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bstract
D
OArrays of chemical sensors, known as electronic noses, yield a unique pattern for a given mixture of odors. Recently, there has been increasing

nterest in trying to mix odors such as to generate a desired response in the electronic nose. For the time being, this intriguing problem had been
ackled only experimentally with the aid of specific apparatus. Here, we present an algorithmic solution to the problem. We demonstrate the
lgorithm on data that includes mixtures of up to five ingredients.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Sights and sounds were long ago proved amenable to dig-
tal manipulation: storage, compression, and re-formation at
he end user’s site. Olfaction still lags far behind. While
ragrances are developed and manufactured in laboratories
orldwide, their digitization is underdeveloped, and their part

n modern multimedia is limited to a paucity of anecdotal
pplications.

In recent years, we have worked on odor digitization, par-
icularly on odor communication, defined in Harel et al. [1] A
ix-to-mimic algorithm (M2M)2 instructs an output device, the
hiffer, to release an imitation of an odorant3 read in by a remote

nput device, the sniffer, which is to digitize smells in a way that
reserves relevant sensory information. The whiffer contains a
xed set of palette odorants, a technology to mix them accu-
ately and means to release them in precise quantities and with
recise timing. The M2M algorithm instructs the whiffer as to
U
N
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O
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he ratios in which to mix the palette odorants.
While current technology can produce sniffers and whiffers,

nowledge of the sense of smell does not yet allow for full

∗ Corresponding author. Tel.: +972 8 9344 050; fax: +972 8 9344 122.
E-mail address: dharel@weizmann.ac.il (D. Harel).

1 Present address: National Center for Biotechnology Information, National
ibrary of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
2 We uses the acronym MTM in Harel et al. [1], but these days prefer M2M.
3 We use odorant to refer to any distinct odor-stimulus, whether pure com-
ound or mixture.
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evelopment of the M2M algorithm. In Harel et al. [1] we sug-
ested that this should be done by constructing three increasingly
omplex sub-algorithms, the third of which constitutes the full
lgorithm:

Within-sniffer mix-to-mimic (WSM2M), or “fooling a snif-
fer”. Given a sniffer-generated digital fingerprint (pattern) of
an odorant, compute the palette mixture whose pattern, as gen-
erated by the same sniffer, best resembles the original pattern.
This is a sniffer-limited version of the M2M algorithm.
Between-sniffers mix-to-mimic (BSM2M), or “fooling a dif-
ferent sniffer”. Given the fingerprint of an odorant generated
by sniffer S1, compute the palette mixture whose pattern, as
generated by sniffer S2, best resembles the pattern S2 would
have generated for the original odorant. This requires map-
ping one sniffer’s fingerprints to another’s, which could be
very complicated when the sniffers are of different nature.
Full mix-to-mimic (M2M), or “fooling the human brain”.
Given the sniffer-generated fingerprint of an odorant, com-
pute the palette mixture which, sniffed by a human, generates
a sensation that best resembles the one perceived by sniffing
the input odorant. This requires translating digital finger-
prints to perception-related “patterns”. We proposed [1] that
this will be done using human panels and working within a
psychophysical perception space.
or synthesis for electronic noses, Sens. Actuators B: Chem. (2007),

This paper describes the work we have done in constructing 59

complete WSM2M algorithm designed for an electronic nose 60

eNose) as the sniffer. 61
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Finding a mixture that elicits a desired response has already
aised interest in the eNose community. The best solution to
ate [2,3] involves a special apparatus, called an active odor
ystem, used to iteratively adapt the concentration of the palette
dorants. Although this seems to work well when given prior
nformation on the mixture ingredients, it requires a measure-

ent at each iteration, which limits its utilization. Our solution is
urely computational, requiring only an input pattern and some
re-measured properties of the palette odorant.

. Electronic noses

The desired properties of an ideal sniffer are discussed in
etail in Harel et al. [1]. These can be roughly summarized as
he ability to translate chemical information into numbers in a
ufficiently discriminatory fashion, and in such a way that the
ngerprints will show some correlation with the human smell
erception. As can be expected, existing sniffers are not ideal,
nd we have chosen to work with devices known collectively as
lectronic noses (eNose) that seem to have a set of particularly
ppealing properties.

An eNose is an analytic device that hosts a multiplicity of
on-specific chemical sensors that interact with a broad range
f chemicals with varying strengths, eliciting unique response
atterns. The first eNoses were developed in the early 1980s
4], and since then many different types have been designed,
mploying a variety of sensor technologies.

The fact that the biological smelling system also relies on an
rray of non-specific receptors [5] gives hope that we may be able
o find significant relationships between the biological nose and
ts electronic counterpart. Indeed, in Harel et al. [1] we present
vidence of the existence of such relationships. Additional sup-
ort is discussed briefly in Section 6. Moreover, elsewhere we
ave shown that a model originally suggested to explain odor
nformation processing in the brain [6] can be easily adapted to
Noses, yielding an algorithm that can recognize odorants and
stimate their concentration [7].

Electronic noses have been designed, first and foremost, to
eal with the classification problem, which is the task of deter-
ining the identity of incoming stimuli. Indeed, eNoses seem

o fulfill their designation pretty successfully in a wide range of
pplications. For example, they are used for medical diagnostics
8] for environmental control [9] and for quality assessment of
ood products [10,11].

Dealing with mixtures, e.g., revealing their chemical makeup
as never intended to be within the capabilities of eNoses. For
ost stimuli, there is nothing in the pattern elicited by a mix-

ure that can be used to discern it from a pattern elicited by a
ure compound. Exactly the same methodology should be used
n order to train an eNose to discriminate between methanol
nd ethanol [12] or to discriminate between different types of
live oils [13]. Traditionally, indeed, eNoses are seldom used
or mixture analysis. One typical exception is the case when
U
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wo mixtures are formed by taking different ratios of the same
ngredients, thus producing mixture-dependent response pat-
erns. This can be used to design an algorithm that estimates

ixing ratios in a mixture whose ingredients are known [14].
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An odor communication system [1] is not required for mix-
ure composition analysis either. However, such a system must
e able to accomplish the inverse task—finding an appropriate
ixture from within given ingredients that yields some desired

ignal. This, of course, requires understanding how patterns of
ixtures are related to those of the individual ingredients.
In order to formally express such relations, we introduce some

otation. Let (o; c) stand for a pure chemical o in concentration
. When measured by an eNose, this translates into a list of

features, thus giving rise to an m-dimensional response vec-
or, r(o; c). Each feature changes in a way dependent on the
oncentration, a function that we shall dub the response curve.
he m response curves of an odorant o completely characterize

he eNoses behavior with respect to this odorant. That is, given
he odorant concentration, the response vector can be predicted
traightforwardly from these curves.

Let r(o1, . . ., on; c1, . . ., cn) be the eNose response to the
ixture of the pure chemicals o1, . . ., on in concentrations c1,

. ., cn, respectively. In general, even if we know all the response
urves of all the pure chemicals, it is not straightforward to tell
hat r(o1, . . ., on; c1, . . ., cn) would be, since the response curve
f a given stimulus is modified in the presence of other stimuli.
n previous work [15] we experimentally examined the relations
etween the response vector of the mixture and the response
ectors of the pure ingredients. We were able to show that the
inear law of mixtures:

(o1, . . . , on; c1, . . . , cn) = α1r(o1; c1)+ · · · + αnr(on; cn),

(1)

here α1, α2, . . ., αn are constants that we call the mixing
oefficients, describes these relations fairly precisely, with the
eviation between the measured mixture response vector and
he predicted one rarely exceeding a few percent. The mix-
ng coefficients are, obviously, palette-dependent, and should
e determined by a series of preliminary experiments that have
o be carried out once for each given palette. In Carmel et al. [15]
e describe these experiments, and show how to use them for

omputing the mixing coefficients. Hereinafter, we shall assume
hat the mixing coefficients have already been computed for each
alette that we use.

. The within-sniffer mix-to-mimic algorithm

Let the palette of a whiffer consist of n palette odorants t1,
. ., tn. Given any odorant (o; c), we are interested in finding the
ixing vector v = (v1, . . . , vn)T that is the solution of

=
{

argmin
v

||r(t1, . . . , tn; v1, . . . , vn)− r(o; c)||
such that vi ≥ 0 ∀i.

(2)

or mathematical tractability we shall hereinafter assume the L2
orm.
or synthesis for electronic noses, Sens. Actuators B: Chem. (2007),

Had all the response curves been linear, this problem is readily 163

olved. To this end, let the response curve of the jth feature to 164

he ith palette odorant be rj(ti; vi) = βjivi. Substituting this in 165

he linear law of mixtures (1) and using (2), v is found to be a 166
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olution of

=
{

argmin
v

||Av− r(o; c)||
such that vi ≥ 0 ∀i,

(3)

here A is the m× n matrix Aij = αjβij . This is a well-studied
ptimization problem, known as the non-negative least squares
16].

In reality, however, the response curves are rarely linear [7].
et, we can still use the linear paradigm to iteratively solve

he non-linear problem. Assume, then, that the response curves
j(ti; vi) are non-linear, and that we have achieved, in the pth iter-
tion, an approximation vp of the mixing vector. Let us define
he linear response curves r

p
j (ti; vi) as the first order Taylor

xpansion of r
p
j (ti; vi) around v

p
i , i.e.,

p
j (ti; vi) = rj(ti; v

p
i )+

(
drj(ti; vi)

dvi

)
v
p

i

(vi − v
p
i ).

sing the notation β
p
ji = (drj(ti; vi)/dvi)vp

i
, the response of the

alette mixture can consequently be approximated by

rj(t1, . . . , tn; v1, . . . , vn)

∼= α1r
p
j (t1; v1)+ · · · + αnr

p
j (tn; vn)

= α1(rj(t1; vp
1 )+ β

p
j1(v1 − v

p
1 ))+ · · ·

+αn(rj(tn; vp
n )+ β

p
jn(vn − vp

n )). (4)

et us now define the target vector as

p = r(o; c)− [α1r(t1; vp
1 )+ · · · + αnr(tn; vp

n )], (5)

hich is really the error that one makes in reproducing r(o; c)
y using the mixing vector vp. Then, the optimization problem
educes to dvp = argmindv||Ap dv− τp||, where Ap

ij = αjβ
p
ij

nd dv = v− vp. The idea is, of course, to find a correction to
such as to reduce the previous error. Such a scheme requires

sing small correction in each iteration, leading to the following
inimization problem:

vp = argmin
dv

||Ap dv− γτp||, (6)

here 0≤ γ ≤ 1 is a parameter of the algorithm. Having found
vp, we find the improved approximation v

p+1
i = max(vp

i +
v
p
i , 0). Note that (6) is solved using ordinary least squares and

ot non-negative least squares as in Eq. (3). The updated target
ector is then

p+1 = r(o; c)− [α1r(t1; vp+1
1 )+ · · · + αnr(tn; vp+1

n )].

he actual value of γ is not very important, since if in a
ertain iteration we are not able to reduce the error, that is,
f ||τp+1||> ||τp||, we repeatedly substitute γ← γ/2 and re-
ompute the iteration until the error is reduced.

The linear solution is also used to initialize the iterative pro-
U

Please cite this article in press as: L. Carmel, D. Harel, Mix-to-mimic od
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ess. To better understand how this is done, we elaborate on how
he response curves are computed [15]. For each palette odor-
nt i, we take a series of K known concentrations, v1

i , . . . , v
K
i ,

nd measure for each the response curves rj(vk
i ), j = 1, . . ., m,

u
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= 1, . . ., K. The non-linear response curves are interpolated
rom the measured points using cubic spline interpolation. But,
or purposes of initialization, we assume a linear response curve,
j(ti; vi) = β0

j (i)vi, and find the coefficients β0
j (i) as the solution

f the univariate least squares problem:

0(i) = argmin
β

K∑
k=1

(βvk
i − rj(ti; v

k
i ))

2
. (7)

he initial approximation v1 of the mixing vector is just the
on-negative least squares solution of Eq. (3), in which we use
ji = β0

j (i).
The full non-linear WSM2M algorithm is summarized in

lgorithm 1. Note that convergence to the global minimum
annot be guaranteed. However, our experience is that the non-
inear response curves are approximated pretty well by their
inear counterparts, resulting in rather smooth target functions
uring the minimization process. Hence, in practice, the global
inimum is often found.

lgorithm 1. The full (non-linear) WSM2M algorithm

unction optimize ({r(ti; vi)}ni=1, α, r(o; c), ε, γ0)
{r(ti; vi)}ni=1 is the set of n response curves, where
r(ti; vi) = (r1(ti; vi), . . . , rn(tn; vn))T

α is the vector of mixing coefficients
r(o; c) is the measured response of the incoming odorant
ε is the tolerance
γ0 is the step size

initialization
or i = 1 to n

β0(i)← solution of (7)
for j = 1 to m

Aji ← αiβ
0
ji

end for
nd for
1← non-negative least squares solution of ||Av− r(o; c)||.

iterations
← 0
epeat

p← p + 1
γ← γ0

% compute linear coefficients and target vector
τ← r(0; c)
for i = 1 to n

for j = 1 to m
β

p

ji ← (drj(ti; vi)/dvi)vp

i

A
p

ji ← αiβ
p

ji

r
p

j (ti; vi)← rj(ti; v
p

i )+ β
p

ji(vi − v
p

i )
end for
τp ← τp − αir(ti; v

p

i )
end for
% find least squares solution
repeat

dvp ← argmindv||Ap dv− γτp||
vp+1 ← max(vp + dvp, 0)
or synthesis for electronic noses, Sens. Actuators B: Chem. (2007),

τp+1 ← r(o; c)− α1r(t1; vp+1
1 )− · · · − αnr(tn; vp+1

n )
γ← 1/2γ

until ||τp+1||≤||τp||
ntil (||τp|| − ||τp+1||)/||τp||< ε

229
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Table 1
Pure chemicals and their concentrations (data taken from Carmel et al. [15])

Chemical (abbreviation) Concentrations measured (molar fraction)

1-Methylpyrrole (M) 0.0908 0.1665 0.2306 0.2855 0.3331 0.3747
1-Propanol (P) 0.1055 0.1909 0.2614 0.3206 0.3710 0.4144
2,3-Butanedione (B) 0.0918 0.1316 0.1681 0.2016
2,6-Dimethylpyridine (D) 0.0711 0.1328 0.1867 0.2344 0.2768 0.3147
2-Methyl-2-pentenal (MP) 0.0721 0.1345 0.1890 0.2371 0.2797 0.3179
4-Methylanisole (MA) 0.0657 0.1233 0.1742 0.2195 0.2601 0.2967
Amyl formate (A) 0.0632 0.0919 0.1189 0.1443 0.1683 0.1910
Butyl butyrate (BB) 0.0983 0.1406 0.1791 0.2142 0.2465
Isoamyl formate (I) 0.0633 0.0920 0.1190 0.1445 0.1685 0.1912
T
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olar fractions are measured in PEG-400 solution. The abbreviated names are

. Materials and methods

We have been using the MosesII eNose [17], hosting eight
uartz-microbalance (QMB) sensors, which are well known for
he fact that their response curves deviate not-too-strongly from
inear [18,19]. We define the response of a sensor in the tradi-
ional way by taking the difference between the maximum of the
ignal and its baseline. This eNose is designed for precise labora-
ory work, obtaining its input from an accompanying headspace
ampler (HP7694). The sampler prepares all samples at the same
emperature and pressure, and injects them at the same rate into
he eNose. In all our experiments, the samples were inserted into
he headspace sampler in 20-ml vials. Then, the headspace sam-
ler heated them to 40 ◦C and injected the headspace content
nto the eNose in a flow of 25 ml/min. The injection lasted for
0 s, and was followed by a 15 min purging stage using synthetic
ir. Each stimulus was measured in batches, with a single batch
ontaining several successive measurements.

We collected two different datasets, already used to infer the
aws of mixture and described in Carmel et al. [15]:

The pure odorants dataset was constructed from 10 pure
chemicals, each measured in six different concentrations4;
see Table 1. The concentrations were chosen in order for all
the chemicals to have comparable ranges of response. Each
sample was diluted in polyethylene glycol 400 (PEG-400),
and the concentrations were measured in molar fractions. A
chemical in a certain concentration was measured in batches
of at least four successive measurements. In total, this dataset
consists of 269 measurements.
The mixtures dataset was used to test the WSM2M algorithm.
It consisted of binary, trinary, quaternary and quinary mix-
tures of the above palette odorants, as listed in Supplementary
Tables S1 and S2. Each of the mixtures was diluted in PEG-
400 to obtain six different total concentrations for the same
mixing ratios (not shown in tables). Each specific mixture
U
N
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dilution was measured in batches of about seven successive
measurements. All in all, there were 27 binary mixtures (1095
measurements), 10 trinary mixtures (409 measurements), 11

4 Except for 2,3-butanedione, which was measured only in four concentra-
ions, and butyl butyrate, which was measured in five concentrations.

297

c 298

c 299

p
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F0.1430 0.1726 0.2002 0.2260

xtensively throughout the paper.

quaternary mixtures (452 measurements), and 1 quinary mix-
ture (42 measurements). In total, there were 49 different
mixtures (each in six different total concentrations) and 1998
measurements.

We measured concentrations as molar fractions in PEG-400
olution. However, for each compound this number is propor-
ional to its headspace concentration, as explained in Carmel et
l. [15]. These data were used in our previous work to compute
he mixing coefficients α for each mixture of palette odorants.

. Results

.1. Definition of prediction error

We have tested our algorithm by feeding a known mixture of

alette odorants v0 = (v0
1, . . . , v

0
n)

T
into our eNose, obtaining

he response vector r. Then, we used the WSM2M algorithm to
ompute a mixing vector v that would best reconstruct r. The
easibility of our algorithm can be appraised by comparing v0

ith v̂.
Such a comparison, however, must be carried out with cau-

ion, as a naive straightforward approach can be misleading.
his is exemplified in Fig. 1a, where actual concentrations are
ompared to the predicted ones for each palette odorant in a qua-
ernary mixture. At first glance, it looks that the algorithm does
good job with respect to 1-methylpyrrole and amyl formate,
moderate job for 1-propanol, and a terrible job for 2-methyl-
-pentenal. Such a conclusion is highly misleading. For this
articular palette, the mixing coefficients are α = (1.23, 0.3,
0.003, 1.8)T, suggesting that 2-methyl-2-pentenal has a neg-

igible effect on the response vector of the mixture, 1-propanol
as a moderate effect, and 1-methylpyrrole and amyl formate
ave the largest effect.

We therefore define the prediction error of palette odorant
oncentrations in a way that accommodates the mixing coeffi-
ients. Keeping all concentrations fixed except for that of the ith
or synthesis for electronic noses, Sens. Actuators B: Chem. (2007),

alette odorant, we get from (1): 300

v̂i = ||�r(t1, . . . , tn; v̂1, . . . , v̂n)||
|αi|||dr(ti; v̂i)/dv̂i|| . (8) 301
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Fig. 1. A portion from a series of experiments with a quaternary palette. The
palette consists of 1-methylpyrrole, 1-propanol, 2-methyl-2-pentenal and amyl
formate, denoted by blue, cyan, yellow and red, respectively. (a) Actual concen-
t
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does not follow this trend, giving highest median value of 4.55%. 349
C
O

R
R

E
Crations taken (circles) vs. predicted concentrations (diamonds); (b) prediction

rrors. (For interpretation of the references to colour in this figure legend, the
eader is referred to the web version of the article.)

his equation estimates the uncertainty in v̂i given the uncer-
ainty in the response vector r(t1, . . . , tn; v̂1, . . . , v̂n). Here, αi

s known, and ||dr(ti; v̂i)/dv̂i|| is readily computed from the
esponse curves of the pure palette odorants. The standard devi-
tion of a general response vector in our eNose is estimated to be
n the range of 5–10% of the average response.5 So, to estimate
he uncertainty Δv̂i, we have taken

r(t1, . . . , tn; v̂1, . . . , v̂n) ∼= 0.075r(t1, . . . , tn; v̂1, . . . , v̂n).

o account for the uncertainty in v̂i, we define the “distance”
etween v̂i and v0

i to be the Mahalanobis distance |v̂i − v0
i |/Δv̂i.

onsequently, we define the prediction error for the ith palette
dorant as
U
N
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i = 2|v̂i − v0
i |

�v̂i(v̂i + v0
i )

. (9)

5 Private communication with MoTech GmbH, which is at the time of writing
art of AppliedSensors GmbH; see http://www.appliedsensor.com.
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ig. 1b plots the prediction errors of the same data shown in
ig. 1a. Now, the prediction error of 2-methyl-2-pentenal is
early zero despite the relatively large values of |v̂i − v0

i |. We see
hat in most of the experiments the prediction errors are below
.6%.

.2. Mixture reconstruction

In the first set of experiments, we used many different palettes
7 binary, 10 trinary, 7 quaternary and 1 quinary). For each
alette, we introduced to the eNose a known mixture of all the
alette odorants. Fig. 2 shows an example of such an exper-
ment with a binary palette in which 162 different mixtures
f the palette odorants were introduced to the eNose. In the
verall, WSM2M predicts the concentrations rather accurately,
lthough some deviations are observed for 2,3-butanedione in
xperiments 84–122. Most of the time the prediction errors are
ell below 5%, with a maximum of 8.9% for 2,3-butanedione

nd 10.9% for amyl formate.
The results of the entire experiment can be summarized by the

ean value of the prediction error, in this case 0.71% (1.52%)
or 2,3-butanedione, and 1.47% (2.19%) for amyl formate, with
tandard deviations in parentheses. The mean, however, is not
good measure of central tendency, since the distribution of

rediction errors can be seen to have a strong positive skew-
ess. Hence, the median would be a more stable measure of
entral tendency than the mean. In this particular example, the
edian values are 0.19% for 2,3-butanedione, and 0.59% for

myl formate. Hereinafter, we shall report median prediction
rrors only.

Median values of the prediction error for the entire set of
xperiments are shown in Fig. 3. The highest median values for
inary, trinary and quaternary palettes are 1.68%, 6.81% and
or synthesis for electronic noses, Sens. Actuators B: Chem. (2007),

ig. 2. Prediction error for a palette comprising 2,3-butanedione (blue) and amyl
ormate (red). (For interpretation of the references to colour in this figure legend,
he reader is referred to the web version of the article.)

dx.doi.org/10.1016/j.snb.2007.03.022
http://www.appliedsensor.com/
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F e WSM2M algorithm was applied to (a) 7 binary palettes, (b) 10 trinary palettes, (c)
7 n mixtures of the palette odorants.
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Table 2
Histogram of median values of prediction error for palette odorants that partic-
ipate in the mixture that was actually introduced to the eNose

Palette 0–5% 5–10% 10–15% 15–20% 20+%

Trinary 15 (94%) 0 1 (6%) 0 0
Quaternary 29 (88%) 3 (9%) 0 1 (3%) 0
Quinary 7 (87.5%) 1 (12.5%) 0 0 0
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t 367

r 368

v 369

p 370
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Cig. 3. Median values of prediction error, computed for each palette odorant. Th
quaternary palettes and one quinary palette (see text), and tested against know

owever, these data should be interpreted with caution due to
he single palette used. Recall our mentioning earlier that the
eproducibility of our eNose is estimated to be in the range of
–10%, and thus the performance of WSM2M in reconstructing
ixtures of the palette odorants seems to be in agreement with

his estimate.

.3. Partial mixtures reconstruction

In a second set of experiments we used trinary, quaternary and
uinary palettes, but used mixtures made of a part of the palette
dorants. This allows one to estimate the amount of unnecessary
ngredients WSM2M puts into its predicted mixture. The median
alues of the prediction error are shown in Fig. 4.

The results suggest that we should examine separately the
U

Please cite this article in press as: L. Carmel, D. Harel, Mix-to-mimic od
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rediction error of components present in the mixture (present-
omponents) and that of components that are absent from the
ixture (absent-components). Tables 2 and 3 show the differ-

nt quality of prediction in these two groups. Application of

p
p
t
b

ounts are shown in each entry, with the corresponding percentage in parenthe-
es.

he unpaired two-sample t-test (P < 0.0001), and the Wilcoxon
ank sum test (P = 0.0005) shows that the distribution of median
alues of prediction error is significantly different between
resent-components and absent-components.

The WSM2M algorithm seems to work pretty well on
or synthesis for electronic noses, Sens. Actuators B: Chem. (2007),

resent-components, with only two cases for which the median 372

rediction error exceeded 10%. However, some “noise” is added 373

o the predicted mixtures in the form of the exaggerated contri- 374

ution of absent-components. 375

dx.doi.org/10.1016/j.snb.2007.03.022
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Fig. 4. Median values of prediction error, computed for each palette odorant. The WSM2M algorithm was applied to (a) 8 different combinations of partial trinary
palettes, (b) 13 different combinations of partial quaternary palettes, and (c) 3 different combinations of partial quinary palettes. Those palette odorants that are
missing from the tested mixtures are encircled.

Table 3
Histogram of median values of prediction error for palette odorants that are absent from the mixture that was actually introduced to the eNose

Palette 0–5% 5–10% 10–15% 15–20% 20+%

Trinary 4 (50%) 1 (12.5%) 0 2 (25%) 1 (12.5%)
Q
Q

C es.
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Ruaternary 8 (44%) 5 (28%)
uinary 3 (43%) 2 (29%)

ounts are shown in each entry, with the corresponding percentage in parenthes

. Discussion

Ultimate validation of the WSM2M algorithm would involve
oing the following for a series of arbitrary odorants. For an
dorant eliciting response r from the eNose, use the algorithm
o predict the palette mixture v̂ for r. Introduce v̂ to the eNose
nd compare the response to r. Unfortunately, for various tech-
ical/logistic reasons our laboratory work had to be terminated
efore we were able to do this. As a second best approach,
U
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e used the results we had for partial mixtures of the palette
dorants to draw our conclusions.

Algorithmic reconstruction of mixtures of all palette odor-
nts – also investigated by Nakamoto et al. [2,3] – seems to

o
o
b
s

3 (17%) 0 2 (11%)
0 1 (14%) 1 (14%)

ork quite well. As the palette size increases, the mean of the
edian prediction errors goes up too; see Supplementary Fig.
1. This is probably qualitatively true, but we cannot draw any
uantitative conclusions, since the number of palette sizes we
hecked is small, and only a few experiments were carried out
sing the quinary palette. We anticipate that the curve depicted
n the figure will eventually converge as the palette size grows
hopefully, to a sufficiently small prediction error).

For odor communication recall that the palette is chosen only
or synthesis for electronic noses, Sens. Actuators B: Chem. (2007),

nce (or once per type of application), and we have full control 397

ver its contents. The average quantities quoted above can thus 398

e taken as indicators only, since individual palettes can deviate 399

ignificantly from them, for better or for worse. For example, 400

dx.doi.org/10.1016/j.snb.2007.03.022
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ig. 3 shows that while the binary palette D:BB is particularly
bad”, palettes A:T and M:D are “good”. Similarly, the trinary
alettes B:A:T, B:I:T and P:D:BB look much better than other
rinary palettes, having median prediction errors of less than 1%
or all components. The same applies to quaternary mixtures

:P:MP:A and P:MA:I:T, which seem to exhibit particularly
ood reconstructions; all median prediction errors are well under
%. Thus, specific palettes show better performance than aver-
ge performance of same-size palettes, so these are the ones that
hould be used in an odor communication system.

There are probably numerous factors determining the per-
ormance level of a particular palette. For example, a strong
non-linear) interaction between palette’s odorants is expected
o decrease the performance. In any case, for WSM2M we will
se those palettes that show, empirically, the lowest prediction
rrors. For the full algorithm, M2M, additional considera-
ions might apply, such as different detection thresholds of the
omponents, different levels of chemical stability, and the psy-
hophysical impact of the odors on human sniffers (see also
iscussion in Ref. [15]).

Reconstructing mixtures for only some of the palette
dorants is more difficult. We have demonstrated that the
econstructing process differs for present-components and
bsent-components (noise), being much worse for the latter.
till, the logic above applies here too, since susceptibility of

he algorithm to noise is palette-dependent: The quaternary
ixture P:D:MA:BB participated in 5 different experiments

totaling 14 present- and 6 absent-components), but only on
ne occasion showed a median prediction error greater than
0% (Fig. 4).

For each major application the design of the palette should be
ade only once, based on experiments like the ones shown here,

ut extended to larger palettes. For the palette chosen, another
omprehensive set of experiments, like the ones described in
armel et al. [15], should be carried out, to determine the mixing
oefficients and response curves of the palette odorants.

This concludes our efforts for a fully functioning within-
niffer M2M algorithm. However, recall that it is but the first
f three increasingly complex algorithms required for the full
dor communication system of Harel et al. [1].

We would like to briefly describe our work on the other two
lgorithms. The BSM2M algorithm adds a further complication,
equiring mapping response vectors in one eNose to their cor-
esponding response vectors in a second one. As the two might
eature sensors of completely different nature, this is far from
rivial. We have shown the feasibility of such a mapping using
ne eNose based on quartz crystal microbalance sensors and
nother on conducting polymers. We found that while the global
U
N

C
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opologies of the feature spaces are very different, local topolo-
ies are remarkably preserved [20]. This enabled us to design
local mapping technique, tessellation-based linear interpola-

ion, which yielded an accurate mapping. The full M2M scheme

[
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equires a more difficult mapping, from response vectors to per-
eptions, whose existence has not yet been proven, although
vidence shows that such a mapping does exist [1].
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