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Abstract

The Lorentzian model is a powerful feature extraction technique for electronic noses. In a previous work, it was applied to single-peak transient
signals and was shown to achieve lower classification error rate than other feature extraction techniques. Here, we generalize the Lorentzian model
by showing how to apply it to transient signals that are comprised of more than a single peak. The model is based on a fast and robust fitting of
the measured signals to a physically meaningful analytic curve. We show that this model fits equally well to sensors of different technologies and
embeddings, suggesting its applicability to a diverse repertoire of sensors and analytic devices.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Retrieving information from large datasets usually involves a
feature extraction stage, aimed at reducing data dimensionality.
A good feature extraction technique is measured by how well
the condensed representation preserves the information content
of the original data. Electronic noses (or, in short, eNoses) are
analytic devices that play a constantly growing role as general
purpose detectors of vapor chemicals [5]. The main component
of an eNose is an array of non-specific sensors, i.e., sensors that
interact with a broad range of chemicals with varying strengths.
Correspondingly, an analyte stimulates many of the sensors in
the array and elicits a characteristic response pattern.

The sensors inside an eNose are made of diverse technolo-
gies. Depending on the type of sensor, a certain physical property
is changed as a result of an exposure to gaseous analytes. Dur-
ing the measurement process, a signal is obtained by constantly
recording the value of this physical property. A typical eNose
signal is comprised of a few hundred measured values per sen-
sor, thus giving rise to a rather large dataset. A preceding stage
of feature extraction is therefore almost mandatory. The most
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commonly used methods (see examples in Fig. 1) capture only a
portion of the information contained in the signals. Even though
these methods are satisfactory for some applications, it is gen-
erally accepted that performance can be enhanced by the use of
more optimal methods.

One such method, the Lorentzian model, was suggested in [1].
Additional proposals can be found, e.g., in [4]. The Lorentzian
model is based on fitting the measured signal to an analytic curve,
developed using simple assumptions regarding the measurement
system and the interaction between an analyte and the sensors.
The resulting feature extraction technique uses four parameters
to characterize each signal, and was shown to significantly out-
perform other techniques [1]. A demonstration of the fit between
the measured signal and the analytic one is shown in Fig.2.

The Lorentzian model assumes single-peak transient signals
(see Fig. 2), and is consequently appropriate for ordinary sig-
nals obtained by transient measurement. In practice, however,
measured response signals occasionally exhibit abnormal signal
shapes, thus posing difficulties for the Lorentzian technique. We
may classify the abnormal signals into two categories:

(1) Corrupted signals: Occur when the sensor (or its supporting
electronics) fails at a certain time during the measurement
and then recovers and continues measuring; see Fig. 3a, b
and d. Corrupted signals can be further classified into three
different sub-types, see [2].

(2) Multi-peak signals: Occur when the signal exhibits more
then one significant peak; see Fig. 3c and d.

0167-0987/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
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Fig. 1. Definition of the four most popular features in transient signals. (a) The difference between the peak and the baseline, ψmax
i . (b) The area under the curve, Ai.

(c) The area under the curve left of the peak, Amax
i . (d) The time from the beginning of the signal to the peak Tmax

i .

In its original form, the Lorentzian feature extraction tech-
nique cannot be applied to abnormal signals. Nevertheless, it
was later shown that damaged parts of corrupted signals can
be restored [2], making such signals appropriate for application
of the Lorentzian feature extraction technique. Still, multi-peak
signals kept defeating most feature extraction techniques, and
were usually left outside of the analysis. In this paper we aim
at changing this situation by suggesting a generalization of the
Lorentzian feature extraction technique, enabling it to be applied
to multi-peak signals as well.

To this end, it is beneficial to interpret a multi-peak signal as if
each peak is produced by a different subset of components of the
incoming stimulus. We can further assume that each individual
peak has the typical Lorentzian shape described in [1], such that
the overall signal is just a superposition of Lorentzian signals.
We show that such a model yields excellent fits to measured
signals, and gives rise to an informative and powerful feature
extraction technique.

Our work renders the Lorentzian feature extraction technique
applicable to any kind of transient signal obtained in the labo-
ratory. In contrast, most feature extraction techniques that we
are aware of fail in at least one of the abnormal signal classes.

Fig. 2. A typical signal (cis-3-hexenyl acetate) measured with a QMB sensor
and the result of using the Lorentzian model.

This fact further broadens the scope and applicability of our
method.

2. Experimental

We have tested our algorithm using data collected by the
MOSESII eNose [7] with two sensor modules: an eight-sensor
quartz-microbalance (QMB) module, and an eight-sensor metal-
oxide (MOX) module. The samples were put in 20-ml vials in
an HP7694 headspace sampler, which heated them to 40 ◦C and
injected the headspace content into MOSESII. There the analyte
was first introduced into the QMB chamber, whence it followed
to the 300 ◦C heated MOX chamber. The injection lasts 30 s, and
is followed by a 15 min purging stage using synthetic air.

The dataset comprised 70 volatile odorous pure chemicals,
intentionally chosen from many different chemical families, so
that they would represent a broad range of possible stimuli. Each
chemical was measured in batches, with a single batch contain-
ing at least seven successive measurements. In total, we per-
formed 675 measurements. Of the 70 chemicals measured, 54
had their sensors properly responding; whereas 16 (∼20%) had
at least one signal with more than a single peak. Interestingly, the
multi-peak phenomenon is twice as abundant in QMB signals
than in MOX.

3. The generalized lorentzian model

As mentioned earlier, we adopt the interpretation that each
peak in the signal ensue from a different subset of mixture
components. Theses subsets are probably characterized by sig-
nificantly different volatilities, causing them to exhibit a kind
of chromatographic effect in their path through the eNose’s
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Fig. 3. Abnormal signals. (a) A failure in a measurement. Note that the corruption is only temporary, and afterwards the signal resumes its typical behavior. (b)
A failure in a measurement, realized as a Plateau indicating electronic saturation of the measurement system. Again, after a while, the signal resumes its typical
behavior. (c) A double-peak signal. (d) A measurement exhibiting all kinds of phenomena—failure, saturation and double-peak.

pipeline. In fact, each such subset of the mixture components
need not be a pure chemical, and may be a mixture in itself.

For simplicity, we limit the following discussion to the case
of two peaks, but the results can be readily generalized to more
peaks. Interestingly, in our case, 99.9% of the multi-peak signals
obtained were actually double peaks, so that only in a handful
of cases did we have to deal with more than two peaks.

In [1] a simple physical description of the measurement sys-
tem was used to derive the analytic expression for the shape of
the response signal, explicitly given by

L(t; θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, t < t0,

βτ tan−1
(
t−t0
τ

)
, t0 ≤ t ≤ t0 + T,

βτ
[
tan−1

(
t−t0
τ

)
− tan−1

(
t−t0−T

τ

)]
, t > t0 + T.

(1)

Here, t0 is the time when the signal starts to rise, T the time
interval between the signal rise and its peak, τ a characteristic

of the signal’s decay time, β relates to its amplitude, and θ =
{β, τ, t0, T } represents the entire set of parameters.

A linear decomposition of two Lorentzian signals would then
be

L(t; θ) = L1(t; θ1) + L2(t; θ2), (2)

where L1 and L2 are the Lorentzian signals describing each of
the peaks, and θ = θ1 ∪ θ2, θi = {βi, τi, t0i , Ti}, i = 1, 2, is the
set of all parameters. It is hereinafter assumed that L1 is the
earlier (left hand-side) peak, while L2 is the later (right hand-
side) peak. Our assumption states that L1(t; θ1) and L2(t; θ2)
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depict the Lorentzian signals that would have been obtained had
we measured the low-volatiles and the high-volatiles separately.

3.1. Implementation

The parameter set θ is found by fitting the analytic model
(2) to the measured signal. Since this function is not every-
where differentiable, we could not use gradient based methods
for the curve fitting, and preferred the Matlab function fmin-
search, which uses the simplex method [6]. It is the custom in
curve fitting to minimize the sum of squared differences between
the measured signal and the analytic one. However, since a typi-
cal transient eNose signal has a relatively long decaying part (in
most cases more than half of the signal duration, see example in
Fig. 2), we used a weighted cost function for the minimization,
giving the points before the decay part twice the weight.

To this end, we have divided the signal s into two parts s1 and
s2, where s1 represent the values of the signal from the start until
the decay of the second signal and s2 represent the rest of the
signal. We then compute the best-fitting single-peak Lorentzian
model, and, based on this function we define l1 and l2, where l1
is the calculated Lorentzian function for the first signal part and
l2 for the remaining part. The weighted cost function formula
was therefore,

w = 2(s1 − l1)2 + (s2 − l2)2.

This modification significantly improves the convergence rate
of the curve fitting algorithm.

The speed of convergence and accuracy of the solution are
susceptible to the initial values that we assign to the different
parameters. As all the parameters are physically meaningful,
we are able to supply a rather accurate initial guess, based on
the following procedure:

• Estimating Ti and t0i for i = 1, 2. Due to the superimposition
of the two signals, finding Ti and t0i is somewhat subtle. In
the following, t and h stand for time and signal height, re-
spectively. The first step is to find the rising time of the entire
signal, t1, which is assumed to be the rising point ofL1(t; θ1).
Then, we find the points where the first and second signals
obtain their maximum,

Pmax
i = (tmax

i , hmax
i ), i = 1, 2.

Clearly, these maximum points are not identical to the maxi-
mum points of L1 and L2. These, as well as the rising point
of the second signal, are inferred from the a simple linear
extrapolation procedure shown in Fig. 4. Using this linear
extrapolation we find that the value of L1 at tmax

2 and the
value of L2 at tmax

1 . We mark these points as Ei

Ei = (tmax
i , nsi), i = 1, 2,

Table 1
Initial values used for τ1 and τ2 that are used as inputs for the curve fitting process

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 S1 S2 S3 S4 S5 S6 S7 S8

τ1 10 10 5 5 10 7 7 5 40 20 50 40 30 40 30 50
τ2 70 100 40 80 120 166 90 80 93 250 250 250 200 150 200 300

Fig. 4. Extrapolating the original maximum values. The lengths of the blue lines
are the new extrapolated maximum values.

where nsi is the extrapolated height of Li for i = 1, 2. The
new maximum values are calculated by subtracting the ex-
trapolated pointsEi from the current maximum pointsPi (see
Fig. 4).

• Estimating τi for i = 1, 2. We have estimated τ1 and τ2 fol-
lowing the same strategy as in [1], namely averaging over
approximated results from the entire dataset. The results for
each of the 16 sensors are given in the Table 1. It should be
noted that the estimation of τi is data-specific, and the values
in Table 1 will have to be recomputed for any dataset with is
essentially different from ours.

The decay time of the second signal is always significantly
larger (signifying a slower decay) than that of the first sig-
nal. This can be clearly seen both from the table and from
the example given in Fig. 3c and d. This difference in de-
cay rates can be explained by the fact that the second signal
corresponds to a heavier stimulus, resulting in slower rise
time and decay time. Note that τ1 values are not the same
as the ones we used in [1]. This is because the decay of the
lighter signal is slowed due to the presence of the second
signal.

• Estimating βi for i = 1, 2. For βi we use the same formula as
in [1],

βi = smax
i

τi tan−1(Ti/τi)
, i = 1, 2.

4. Results

A sense of how well is the fit that we get can be found in
Fig. 5, which shows two examples of generalized Lorentzian
fits to measured signals.
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Table 2
Averages and medians of the R2-test, applied to our curve fitting process, for
theo analytic models

Sensor Lorentzian Exponential

Average Median Average Median

Q1 0.9943 0.9954 0.9901 0.9915
Q2 0.9927 0.9929 0.9898 0.9910
Q3 0.9937 0.9947 0.9720 0.9876
Q4 0.9942 0.9947 0.9892 0.9901
Q5 0.9934 0.9943 0.9908 0.9928
Q6 0.9915 0.9908 0.9881 0.9889
Q7 0.9945 0.9959 0.9751 0.9925
Q8 0.9964 0.9974 0.9915 0.9944
S1 0.9893 0.9929 0.9664 0.9894
S2 0.9897 0.9904 0.9460 0.9870
S3 0.9893 0.9931 0.9257 0.9906
S4 0.9889 0.9935 0.8928 0.9951
S5 0.9933 0.9964 0.9693 0.9935
S6 0.9894 0.9919 0.9310 0.9824
S7 0.9890 0.9909 0.9588 0.9827
S8 0.9908 0.9914 0.9715 0.9871

Q1–Q8 are the eight QMB sensors, and S1–S8 are the eight MOX sensors. For all
sensors, whether QMB or MOX, the Lorentzian model gives superiorR2-values,
although both models are quite good.

To quantify how well a model fits the data, we used the well
knownR2-test [3] for goodness-of-fit. This test is bounded from
above by 1, and the closer it gets to 1, the better the fit in the least
squares sense. The advantage of the R2-test is that it measures
goodness-of-fit on a normalized scale, thus enabling comparison
between differently scaled signals. We tested our model against
all 300 × 8 QMB signals, and 300 × 8 MOX signals, and cal-
culated the average and the median of R2. This time we did not
use a weighted cost function as we want to compare how well
the resulting signals fit the original ones. The results are shown
in Table 2.

To evaluate the quality of the results, we compared them to
those that are obtained by using the exponential model instead
of the Lorentzian model. The exponential model was developed
in [1] as an alternative to the Lorentzian model; it is given by

E(t; θ) =

⎧⎪⎨
⎪⎩

0, t < t0,

βτ(1 − e−(t−t0/τ)), t0 ≤ t ≤ t0 + T,

βτ(eT/τ − 1) e−(t−t0/τ), t > t0 + T.

(3)

Again, the entire signal is assumed to be a superposition of
two exponential signals. In a way, the exponential model is more
natural in that it assumed the familiar exponential decay, but
in [1], the Lorentzian model was shown to yield better clas-
sification. Here, too, we show that the generalized Lorentzian
model is preferred to the generalized exponential model; see
Table 2.

As eNoses are mostly used for the purpose of classifica-
tion, it is a good practice to test how well our feature extrac-
tion technique allows to discriminate between different odor-
ous mixtures. In Table 3 we compared the success rate of three
classification methods using two versions of feature extraction
techniques: the popular signal height (taking the height of the
highest peak), and our generalized Lorentzian model. As can be

Fig. 5. Two examples of the Lorentzian model fitted to a measured double peak
signal. The red line depicts the original signal, while the black depicts the best
fitting generalized Lorentzian model. The two dashed lines show the two in-
dividual Lorentzian signals that are superimposed to reconstruct the measured
double peak singal.

Table 3
The success rate of three different classification methods using the two feature
extraction methods discussed in the text

Signal height (%) Generalized Lorentzian (%)

Bayes 63.94 72.72
KNN 68.68 70.60
Perceptron 66.05 84.53

As can be seen, the generalized Lorentzian model gives higher classification
rates. The analysis was carried out on a set of 390 odor signal samples, measured
using the MOSESII electronic nose. The data was classified into two groups
according to some specific odor property.

seen from the this table, the generalized Lorentzian model gives
higher classification rates.

5. Discussion

We have reason to believe that a multi-peak signal occurs
when the input mixture can be divided into disjoint sub-mixtures,
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Fig. 6. Double peaks with two fitting Lorentzians. The dashed blue curve is
the first signal and the dashed green one is the second, the red curve is the
superposition of the two curves. Note that it is hard to tell if this is a true double
peak signal or a signal with a failure section.

having significantly different volatilities. Previously, the com-
mon practice was to discard such signals prior to the application
of any data analysis technique, thus potentially loosing valu-
able information. The present work, combined with the results
in [2] on remedying corrupted signals, enable the utilization of
non-standard signals in the data analysis.

After a multi-peak signal has been decomposed into its single-
peak constituents, it is left to the user to decide which of them to
use for the analysis. In many cases, one of the peaks is caused by
some contamination of the sample, in which case the stronger
peak should be used for subsequent analysis. In other cases, a
very rapid first peak is caused by large values of humidity in the
sample and then comes the following signal, which carries the
important information. Sometimes, we suggest comparing the
results with other datasets as a strategy to decide on the nature
of the two peaks. In the absence of any external knowledge, we
may suggest to use both peaks in the analysis and to examine
which of them gives a result that is more consistent with the
other results.

Whenever one of the peaks reflects the impact of an undesir-
able element (like contamination or humidity), its removal will
result in a cleaner signal. This might serve as a remedy to the
well documented sensitivity to humidity in eNoses.

Identifying multiple peaks is a technical question with broad
practical implications. Sometimes, as is demonstrated in Fig. 6,
it is hard to decide if the signal under inspection is corrupted
or is simply a multiple-peak signal. This situation is quite rare
in our dataset, as most of the failures are easily identified (see,
e.g., Fig. 3). In these few cases where we have doubts, we can
decide on the signal classification using a simple test involving
the signal height in the vicinity of the two peaks. We rely on

the observation, at least true to the specific dataset used, that
each sensor has a typical range of response, for example, the first
QMB sensor (Q1) usually has its peak in the range of 1900–2200.
A failure occurs when the sensor is driven above its “normal”
operating range. Therefore, if the double peak occurs for very
high readings of the sensor, we assume that it is a failure, while
if it occurs for low readings, we regard it as a double-peak. For
example, in Fig. 6, the abnormal signal shape is associated with
a double peak and not with a failure.

References

[1] L. Carmel, S. Levy, D. Lancet, D. Harel, A feature extraction method for
chemical sensors in electronic noses, Sens. Actuators B: Chem. 93 (2003)
67–76.

[2] L. Carmel, Electronic nose signal restoration: Beyond the dynamic range
limit, Sens. Actuators B: Chem. 106 (2005) 95–100.

[3] W.R. Dillon, M. Goldstein, Multivariate Analysis Methods and Applica-
tions, John Wiley and Sons, New York, USA, 1984.

[4] C. Distante, M. Leo, P. Siciliano, K.C. Persaud, On the study of feature
extraction methods for an electronic nose, Sens. Actuators B: Chem. 87
(2002) 274–288.

[5] J.W. Gardner, P.N. Bartlett, Electronic Noses, Principles and Applications,
Oxford University Press, New York, USA, 1999.

[6] The Math Works Inc., Optimization Toolbox for use with Matlab, User
Guide Version 2, 4th Printing (Release 12), 2000.

[7] J. Mitrovics, H. Ulmer, U. Weimar, W. Gopel, Modular sensor systems for
gas sensing and odor monitoring: the MOSES concept, Acc. Chem. Res.
31 (1998) 307–315.

Biographies

Rafi Haddad received his BSc in Mathematics and Computer Science from
Tel-Aviv University in 1995, and his MSc degree in Computer Science and Ap-
plied Mathematics, specializing in bioinformatics, from the Weizmann Institute
of Science in 2005. He recently started his PhD studies in the same depart-
ment. His research deals with materializing odor digitization, transmission and
reproduction, and it involves many kind of mathematics (e.g., multivariate data
analysis and statistical pattern recognition), biology (e.g., the sense of smell
and receptor repertoires), and chemistry (e.g., electronic noses and chemical
sensors).

Liran Carmel received his PhD degree in 2003, in the Department of Com-
puter Science and Applied Mathematics at the Weizmann Institute of Science,
Israel. In his research, he investigated the feasibility of odor communication,
and developed many algorithms for this purpose, including a classification algo-
rithm, a feature extraction technique, algorithms for dimensionality reduction,
and algorithms for multivariate data visualization. Currently, he is pursuing his
postdoctoral research at the National Institutes of Health, USA, where he deals
with different aspects of molecular evolution.

David Harel has been at the Weizmann Institute of Science since 1980. He was
Department Head from 1989 to 1995, and was Dean of the Faculty of Mathe-
matics and Computer Science between 1998 and 2004. He is also co-founder of
I-Logix, Inc. He received his PhD from MIT in 1978, and has spent time at IBM
Yorktown Heights, and at Carnegie-Mellon and Cornell Universities. In the past
he worked mainly in theoretical computer science, and now he works in software
and systems engineering, modeling biological systems, and the synthesis and
communication of smell. He is the inventor of statecharts and co-inventor of live
sequence charts, and co-designed Statemate, Rhapsody and the Play-Engine. He
received the ACM Outstanding Educator Award in 1992 and the Israel Prize in
2004.


