete, the same as ��,
as shown in [Cohen et al., 1996].

In [Kozen, 1999a], it is shown that ��
 subsumes propositional Hoare Logic
in the following sense. The partial correctness assertion ��� 
 ��� is encoded in
��
 as the equation �
� � �, or equivalently �
 � �
�. If a rule

���� 
� ����� � � � � ���� 
� ����

��� 
 ���

is derivable in propositional Hoare Logic, then its translation, the universal Horn
formula

��
��� � � � 
 
 
 � ��
��� � � � �
� � ��

is a theorem of ��
. For example, the while rule of Hoare logic (see Section 2.6)
becomes

��
� � � � ���
�
� �� � ��

More generally, all relationally valid Horn formulas of the form

�� � � � 
 
 
 � �� � � � 
 � �

are theorems of ��
 ([Kozen, 1999a]).
Horn formulas are important from a practical standpoint. For example, commu-

tativity conditions are used to model the idea that the execution of certain instruc-
tions does not affect the result of certain tests. In light of this, the complexity of
the universal Horn theory of �� and ��
 are of interest. There are both positive
and negative results. It is shown in [Kozen, 1997c] that for a Horn formula �� �
over *-continuous Kleene algebras,

� if � contains only commutativity conditions 
� � �
, the universal Horn
theory is ��

�-complete;
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� if � contains only monoid equations, the problem is ��
�-complete;

� for arbitrary finite sets of equations �, the problem is ��
�-complete.

On the other hand, commutativity assumptions of the form 
� � �
, where �
is a test, and assumptions of the form � � � can be eliminated without loss of
efficiency, as shown in [Cohen, 1994a; Kozen and Smith, 1996]. Note that as-
sumptions of this form are all we need to encode Hoare Logic as described above.

In typed Kleene algebra introduced in [Kozen, 1998; Kozen, 1999b], elements
have types ! � �. This allows Kleene algebras of nonsquare matrices, among
other applications. It is shown in [Kozen, 1999b] that Hoare Logic is subsumed
by the type calculus of typed �� augmented with a typecast or coercion rule for
tests. Thus Hoare-style reasoning with partial correctness assertions reduces to
typechecking in a relatively simple type system.

14.6 Dynamic Algebra

Dynamic algebra provides an abstract algebraic framework that relates to ���
as Boolean algebra relates to propositional logic. A dynamic algebra is defined
to be any two-sorted algebraic structure ��� @� 
�, where @ � �@� �� �� is a
Boolean algebra, � � ��� �� 
� 
� �� �� is a Kleene algebra (see Section 14.5),
and 
 � � � @ � @ is a scalar multiplication satisfying algebraic constraints
corresponding to the dual forms of the ��� axioms (Axioms 17). For example, all
dynamic algebras satisfy the equations

�
�� 
 � � 
 
 �� 
 ��


 
 � � �

� 
 � � �


 
 �� � �� � 
 
 � � 
 
 ��

which correspond to the ��� validities

�
 	 ��� � �
�����

�
�� � �

����� � �

�
��� � �� � �
�� � �
���

respectively. The Boolean algebra @ is an abstraction of the formulas of ��� and
the Kleene algebra � is an abstraction of the programs.

The interaction of scalar multiplication with iteration can be axiomatized in a
finitary or infinitary way. One can postulate



 
 � � � � �

 
 ��� � �
 
 ���� (46)
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corresponding to the diamond form of the ��� induction axiom (Axiom 17(viii)).
Here � � � in @ iff � � � � �. Alternatively, one can postulate the stronger
axiom of 
-continuity:



 
 � � "/0
�
�
� 
 ��� (47)

We can think of (47) as a conjunction of infinitely many axioms 
� 
 � � 

 
 �,
� � �, and the infinitary Horn formula

�
�
���


� 
 � � �� � 

 
 � � ��

In the presence of the other axioms, (47) implies (46) ( [Kozen, 1980b]), and
is strictly stronger in the sense that there are dynamic algebras that are not *-
continuous ([Pratt, 1979a]).

A standard Kripke frame � � �4� ��� of ��� gives rise to a *-continuous
dynamic algebra consisting of a Boolean algebra of subsets of 4 and a Kleene
algebra of binary relations on 4 . Operators are interpreted as in ���, including
� as �� (the empty program), � as �� (the identity program), and 
 
 � as �
��.
Nonstandard Kripke frames (see Section 3.2) also give rise to dynamic algebras,
but not necessarily *-continuous ones. A dynamic algebra is separable if any pair
of distinct Kleene elements can be distinguished by some Boolean element; that
is, if 
 �� �, then there exists � � @ with 
 
 � �� � 
 �.

Research directions in this area include the following.

� Representation theory. It is known that any separable dynamic algebra
is isomorphic to some possibly nonstandard Kripke frame. Under certain
conditions, “possibly nonstandard” can be replaced by “standard,” but not
in general, even for *-continuous algebras ( [Kozen, 1980b; Kozen, 1979c;
Kozen, 1980a]).

� Algebraic methods in ���. The small model property (Theorem 15) and
completeness (Theorem 18) for ��� can be established by purely algebraic
considerations ([Pratt, 1980a]).

� Comparative study of alternative axiomatizations of 
. For example, it is
known that separable dynamic algebras can be distinguished from standard
Kripke frames by a first-order formula, but even (��� cannot distinguish the
latter from 
-continuous separable dynamic algebras ([Kozen, 1981b]).

� Equational theory of dynamic algebras. Many seemingly unrelated models
of computation share the same equational theory, namely that of dynamic
algebras ([Pratt, 1979b; Pratt, 1979a]).

In addition, many interesting questions arise from the algebraic viewpoint, and
interesting connections with topology, classical algebra, and model theory have
been made ([Kozen, 1979b; Németi, 1980]).
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15 BIBLIOGRAPHICAL NOTES

Systematic program verification originated with the work of [Floyd, 1967] and
[Hoare, 1969]. Hoare Logic was introduced in [Hoare, 1969]; see [Cousot, 1990;
Apt, 1981; Apt and Olderog, 1991] for surveys.

The digital abstraction, the view of computers as state transformers that operate
by performing a sequence of discrete and instantaneous primitive steps, can be
attributed to [Turing, 1936]. Finite-state transition systems were defined formally
by [McCulloch and Pitts, 1943]. State-transition semantics is based on this idea
and is quite prevalent in early work on program semantics and verification; see
[Hennessy and Plotkin, 1979]. The relational-algebraic approach taken here, in
which programs are interpreted as binary input/output relations, was introduced in
the context of �� by [Pratt, 1976].

The notions of partial and total correctness were present in the early work of
[Hoare, 1969]. Regular programs were introduced by [Fischer and Ladner, 1979]
in the context of ���. The concept of nondeterminism was introduced in the origi-
nal paper of [Turing, 1936], although he did not develop the idea. Nondeterminism
was further developed by [Rabin and Scott, 1959] in the context of finite automata.

[Burstall, 1974] suggested using modal logic for reasoning about programs, but
it was not until the work of [Pratt, 1976], prompted by a suggestion of R. Moore,
that it was actually shown how to extend modal logic in a useful way by consid-
ering a separate modality for every program. The first research devoted to propo-
sitional reasoning about programs seems to be that of [Fischer and Ladner, 1977;
Fischer and Ladner, 1979] on ���. As mentioned in the Preface, the general use
of logical systems for reasoning about programs was suggested by [Engeler, 1967].

Other semantics besides Kripke semantics have been studied; see [Berman,
1979; Nishimura, 1979; Kozen, 1979b; Trnkova and Reiterman, 1980; Kozen,
1980b; Pratt, 1979b]. Modal logic has many applications and a vast literature;
good introductions can be found in [Hughes and Cresswell, 1968; Chellas, 1980].
Alternative and iterative guarded commands were studied in [Gries, 1981]. Partial
correctness assertions and the Hoare rules given in Section 2.6 were first formu-
lated by [Hoare, 1969]. Regular expressions, on which the regular program oper-
ators are based, were introduced by [Kleene, 1956]. Their algebraic theory was
further investigated by [Conway, 1971]. They were first applied in the context of
�� by [Fischer and Ladner, 1977; Fischer and Ladner, 1979 ]. The axiomatization
of ��� given in Axioms 17 was formulated by [Segerberg, 1977]. Tests and con-
verse were investigated by various authors; see [Peterson, 1978; Berman, 1978;
Berman and Paterson, 1981; Streett, 1981; Streett, 1982; Vardi, 1985b ]. The con-
tinuity of the diamond operator in the presence of reverse is due to [Trnkova and
Reiterman, 1980].

The filtration argument and the small model property for ��� are due to [Fis-
cher and Ladner, 1977; Fischer and Ladner, 1979 ]. Nonstandard Kripke frames
for ��� were studied by [Berman, 1979; Berman, 1982], [Parikh, 1978a], [Pratt,
1979a; Pratt, 1980a], and [Kozen, 1979c; Kozen, 1979b; Kozen, 1980a; Kozen,
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1980b; Kozen, 1981b].
The axiomatization of ��� used here (Axiom System 17) was introduced by

[Segerberg, 1977]. Completeness was shown independently by [Gabbay, 1977]
and [Parikh, 1978a]. A short and easy-to-follow proof is given in [Kozen and
Parikh, 1981]. Completeness is also treated in [Pratt, 1978; Pratt, 1980a; Berman,
1979; Nishimura, 1979; Kozen, 1981a].

The exponential-time lower bound for ��� was established by [Fischer and
Ladner, 1977; Fischer and Ladner, 1979] by showing how ��� formulas can en-
code computations of linear-space-bounded alternating Turing machines.

Deterministic exponential-time algorithms were first given in [Pratt, 1978; Pratt,
1979b; Pratt, 1980b].

Theorem 24 showing that the problem of deciding whether � �� �, where � is
a fixed r.e. set of ��� formulas, is ��

�-complete is due to [Meyer et al., 1981].
The computational difficulty of the validity problem for nonregular ��� and

the borderline between the decidable and undecidable were discussed in [Harel et
al., 1983]. The fact that any nonregular program adds expressive power to ���,
Theorem 25, first appeared explicitly in [Harel and Singerman, 1996]. Theorem
26 on the undecidability of context-free ��� was observed by [Ladner, 1977].

Theorems 27 and 28 are from [Harel et al., 1983]. An alternative proof of
Theorem 28 using tiling is supplied in [Harel, 1985]; see [Harel et al., 2000]. The
existence of a primitive recursive one-letter extension of ��� that is undecidable
was shown already in [Harel et al., 1983], but undecidability for the particular
case of ��

�
, Theorem 29, is from [Harel and Paterson, 1984]. Theorem 30 is from

[Harel and Singerman, 1996].
As to decidable extensions, Theorem 31 was proved in [Koren and Pnueli,

1983]. The more general results of Section 6.2, namely Theorems 32, 33, and
34, are from [Harel and Raz, 1993], as is the notion of a simple-minded PDA.
The decidability of emptiness for pushdown and stack automata on trees that is
needed for the proofs of these is from [Harel and Raz, 1994]. A better bound on
the complexity of the emptiness results can be found in [Peng and Iyer, 1995].

A sufficient condition for���with the addition of a program over a single letter
alphabet not to have the finite model property is given in [Harel and Singerman,
1996].

Completeness and exponential time decidability for ����, Theorem 40 and
the upper bound of Theorem 41, are proved in [Ben-Ari et al., 1982] and [Valiev,
1980]. The lower bound of Theorem 41 is from [Parikh, 1981]. Theorems 43 and
44 on ����� are from [Halpern and Reif, 1981; Halpern and Reif, 1983].

That tests add to the power of ��� is proved in [Berman and Paterson, 1981]. It
is also known that the test-depth hierarchy is strict [Berman, 1978; Peterson, 1978]
and that rich-test ��� is strictly more expressive than poor-test ��� [Peterson,
1978; Berman, 1978; Berman and Paterson, 1981 ]. These results also hold for
�����.

The results on programs as automata (Theorems 45 and 46) appear in [Pratt,
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1981b]. Alternative proofs are given in [Harel and Sherman, 1985]; see [Harel
et al., 2000]. In recent years, the development of the automata-theoretic ap-
proach to logics of programs has prompted renewed inquiry into the complex-
ity of automata on infinite objects, with considerable success. See [Courcoubetis
and Yannakakis, 1988; Emerson, 1985; Emerson and Jutla, 1988; Emerson and
Sistla, 1984; Manna and Pnueli, 1987; Muller et al., 1988; Pecuchet, 1986; Safra,
1988; Sistla et al., 1987; Streett, 1982; Vardi, 1985a; Vardi, 1985b; Vardi, 1987;
Vardi and Stockmeyer, 1985; Vardi and Wolper, 1986b; Vardi and Wolper, 1986a;
Arnold, 1997a; Arnold, 1997b]; and [Thomas, 1997]. Especially noteworthy in
this area is the result of [Safra, 1988] involving the complexity of converting a
nondeterministic automaton on infinite strings into an equivalent deterministic one.
This result has already had a significant impact on the complexity of decision pro-
cedures for several logics of programs; see [Courcoubetis and Yannakakis, 1988;
Emerson and Jutla, 1988; Emerson and Jutla, 1989 ]; and [Safra, 1988].

Intersection of programs was studied in [Harel et al., 1982a]. That the axioms
for converse yield completeness for ���� is proved in [Parikh, 1978a].

The complexity of ��� with converse and various forms of well-foundedness
constructs is studied in [Vardi, 1985b]. Many authors have studied logics with
a least-fixpoint operator, both on the propositional and first-order levels ( [Scott
and de Bakker, 1969; Hitchcock and Park, 1972; Park, 1976; Pratt, 1981a; Kozen,
1982; Kozen, 1983; Kozen, 1988; Kozen and Parikh, 1983; Niwinski, 1984; Streett,
1985a; Vardi and Stockmeyer, 1985]). The version of the propositional 2-calculus
presented here was introduced in [Kozen, 1982; Kozen, 1983].

That the propositional 2-calculus is strictly more expressive than ��� with wf
was show in [Niwinski, 1984] and [Streett, 1985a]. That this logic is strictly more
expressive than ��� with halt was shown in [Harel and Sherman, 1982]. That this
logic is strictly more expressive than ��� was shown in [Streett, 1981].

The wf construct (actually its complement, repeat) is investigated in [Streett,
1981; Streett, 1982], in which Theorems 48 (which is actually due to Pratt) and
50–52 are proved. The halt construct (actually its complement, loop) was intro-
duced in [Harel and Pratt, 1978] and Theorem 49 is from [Harel and Sherman,
1982]. Finite model properties for the logics ����, ����, �����, �����, and
the propositional 2-calculus were established in [Streett, 1981; Streett, 1982] and
[Kozen, 1988]. Decidability results were obtained in [Streett, 1981; Streett, 1982;
Kozen and Parikh, 1983; Vardi and Stockmeyer, 1985 ]; and [Vardi, 1985b]. De-
terministic exponential-time completeness was established in [Emerson and Jutla,
1988] and [Safra, 1988]. For the strongest variant, �����, exponential-time de-
cidability follows from [Vardi, 1998b].

Concurrent ��� is defined and studied in [Peleg, 1987b]. Additional versions
of this logic, which employ various mechanisms for communication among the
concurrent parts of a program, are considered in [Peleg, 1987c; Peleg, 1987a].
These papers contain many results concerning expressive power, decidability and
undecidability for concurrent ��� with communication.

Other work on ��� not described here includes work on nonstandard models,
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studied in [Berman, 1979; Berman, 1982] and [Parikh, 1981]; ��� with Boolean
assignments, studied in [Abrahamson, 1980]; and restricted forms of the conse-
quence problem, studied in [Parikh, 1981].

First-order�� was defined in [Harel et al., 1977], where it was also first named
Dynamic Logic. That paper was carried out as a direct continuation of the original
work of [Pratt, 1976].

Many variants of �� were defined in [Harel, 1979]. In particular, ���%"#$� is
very close to the context-free Dynamic Logic investigated there.

Uninterpreted reasoning in the form of program schematology has been a com-
mon activity ever since the work of [Ianov, 1960]. It was given considerable im-
petus by the work of [Luckham et al., 1970] and [Paterson and Hewitt, 1970];
see also [Greibach, 1975]. The study of the correctness of interpreted programs
goes back to the work of Turing and von Neumann, but seems to have become a
well-defined area of research following [Floyd, 1967], [Hoare, 1969] and [Manna,
1974].

Embedding logics of programs in (��� is based on observations of [Engeler,
1967]. Theorem 57 is from [Meyer and Parikh, 1981]. Theorem 60 is from [Harel,
1979] (see also [Harel, 1984] and [Harel and Kozen, 1984]); it is similar to the
expressiveness result of [Cook, 1978]. Theorem 61 and Corollary 62 are from
[Harel and Kozen, 1984].

Arithmetical structures were first defined by [Moschovakis, 1974] under the
name acceptable structures. In the context of logics of programs, they were rein-
troduced and studied in [Harel, 1979].

The ��
�-completeness of �� was first proved by Meyer, and Theorem 63 ap-

pears in [Harel et al., 1977]. An alternative proof is given in [Harel, 1985]; see
[Harel et al., 2000]. Theorem 65 is from [Meyer and Halpern, 1982]. That the
fragment of �� considered in Theorem 66 is not r.e., was proved by [Pratt, 1976].
Theorem 67 follows from [Harel and Kozen, 1984].

The name “spectral complexity” was proposed by [Tiuryn, 1986], although the
main ideas and many results concerning this notion were already present in [Tiuryn
and Urzyczyn, 1983] (see [Tiuryn and Urzyczyn, 1988] for the full version). This
notion is an instance of the so-called second-order spectrum of a formula. First-
order spectra were investigated by [Sholz, 1952], from which originates the well
known Spectralproblem. The reader can find more about this problem and related
results in the survey paper by [Börger, 1984]. The notion of a natural chain is from
[Urzyczyn, 1983]. The results presented here are from [Tiuryn and Urzyczyn,
1983; Tiuryn and Urzyczyn, 1988]. A result similar to Theorem 69 in the area
of finite model theory was obtained by [Sazonov, 1980] and independently by
[Gurevich, 1983]. Higher-order stacks were introduced in [Engelfriet, 1983] to
study complexity classes. Higher-order arrays and stacks in �� were considered
by [Tiuryn, 1986], where a strict hierarchy within the class of elementary recursive
sets was established. The main tool used in the proof of the strictness of this
hierarchy is a generalization of Cook’s auxiliary pushdown automata theorem for
higher-order stacks, which is due to [Kowalczyk et al., 1987].
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[Meyer and Halpern, 1982] showed completeness for termination assertions
(Theorem 71). Infinitary completeness for �� (Theorem 72) is based upon a sim-
ilar result for Algorithmic Logic (see Section 13.1) by [Mirkowska, 1971]. The
proof sketch presented in [Harel et al., 2000] is an adaptation of Henkin’s proof
for (��� appearing in [Keisler, 1971].

The notion of relative completeness and Theorem 73 are due to [Cook, 1978].
The notion of arithmetical completeness and Theorem 75 is from [Harel, 1979].

The use of invariants to prove partial correctness and of well-founded sets to
prove termination are due to [Floyd, 1967]. An excellent survey of such methods
and the corresponding completeness results appears in [Apt, 1981].

Some contrasting negative results are contained in [Clarke, 1979], [Lipton,
1977], and [Wand, 1978].

Many of the results on relative expressiveness presented herein answer ques-
tions posed in [Harel, 1979]. Similar uninterpreted research, comparing the ex-
pressive power of classes of programs (but detached from any surrounding logic)
has taken place under the name comparative schematology quite extensively ever
since [Ianov, 1960]; see [Greibach, 1975] and [Manna, 1974].

Theorems 76, 79 and 83(i) result as an application of the so-called spectral theo-
rem, which connects expressive power of logics with complexity classes. This the-
orem was obtained by [Tiuryn and Urzyczyn, 1983; Tiuryn and Urzyczyn, 1984;
Tiuryn and Urzyczyn, 1988]. A simplified framework for this approach and a
statement of this theorem together with a proof is given in [Harel et al., 2000].

Theorem 78 appears in [Berman et al., 1982] and was proved independently in
[Stolboushkin and Taitslin, 1983]. An alternative proof is given in [Tiuryn, 1989].
These results extend in a substantial way an earlier and much simpler result for
the case of regular programs without equality in the vocabulary, which appears in
[Halpern, 1981]. A simpler proof of the special case of the quantifier-free frag-
ment of the logic of regular programs appears in [Meyer and Winklmann, 1982].
Theorem 79 is from [Tiuryn and Urzyczyn, 1984].

Theorem 80 is from [Stolboushkin, 1983]. The proof, as in the case of regular
programs (see [Stolboushkin and Taitslin, 1983]), uses Adian’s result from group
theory ([Adian, 1979]). Results on the expressive power of �� with deterministic
while programs and a Boolean stack can be found in [Stolboushkin, 1983; Kfoury,
1985]. Theorem 81 is from [Tiuryn and Urzyczyn, 1983; Tiuryn and Urzyczyn,
1988].

[Erimbetov, 1981; Tiuryn, 1981b; Tiuryn, 1984; Kfoury, 1983; Kfoury and Stol-
boushkin, 1997] contain results on the expressive power of �� over programming
languages with bounded memory. [Erimbetov, 1981] shows that ������)� 	
����"#$�. The main proof technique is pebble games on finite trees.

Theorem 83 is from [Urzyczyn, 1987]. There is a different proof of this result,
using Adian structures, which appears in [Stolboushkin, 1989]. Theorem 77 is
from [Urzyczyn, 1988], which also studies programs with Boolean arrays.

Wildcard assignments were considered in [Harel et al., 1977] under the name
nondeterministic assignments. Theorem 84 is from [Meyer and Winklmann, 1982].
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Theorem 85 is from [Meyer and Parikh, 1981].
In our exposition of the comparison of the expressive power of logics, we have

made the assumption that programs use only quantifier-free first-order tests. It
follows from the results of [Urzyczyn, 1986] that allowing full first-order tests in
many cases results in increased expressive power. [Urzyczyn, 1986] also proves
that adding array assignments to nondeterministic r.e. programs increases the ex-
pressive power of the logic. This should be contrasted with the result of [Meyer
and Tiuryn, 1981; Meyer and Tiuryn, 1984 ] to the effect that for deterministic r.e.
programs, array assignments do not increase expressive power.

[Makowski, 1980] considers a weaker notion of equivalence between logics
common in investigations in abstract model theory, whereby models are extended
with interpretations for additional predicate symbols. With this notion it is shown
in [Makowski, 1980] that most of the versions of logics of programs treated here
become equivalent.

Algorithmic logic was introduced by [Salwicki, 1970]. [Mirkowska, 1980;
Mirkowska, 1981a; Mirkowska, 1981b] extended �� to allow nondeterministic
while programs and studied the operators � and �. Complete infinitary deduc-
tive systems for propositional and first-order versions were given by [Mirkowska,
1980; Mirkowska, 1981a; Mirkowska, 1981b ] using the algebraic methods of [Ra-
siowa and Sikorski, 1963]. Surveys of early work in �� can be found in [Bana-
chowski et al., 1977; Salwicki, 1977]. [Constable, 1977; Constable and O’Donnell,
1978; Goldblatt, 1982] presented logics similar to �� and �� for reasoning about
deterministic while programs.

Nonstandard Dynamic Logic was introduced by [Németi, 1981] and [Andréka
et al., 1982a; Andréka et al., 1982b] and studied in [Csirmaz, 1985]. See [Makowski
and Sain, 1986] for more information and further references.

The halt construct (actually its complement, loop) was introduced in [Harel
and Pratt, 1978], and the wf construct (actually its complement, repeat) was in-
vestigated for ��� in [Streett, 1981; Streett, 1982]. Theorem 86 is from [Meyer
and Winklmann, 1982], Theorem 87 is from [Harel and Peleg, 1985], Theorem 88
is from [Harel, 1984], and the axiomatizations of ��� and ��� are discussed in
[Harel, 1979; Harel, 1984].

Dynamic algebra was introduced in [Kozen, 1980b] and [Pratt, 1979b] and
studied by numerous authors; see [Kozen, 1979c; Kozen, 1979b; Kozen, 1980a;
Kozen, 1981b; Pratt, 1979a; Pratt, 1980a; Pratt, 1988; Németi, 1980; Trnkova and
Reiterman, 1980]. A survey of the main results appears in [Kozen, 1979a].

The PhD thesis of [Ramshaw, 1981] contains an engaging introduction to the
subject of probabilistic semantics and verification. [Kozen, 1981d] provided a for-
mal semantics for probabilistic programs. The logic 9����� was presented in
[Feldman and Harel, 1984], along with a deductive system that is complete for
Kozen’s semantics relative to an extension of first-order analysis. Various proposi-
tional versions of probabilistic �� have been proposed in [Reif, 1980; Makowsky
and Tiomkin, 1980; Feldman, 1984; Parikh and Mahoney, 1983; Kozen, 1985 ].
The temporal approach to probabilistic verification has been studied in [Lehmann
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and Shelah, 1982; Hart et al., 1982; Courcoubetis and Yannakakis, 1988; Vardi,
1985a]. Interest in the subject of probabilistic verification has undergone a re-
cent revival; see [Morgan et al., 1999; Segala and Lynch, 1994; Hansson and
Jonsson, 1994; Jou and Smolka, 1990; Baier and Kwiatkowska, 1998; Huth and
Kwiatkowska, 1997; Blute et al., 1997].

Concurrent �� is defined and studied in [Peleg, 1987b]. Additional versions
of this logic, which employ various mechanisms for communication among the
concurrent parts of a program, are also considered in [Peleg, 1987c; Peleg, 1987a].
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